首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Described here is a method to measure contractility of isolated skeletal muscles. Parameters such as muscle force, muscle power, contractile kinetics, fatigability, and recovery after fatigue can be obtained to assess specific aspects of the excitation-contraction coupling (ECC) process such as excitability, contractile machinery and Ca2+ handling ability. This method removes the nerve and blood supply and focuses on the isolated skeletal muscle itself. We routinely use this method to identify genetic components that alter the contractile property of skeletal muscle though modulating Ca2+ signaling pathways. Here, we describe a newly identified skeletal muscle phenotype, i.e., mechanic alternans, as an example of the various and rich information that can be obtained using the in vitro muscle contractility assay. Combination of this assay with single cell assays, genetic approaches and biochemistry assays can provide important insights into the mechanisms of ECC in skeletal muscle.  相似文献   

2.
Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA)-rich), fish oil (n-3 PUFA-rich), or lard (low in PUFAs) were administered to the rats for 4 weeks. Myosin heavy chain (MyHC) isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL) muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.  相似文献   

3.
4.
猪脂肪及肌肉组织中基因表达信息分析   总被引:1,自引:0,他引:1  
为探测猪脂肪及肌肉组织中基因表达概况,利用猪EST资源和人类基因序列开展计算机模拟研究,旨在为猪肉质改良的遗传基础分析提供候选信息。执行Blast比对程序以识别人类基因组基因与猪EST序列间的同源性并筛选出高度同源记录,同时编制4个Java程序进行序列检索收集、序列比对结果的过滤筛选以及分类处理。统计分析表明:至少有2002个基因在猪脂肪及肌肉组织中表达,其中1087个基因在脂肪组织表达,1205个基因在肌肉组织中表达,两组织共同表达的基因为290个;筛选出高同源基因,同时分类统计出了114个基础活性基因(脂肪和肌肉组织分别表达80和34个),并选取Top记录进行了描述分析和总结。  相似文献   

5.
Objective: Alternate day fasting may extend lifespan in rodents and is feasible for short periods in nonobese humans. The aim of this study was to examine the effects of 3 weeks of alternate day fasting on glucose tolerance and skeletal muscle expression of genes involved in fatty acid transport/oxidation, mitochondrial biogenesis, and stress response. Research Methods and Procedures: Glucose and insulin responses to a standard meal were tested in nonobese subjects (eight men and eight women; BMI, 20 to 30 kg/m2) at baseline and after 22 days of alternate day fasting (36 hour fast). Muscle biopsies were obtained from a subset of subjects (n = 11) at baseline and on day 21 (12‐hour fast). Results: Glucose response to a meal was slightly impaired in women after 3 weeks of treatment (p < 0.01), but insulin response was unchanged. However, men had no change in glucose response and a significant reduction in insulin response (p < 0.03). There were no significant changes in the expression of genes involved in mitochondrial biogenesis or fatty acid transport/oxidation, although a trend toward increased CPT1 expression was observed (p < 0.08). SIRT1 mRNA expression was increased after alternate day fasting (p = 0.01). Discussion: Alternate day fasting may adversely affect glucose tolerance in nonobese women but not in nonobese men. The gene expression results indicate that fatty acid oxidation and mitochondrial biogenesis are unaffected by alternate day fasting. However, the increased expression in SIRT1 suggests that alternate day fasting may improve stress resistance, a commonly observed feature of calorie‐restricted rodents.  相似文献   

6.
With the multifaceted activities of nucleotides, there is a history of safe consumption of dietary nucleotides (NTs) in the human diet. This study investigated the multigenerations cumulative toxicity on rats’ development after weaning. Weaning rats (F0) were fed with NTs at the dosage of 0.01, 0.04, 0.16, 0.64, and 1.28% (wt/wt) for 90 days and then mated for 1:1 pattern. The offspring was F1. F1 rats were fed with NTs for 90 days after weaning. Afterwards, F1 go on to the second reproductive part. We repeated the above process, until F3 rats were born. We observed the weight, food consumption in the whole experiment, and detected the blood indicators and organ pathology at the terminal. No abnormal reaction, behavior disorder, and organ pathology related to toxic symptom were observed in NTs‐treated groups. Weight gain and diet utilization ratio of males in each NTs group had significant increase after weaning (p < 0.05). With the exception of decrease in uric acid (p < 0.05) of NTs male, there were no differences between the control and NTs groups in blood indicators. NTs could promote early growth and development of rats after weaning, especially in males.  相似文献   

7.
目的建立高脂饮食诱导小鼠肥胖模型,分析高脂饲料对小鼠脂质代谢和leptin基因表达水平的影响。方法用高脂饲料饲喂小鼠,每周定时称重和断尾采血一次,分别测定血清中血糖、胆固醇、甘油三酯、胰岛素和leptin的浓度;5周后,分离、称重小鼠体脂并提取腹部脂肪组织RNA,半定量RT-PCR分析leptin基因表达水平。结果从第2周开始,实验组小鼠体重明显高于对照组小鼠,4周后,体重差异显著(P〈0.05);血清中血糖、胆固醇、甘油三酯、胰岛素和leptin的含量随体重增加明显增高,4周后,差异显著(P〈0.05);实验组体脂含量明显高于对照组(P〈0.05),半定量RT-PCR分析表明,肥胖小鼠脂肪组织leptin基因表达水平高于对照组(P〈0.05)。结论高脂饮食诱导可建立小鼠肥胖模型,并能够引起高胰岛素和高leptin血症,为进一步研究肥胖的发病机制奠定基础。  相似文献   

8.
目的:肥胖是2型糖尿病的高危因素,但脂代谢异常引起胰岛素抵抗的分子机制仍需探讨.去乙酰化酶SIRT1在细胞内的糖脂代谢过程中起着重要的作用,本文应用体内外模型探讨不同类型高脂状态下肝细胞内SIRT1蛋白表达的改变,进而揭示肥胖引起2型糖尿病发病的可能分子途径.方法:分别采用含有不同浓度棕榈酸或油酸的培养液培养HepG2肝细胞1天,检测细胞内SIRT1的蛋白水平;同时采用高脂饲料造小鼠肥胖模型,检测肝脏组织内SIRT1的表达改变.结果:三种不同浓度的棕榈酸均未引起HepG2肝细胞内SIRT1表达的改变,与棕榈酸有所不同,两种浓度的油酸均引起细胞内SIRT1表达的显著降低,分别是对照组的65%和58%.在高脂动物模型中同样未发现肝组织内SIRT1蛋白表达的改变.结论:SIRT1作为细胞内糖脂代谢通路的交叉点,其表达的改变有利于揭示脂代谢异常是如何引起糖代谢紊乱的.油酸的大量摄入可以导致甘油三酯在肝脏中的蓄积和影响肝细胞的胰岛素敏感性,而本文提示油酸诱导的细胞代谢改变很可能通过下调SIRT1来实现,其表达的改变为探讨肥胖引起2型糖尿病的分子机制提供线索.  相似文献   

9.
The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.  相似文献   

10.
The adipocyte-type fatty acid-binding protein (A-FABP) is considered a candidate gene for fat metabolism; thus, it affects fat deposition in chickens. The present study was designed to examine the polymorphism and mRNA abundance of the A-FABP gene with intramuscular fat (IMF) in the pectoralis muscles (PM) and leg muscles (LM) of Three-yellow Chicken (TYC) and Hetian-black Chicken (HTBC). In total, 60 TYCs and 60 HTBCs were sacrificed using exsanguination at market age. The IMF contents of the PM and LM in the HTBC were significantly higher than those in the TYC. Three genotypes of the A-FABP gene first exon, AA, AB, and BB, were examined by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP), and a C51 T mutational site, which is a silent substitution mutation, was revealed. The IMF contents of the AA genotype in the PM of the HTBC were significantly higher than those in the AB genotype; thus, the C51 T mutable site is a gene marker for selecting a higher IMF content in the PM of the HTBC. The relative expression of the A-FABP mRNA in the LM of the HTBC, which was measured by quantitative real-time PCR, was significantly higher than in the TYC. A significantly positive association was detected between A-FABP expression with the IMF contents of the PM and LM of both the TYC and the HTBC. These results provide basic data that might be helpful to further research the role of the A-FABP gene in fat deposition and fatty acid metabolism in chickens.  相似文献   

11.
BESSESEN, DANIEL H, CONNIE L RUPP AND ROBERT H ECKEL. Trafficking of dietary fat in lean rats. Obes Res. 1995;3:191–203. Despite increasing interest in the role that fuel partitioning plays in determining body composition, the relative importance of oxidative versus storage pathways in the clearance of dietary fat remains unclear. A widely held view is that the primary destination of chylomicron triglyceride fatty acids (TGFA) is adipose tissue, and the primary source of lipid fuel for skeletal muscle is non-esterified fatty acids (NEFA). An alternate view is that muscle, not adipose tissue, is the primary site of TGFA clearance. This view is supported by estimates of the total lipoprotein lipase content of muscle and adipose tissue. To directly study the partitioning of dietary fat between oxidation and storage, 14C-labeled oleic acid was fed to Sprague Dawley rats and its metabolic fate followed over 30 days. Two hours after ingestion, more than 3.5 times as much label was found in skeletal muscle tissue (2.42 ± 0.45 nmols) and CO2 (0.25 ± 0.01 nmols) than was found in adipose tissue (0.71 ± 0.14 nmols). Intramuscular triglyceride was the lipid class most extensively labeled. After skeletal muscle, liver was the next most important site of TGFA clearance. Surprisingly a substantial quantity of label remained associated with the GI tract even 24 hours after ingestion. Between 2 and 10 days following ingestion there was a net decline in the C content of muscle, liver and GI tract, associated with a net rise in the 14C content of adipose tissue. These findings demonstrate: 1) the importance of skeletal muscle and liver in whole organism TGFA clearance, 2) the importance of intramuscular partitioning of lipid fuels between direct oxidation and storage as TG, 3) the potentially important role of the GI tract in the delivery of dietary fat to the circulation 10–24 hours following ingestion, and 4) the stability of adipose tissue as a storage site. The complex nature of the tissue-specific clearance of TGFA over time is perhaps better described by the term ‘trafficking’ than by the more commonly used term “partitioning.” Future studies of TGFA clearance combined with sampling of relevant tissues over time will provide insight into the specific roles that abnormalities in liver, muscle and adipose tissue TGFA metabolism play in the development of hypertriglyceridemic disorders and states of increased or reduced body weight.  相似文献   

12.
13.
Objective: The objective of this study is to test the impact of high‐fat diet (HFD) feeding on skeletal muscle (SM) uncoupling protein 3 (UCP3) expression and its association with mitochondrial ion permeability and whole‐body energy homeostasis. Research Methods and Procedures: Sprague–Dawley rats were fed ad libitum either a HFD (60% of energy from fat, n = 6) or a low‐fat diet (12% of energy from fat, n = 6) for 4 weeks. Twenty‐four‐hour energy expenditure was measured by indirect calorimetry in the last week of the dietary treatment. Blood samples were collected for plasma leptin and free fatty acid assays, and mitochondria were isolated from hindlimb SM for subsequent determinations of UCP3 levels and mitochondrial ion permeability. Results: Plasma leptin levels were higher in rats fed the HFD despite the same body weight in two groups. The same dietary treatment also rendered a 2‐fold increase in plasma free fatty acid and SM UCP3 protein levels (Western blot) compared with the group fed the low‐fat diet. However, the elevated UCP3 protein levels did not correlate with mitochondrial swelling rates, a measure of mitochondrial chloride, and proton permeability, or with 24‐hour energy expenditure. Discussion: The high correlation between the levels of plasma free fatty acid levels and SM UCP3 suggests that circulating free fatty acid may play an important role in UCP3 expression during the HFD feeding. However, the dissociation between the UCP3 protein levels and 24‐hour energy expenditure as well as mitochondrial ion permeability suggests that mitochondrial proton leak mediated by muscle UCP3 may not be a major contributor in energy balance in HFD feeding, and other regulatory mechanisms independent of gene regulation may be responsible for the control of UCP3‐mediated uncoupling activity.  相似文献   

14.
旨在筛选定量PCR检测不同骨骼肌纤维类型的稳定内参基因,为骨骼肌的能量和糖代谢等功能研究提供基础数据.试验选用6周龄小鼠,采集腓肠肌(Gastrocnemius muscle,GAS)、比目鱼肌(Soleus,SOL)、胫骨前肌(Tibialis anterior muscle,TA)和趾长伸肌(Extensor di...  相似文献   

15.

Background

Statins are the most commonly used drugs for the treatment of hypercholesterolemia. Their most frequent side effect is myotoxicity. To date, it remains unclear whether statins preferentially induce myotoxicity in fast- or in slow-twitch muscles. Therefore, we investigated these effects on fast- (extensor digitorum longus; EDL), slow- (soleus; SOL), and mixed-twitch muscles (diaphragm; DIA) in rats by comparing their contractile and molecular structural properties.

Methods

Simvastatin-induced functional changes were determined by muscle contraction measurements, and drug-induced molecular changes were investigated using Fourier transform infrared (FTIR) and attenuated total reflectance (ATR) FTIR spectroscopy.

Results

With simvastatin administration (30 days, 50 mg/kg), a depression in the force–frequency curves in all muscles was observed, indicating the impairment of muscle contractility; however, the EDL and DIA muscles were affected more severely than the SOL muscle. Spectroscopic findings also showed a decrease in protein, glycogen, nucleic acid, lipid content and an increase in lipid order and lipid dynamics in the simvastatin-treated muscles. The lipid order and dynamics directly affect membrane thickness. Therefore, the kinetics and functions of membrane ion channels were also affected, contributing to the statin-induced impairment of muscle contractility. Furthermore, a reduction in α-helix and β-sheet and an increase in random coil, aggregated and antiparallel β-sheet were observed, indicating the protein denaturation. Spectral studies showed that the extent of molecular structural alterations in the muscles following simvastatin administration was in the order EDL > DIA > SOL.

Conclusions

Simvastatin-induced structural and functional alterations are more profound in the fast-twitch than in the slow-twitch muscles.

General significance

Myotoxic effects of simvastatin are primarily observed in the fast-twitch muscles.  相似文献   

16.
过氧化物酶体增殖物激活受体γ辅激活因子-1β(peroxisome proliferative activated receptor γ coactivator 1 β,Pgc-1β)与线粒体生成相关。已有研究证明,miR-34a在肝组织脂肪异位沉积中发挥重要作用,但是否与骨骼肌的脂肪异位沉积相关尚不清楚。本研究以C57Bl/6J小鼠为研究对象,通过尾静脉注射miR-34a模拟物,探讨miR-34a过表达对小鼠骨骼肌脂肪沉积的影响。组织切片进行油红O染色及甘油三酯含量测定揭示,miR-34a过表达的小鼠骨骼肌组织中脂滴积累及甘油三酯含量显著增加。实时荧光定量PCR(qRT-PCR)显示,与对照鼠比较,miR-34a处理的小鼠骨骼肌组织中的脂肪酸合成酶(Fas)表达显著上调,而脂肪酸氧化分解相关基因产物肉毒碱棕榈酰基转移酶1α(Cpt 1α)表达显著下调,提示miR-34a调控骨骼肌内脂肪的沉积机制可能是通过促进脂肪酸生成和抑制脂肪酸分解实现的。qRT-PCR和Western印迹证明,miR-34a可抑制Pgc-1β蛋白的表达。CoxⅡ/28S比例(线粒体定量指标)测定提示,注射miR-34a模拟物导致小鼠骨骼肌线粒体数目显著下调。生物信息分析显示,Pgc-1β mRNA的3′-UTR存在 miR-34a的潜在识别位点,因此miR-34a可能通过靶向识别Pgc-1β的3′-UTR抑制Pgc-1β表达,从而抑制线粒体生成。上述结果证明,miR-34a能通过靶向抑制PGC-1β表达,抑制线粒体生成,继而减少脂肪酸氧化分解,导致骨骼肌脂肪沉积增加。此外,上调脂肪酸合成酶也可能是miR-34a导致骨骼肌脂肪沉积增加的另一原因,其作用机制需进一步研究。  相似文献   

17.
We investigated the contractile phenotype of skeletal muscle deficient in exons MEx1 and MEx2 (KO) of the titin M-band by using the cre-lox recombination system and a multidisciplinary physiological approach to study skeletal muscle contractile performance. At a maximal tetanic stimulation frequency, intact KO extensor digitorum longus muscle was able to produce wild-type levels of force. However, at submaximal stimulation frequency, force was reduced in KO mice, giving rise to a rightward shift of the force-frequency curve. This rightward shift of the force-frequency curve could not be explained by altered sarcoplasmic reticulum Ca2+ handling, as indicated by analysis of Ca2+ transients in intact myofibers and expression of Ca2+-handling proteins, but can be explained by the reduced myofilament Ca2+ sensitivity of force generation that we found. Western blotting experiments suggested that the excision of titin exons MEx1 and MEx2 did not result in major changes in expression of titin M-band binding proteins or phosphorylation level of the thin-filament regulatory proteins, but rather in a shift toward expression of slow isoforms of the thick-filament-associated protein, myosin binding protein-C. Extraction of myosin binding protein-C from skinned muscle normalized myofilament Ca2+ sensitivity of the KO extensor digitorum longus muscle. Thus, our data suggest that the M-band region of titin affects the expression of genes involved in the regulation of skeletal muscle contraction.  相似文献   

18.
Feeding rats with either a carbohydrate meal or a fat meal to the previously fasted rats caused significant decrease in urinary output of urea and total nitrogen. The content of free leucine in skeletal muscle decreased in the rats fed either a carbohydrate meal or a fat meal. Feeding of either a carbohydrate meal or a fat meal stimulated incoiporation of l-leucine-1–14C into protein fraction of skeletal muscle and reduced its oxidation to 14CO2.

These results suggest that the metabolism of leucine is under nutritional regulation and that the decrease in content of free leucine in skeletal muscle might be caused by enhanced reutilization of leucine into protein by the feeding of a carbohydrate meal or a fat meal. The role of free leucine in skeletal muscle as a regulator of protein turnover in the tissue are discussed in relation to the metabolism of this branched chain amino acid.  相似文献   

19.
牛凝乳酶原基因在大肠杆菌中表达调控的研究   总被引:4,自引:0,他引:4  
Shine-Dalgarno序列与起始密码子之问的距离与组成对凝乳酶原基因表达有明显的影响,可导致其表达水平有15倍之差。SD序列至ATG之间为15bp不利于表达,表达质粒中sD-ATG在7-11bp之间都有可能获得高效表达;但决定因素不是简单的长度,而是RBS附近可能的二级结构即△G的大小、SD序列及ATG中参与配对的碱基数目。将pTLC23中凝乳酶原cDNA3'端端非翻译区插入终止密码子TGA与转录终止子rrnBT1T2之间适当位置可提高凝乳酶原基因的表达,这可能是因为这段序列能形成由53个碱基对和8个碱基组成的稳定的mRNA二级结构,起到转录终止子的作用,而一般认为串联终止子对终止转录更为有效。  相似文献   

20.
哺乳动物骨骼肌由各种不同类型的肌纤维镶嵌而成,不同类型肌球蛋白重链的表达是造成不同类型肌纤维的主要原因.目前已知的肌球蛋白重链家族包含8种亚型,其中长白猪骨骼肌My HC-Ⅱb的表达量显著高于中国地方猪,然而造成这种差异的分子机制未见报道.本研究用荧光定量PCR证明了长白猪背最长肌中My HC-Ⅱb m RNA的表达量显著高于莱芜猪(P=0.013).删除实验结果表明,从转录起始位点上游-1024 bp删除到-187 bp之后,My HC-Ⅱb表达量显著下降,分析发现,在这段启动子区域内存在3个E-box序列;分别突变这3个E-box序列后,My HC-Ⅱb启动子驱动的荧光素酶活性显著下降(P=0.036).另外,在My HC-Ⅱb上游启动子区?1398 bp处发现一个GT的突变,所检测的64头莱芜猪在该位点全部为GG型,65头长白猪中13头为GG型,16头为TT型,36头为GT型.在C2C12细胞系中的转染实验结果显示,G突变为T之后有增加My HC-Ⅱb表达的趋势.Western blot的结果表明,转录因子Myo D在两猪种间表达差异不显著(P=0.136),而Myf-5在长白猪中的表达量极显著高于其在莱芜猪中的表达量(P=0.0036).这些数据表明,Myf-5是造成猪My HC-Ⅱb基因m RNA上调表达的重要因素之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号