首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: Obesity is a growing and important public health problem in Western countries and worldwide. There is ample evidence that both environmental and genetic factors influence the risk of developing obesity. Although a number of genes influencing obesity and obesity‐related measures have been localized, it is clear that others remain to be identified. The rate of obesity is particularly high in American Indian populations. This study reports the results of a genome‐wide scan for loci influencing BMI and weight in 963 individuals in 58 families from three American Indian populations in Arizona, Oklahoma, and North and South Dakota participating in the Strong Heart Family Study. Research Methods and Procedures: Short tandem repeat markers were genotyped, resulting in a marker map with an average spacing of 10 centimorgans. Standard multipoint variance component linkage methods were used. Results: Significant evidence of linkage was observed in the overall sample, including all three study sites, for a locus on chromosome 4q35 [logarithm of the odds (LOD) = 5.17 for weight, 5.08 for BMI]. Analyses of the three study sites individually showed that the greatest linkage support for the chromosome 4 locus came from Arizona (LOD = 2.6 for BMI), but that LOD scores for weight were >1 in all three samples. Suggestive linkage signals (LOD >2) were also observed on chromosomes 5, 7, 8, and 10. Discussion: The chromosome 4 locus detected in this scan is in a region lacking any obvious positional candidate genes with known functions related to obesity. This locus may represent a novel obesity gene.  相似文献   

2.
Objective: The objective was to provide an overall assessment of genetic linkage data of BMI and BMI‐defined obesity using a nonparametric genome scan meta‐analysis. Research Methods and Procedures: We identified 37 published studies containing data on over 31,000 individuals from more than >10,000 families and obtained genome‐wide logarithm of the odds (LOD) scores, non‐parametric linkage (NPL) scores, or maximum likelihood scores (MLS). BMI was analyzed in a pooled set of all studies, as a subgroup of 10 studies that used BMI‐defined obesity, and for subgroups ascertained through type 2 diabetes, hypertension, or subjects of European ancestry. Results: Bins at chromosome 13q13.2‐ q33.1, 12q23‐q24.3 achieved suggestive evidence of linkage to BMI in the pooled analysis and samples ascertained for hypertension. Nominal evidence of linkage to these regions and suggestive evidence for 11q13.3‐22.3 were also observed for BMI‐defined obesity. The FTO obesity gene locus at 16q12.2 also showed nominal evidence for linkage. However, overall distribution of summed rank p values <0.05 is not different from that expected by chance. The strongest evidence was obtained in the families ascertained for hypertension at 9q31.1‐qter and 12p11.21‐q23 (p < 0.01). Conclusion: Despite having substantial statistical power, we did not unequivocally implicate specific loci for BMI or obesity. This may be because genes influencing adiposity are of very small effect, with substantial genetic heterogeneity and variable dependence on environmental factors. However, the observation that the FTO gene maps to one of the highest ranking bins for obesity is interesting and, while not a validation of this approach, indicates that other potential loci identified in this study should be investigated further.  相似文献   

3.
Objective: To identify the genetic determinants of obesity using univariate and bivariate models in a genome scan. Research Methods and Procedures: We evaluated the genetic and environmental effects and performed a genome‐wide linkage analysis of obesity‐related traits in 478 subjects from 105 Mexican‐American nuclear families ascertained through a proband with documented coronary artery disease. The available obesity traits include BMI, body surface area (BSA), waist‐to‐hip ratio (WHR), and trunk fat mass as percentage of body weight. Heritability estimates and multipoint linkage analysis were performed using a variance components procedure implemented in SOLAR software. Results: The heritability estimates were 0.62 for BMI, 0.73 for BSA, 0.40 for WHR, and 0.38 for trunk fat mass as percentage of body weight. Using a bivariate genetic model, we observed significant genetic correlations between BMI and other obesity‐related traits (all p < 0.01). Evidence for univariate linkage was observed at 252 to approximately 267 cM on chromosome 2 for three obesity‐related traits (except for WHR) and at 163 to approximately 167 cM on chromosome 5 for BMI and BSA, with the maximum logarithm of the odds ratio score of 3.12 (empirical p value, 0.002) for BSA on chromosome 2. Use of the bivariate linkage model yielded an additional peak (logarithm of the odds ratio = 3.25, empirical p value, 0.002) at 25 cM on chromosome 7 for the pair of BMI and BSA. Discussion: The evidence for linkage on chromosomes 2q36‐37 and 5q36 is supported both by univariate and bivariate analysis, and an additional linkage peak at 7p15 was identified by the bivariate model. This suggests that use of the bivariate model provides additional information to identify linkage of genes responsible for obesity‐related traits.  相似文献   

4.
To study genetic loci influencing obesity in nuclear families with type 2 diabetes, we performed a genome‐wide screen with 325 microsatellite markers that had an average spacing of 11 cM and a mean heterozygosity of ~75% covering all 22 autosomes. Genotype data were obtained from 562 individuals from 178 families from the Breda Study Cohort. These families were determined to have at least two members with type 2 diabetes. As a measure of obesity, the BMI of each diabetes patient was determined. The genotypes were analyzed using variance components (VCs) analysis implemented in GENEHUNTER 2 to determine quantitative trait loci influencing BMI. The VC analysis revealed two genomic regions showing VC logarithm of odds (LOD) scores ≥1.0 on chromosome 1 and chromosome 11. The regions of interest on both chromosomes were further investigated by fine‐mapping with additional markers, resulting in a VC LOD score of 1.5 on chromosome 1q and a VC LOD of 2.4 on chromosome 11q. The locus on chromosome 1 has been implicated previously in diabetes. The locus on chromosome 11 has been implicated previously in diabetes and obesity. Our study to determine linkage for BMI confirms the presence of quantitative trait loci influencing obesity in subjects with type 2 diabetes on chromosomes 1q31‐q42 and 11q14‐q24.  相似文献   

5.
Objective: The objectives were to identify quantitative trait loci linked to serum adiponectin concentration and to estimate heritability in two populations of African descent. Research Methods and Procedures: We conducted a genome scan for serum adiponectin concentration in two populations of African descent. Genome‐wide microsatelitte markers were typed in an African‐American population consisting of 203 families from the Chicago area and in a Nigerian Yoruba population consisting of 146 families. Linkage analysis was performed to identify loci. Variance component model was used to estimate heritability. Results: Estimates of heritability adjusted for age, gender, and BMI were 0.45 and 0.70 for the African‐American and Nigerian families, respectively. In both populations, adiponectin was significantly negatively correlated with BMI, height, and weight. After adjusting for age, gender, and BMI, we found evidence of genetic linkage to adiponectin on chromosomes 11 [limit of detection (LOD) score = 2.89] and 17 (LOD score = 1.35) in the Nigerian sample. Among the African‐Americans, we found genetic linkage on chromosomes 2 (LOD score = 1.82), 4 (LOD score = 2.12), and 11 (LOD score = 2.33). Analysis based on combined data yielded a maximum LOD score of 3.21 on chromosome 11. Discussion: Consistency of the finding on chromosome 11 suggests that this region is likely to be involved in regulation of adiponectin, either through a primary influence on hormone levels or through pathways influencing body composition. These results suggest that adiponectin could be a potential therapeutic target for obesity.  相似文献   

6.
Objective: To explore a quantitative trait locus (QTL) on human chromosome 1q affecting BMI, adiposity, and fat‐free mass phenotypes in the Quebec Family Study cohort. Research Methods and Procedures: Non‐parametric sibpair and variance component linkage analyses and family‐based association studies were performed with a dense set of chromosome 1q43 microsatellites and single‐nucleotide polymorphism markers in 885 adult individuals. Results: Linkage was observed between marker D1S184 and BMI (p = 0.0004) and with body fat mass or percentage body fat (p ≤ 0.0003), but no linkage was detected with fat‐free mass. Furthermore, significant linkages (p < 0.0001) were achieved with subsamples of sibpairs at both ends of phenotype distributions. Association studies with quantitative transmission disequilibrium tests refined the linkage to a region overlapping the regulator of G‐protein signaling 7 (RGS7) gene and extending to immediate upstream gene loci. Discussion: The present study indicates that the QTL on chromosome 1q43 specifically affects total adiposity and provides a genetic mapping framework for the dissection of this adiposity locus.  相似文献   

7.
Objective: Given the importance of visceral adiposity in the metabolic syndrome, whether levels of adipokines have shared genetic effects (pleiotropy) with aspects of the metabolic syndrome should be addressed. Acylation‐stimulating protein (ASP), an adipose‐derived protein, influences lipid metabolism, obesity, and glucose use. Therefore, our objective was to examine the genetic regulation of ASP and associated pleiotropic effects. Research Methods and Procedures: We assayed serum ASP levels in 435 Mexican Americans participating in the San Antonio Family Heart Study and performed univariate and bivariate variance components analysis. Results: Additive genetic heritability of ASP was 26% (p = 0.0004). Bivariate genetic analysis detected significant genetic correlations between ASP and several lipid measures but not between ASP and adiposity or diabetes measures. We detected two potential quantitative trait loci influencing ASP levels. The strongest signal was on chromosome 17 near marker D17S1303 [log of the odds ratio (LOD) = 2.7]. The signal on chromosome 15 reached its peak near marker D15S641 (LOD = 2.1). Both signals localize in regions reported to harbor quantitative trait loci influencing obesity and lipid phenotypes in this population. Bivariate linkage analysis yielded LODs of 4.7 for ASP and BMI on chromosome 17 and 3.2 for ASP and high‐density lipoprotein2a on chromosome 15. Discussion: Given these findings, there seems to be a significant genetic contribution to variation in circulating levels of ASP and an interesting pattern of genetic correlation (i.e., pleiotropy) with other risk factors associated with the metabolic syndrome.  相似文献   

8.
A genome scan for serum triglyceride in obese nuclear families   总被引:6,自引:0,他引:6  
Serum triglyceride (TG) levels are increased in extremely obese individuals, indicating abnormalities in lipid metabolism and insulin resistance. We carried out a genome scan for serum TG in 320 nuclear families segregating extreme obesity and normal weight. Three hundred eighty-two Marshfield microsatellite markers (Screening Set 11) were genotyped. Quantitative linkage analyses were performed using family regression and variance components methods. We found linkage on the 7q36 region [D7S3058, 174 centimorgan (cM), Logarithm of Odds (LOD) = 2.98] for log-transformed TG. We also found suggestive linkages on chromosomes 20 (D20S164, 101 cM, LOD = 2.34), 13 (111 cM, LOD = 2.00), and 9 (104 cM, LOD = 1.90) as well as some weaker trends for chromosomes 1, 3, 5, 10, 12, and 22. In 58 African American families, LOD scores of 3.66 and 2.62 were observed on two loci on chromosome 16: D16S3369 (64 cM) and MFD466 (100 cM). To verify the 7q36 linkage, we added 60 nuclear families, and the LOD score increased to 3.52 (empirical P < 0.002) on marker D7S3058.  相似文献   

9.
Objective: In the present study, we undertook a two‐step fine mapping of a 20‐megabase region around a quantitative trait locus previously reported on chromosome 15q26 for abdominal subcutaneous fat (ASF) in an extended sample of 707 subjects from 202 families from the Quebec Family Study. Research Methods and Procedure: First, 19 microsatellites (in addition to the 7 markers initially available on 15q24‐q26; total = 26) were genotyped and tested for linkage with abdominal total fat, abdominal visceral fat, and ASF assessed by computed tomography and with fat mass (FM) using variance component‐based approach on age‐ and sex‐adjusted phenotypes. Second, 16 single nucleotide polymorphisms (SNPs) were genotyped and tested for association using family‐based association tests. Results: After the fine mapping, the peak logarithm of odds ratio (LOD) score (marker D15S1004) increased from 2.79 to 3.26 for ASF and from 3.52 to 4.48 for FM, whereas for abdominal total fat, the peak linkage (marker D15S996) decreased from 2.22 to 1.53. No evidence of linkage was found for abdominal visceral fat. Overall, for genotyped SNPs, three variants located in the putative MCTP2 gene were significantly associated with FM and the three abdominal fat phenotypes (p ≤ 0.05). The major allele and genotype of rs1424695 were associated with higher adiposity values (p < 0.004). The same trend was found for the two other polymorphisms (p < 0.05). None of the other SNPs was associated with adiposity phenotypes. The linkage for FM became non‐significant (LOD = 0.84) after adjustment for the MCTP2 polymorphisms, whereas the one for ASF remained unchanged. Discussion: These results suggest that the MCTP2 gene, located on chromosome 15q26, influences adiposity. Other studies will be needed to investigate the function of the MCTP2 gene and its role in obesity.  相似文献   

10.
Obesity is a risk factor for many chronic diseases, including glucose intolerance, lipid disorders, hypertension, and coronary heart disease. Even though the body-mass index (BMI) is a heterogeneous phenotype reflecting the amount of fat, lean mass, and body build, several studies have provided evidence of one or two major loci contributing to the variation in this complex trait. We sought to identify loci with potential influence on BMI in the data obtained from National Heart, Lung, and Blood Institute Family Heart Study. Two complementary samples were studied: (a) 1,184 subjects in 317 sibships, with 243 markers typed by the Utah Molecular Genetics Laboratory (UMGL) and (b) 3,027 subjects distributed among 401 three-generation families, with 404 markers typed by the Mammalian Genotyping Service (MGS). A genome scan using a variance-components-based linkage approach was performed for each sample, as well as for the combined sample, in which the markers from each analysis were placed on a common genetic map. There was strong evidence for linkage on chromosome 7q32.3 in each sample: the maximum multipoint LOD scores were 4.7 (P<10-5) at marker GATA43C11 and 3.2 (P=.00007) at marker D7S1804, for the MGS and UMGL samples, respectively. The linkage result is replicated by the consistent evidence from these two complementary subsets. Furthermore, the evidence for linkage was maintained in the combined sample, with a LOD score of 4.9 (P<10-5) for both markers, which map to the same location. This signal is very near the published location for the leptin gene, which is the most prominent candidate gene in this region. For the combined-sample analysis, evidence of linkage was also found on chromosome 13q14, with D13S257 (LOD score 3.2, P=.00006), and other, weaker signals (LOD scores 1.5-1.9) were found on chromosomes 1, 2, 3, 5, 6, 14, and 15.  相似文献   

11.
Multiple linkage regions have been reported in schizophrenia, and some appear to harbor susceptibility genes that are differentially expressed in postmortem brain tissue derived from unrelated individuals. We combined traditional genome-wide linkage analysis in a multiplex family with lymphocytic genome-wide expression analysis. A genome scan suggested linkage to a chromosome 4q marker (D4S1530, LOD 2.17, θ=0) using a dominant model. Haplotype analysis using flanking microsatellite markers delineated a 14 Mb region that cosegregated with all those affected. Subsequent genome-wide scan with SNP genotypes supported the evidence of linkage to 4q33–35.1 (LOD=2.39) using a dominant model. Genome-wide microarray analysis of five affected and five unaffected family members identified two differentially expressed genes within the haplotype AGA and GALNT7 (aspartylglucosaminidase and UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 7) with nominal significance; however, these genes did not remain significant following analysis of covariance. We carried out genome-wide linkage analyses between the quantitative expression phenotype and genetic markers. AGA expression levels showed suggestive linkage to multiple markers in the haplotype (maximum LOD=2.37) but to no other genomic region. GALNT7 expression levels showed linkage to regulatory loci at 4q28.1 (maximum LOD=3.15) and in the haplotype region at 4q33–35.1 (maximum LOD=2.37). ADH1B (alcohol dehydrogenase IB) was linked to loci at 4q21–q23 (maximum LOD=3.08) and haplotype region at 4q33–35.1 (maximum LOD=2.27). Seven differentially expressed genes were validated with RT-PCR. Three genes in the 4q33–35.1 haplotype region were also differentially expressed in schizophrenia in postmortem dorsolateral prefrontal cortex: AGA, HMGB2, and SCRG1. These results indicate that combining differential gene expression with linkage analysis may help in identifying candidate genes and potential regulatory sites. Moreover, they also replicate recent findings of complex trans- and cis- regulation of genes.  相似文献   

12.
Zhao LJ  Xiao P  Liu YJ  Xiong DH  Shen H  Recker RR  Deng HW 《Human genetics》2007,121(1):145-148
To identify quantitative trait loci (QTLs) that contribute to obesity, we performed a large-scale whole genome linkage scan (WGS) involving 4,102 individuals from 434 Caucasian families. The most pronounced linkage evidence was found at the genomic region 20p11-12 for fat mass (LOD = 3.31) and percentage fat mass (PFM) (LOD = 2.92). We also identified several regions showing suggestive linkage signals (threshold LOD = 1.9) for obesity phenotypes, including 5q35, 8q13, 10p12, and 17q11.  相似文献   

13.
Insulin resistance and hyperinsulinemia are strong correlates of obesity and type 2 diabetes, but little is known about their genetic determinants. Using data on nondiabetics from Mexican American families and a multipoint linkage approach, we scanned the genome and identified a major locus near marker D6S403 for fasting "true" insulin levels (LOD score 4.1, empirical P<.0001), which do not crossreact with insulin precursors. Insulin resistance, as assessed by the homeostasis model using fasting glucose and specific insulin (FSI) values, was also strongly linked (LOD score 3.5, empirical P<.0001) with this region. Two other regions across the genome were found to be suggestively linked to FSI: a location on chromosome 2q, near marker D2S141, and another location on chromosome 6q, near marker D6S264. Since several insulin-resistance syndrome (IRS)-related phenotypes were mapped independently to the regions on chromosome 6q, we conducted bivariate multipoint linkage analyses to map the correlated IRS phenotypes. These analyses implicated the same chromosomal region near marker D6S403 (6q22-q23) as harboring a major gene with strong pleiotropic effects on obesity and on lipid measures, including leptin concentrations (e.g., LOD(eq) for traits-specific insulin and leptin was 4.7). A positional candidate gene for insulin resistance in this chromosomal region is the plasma cell-membrane glycoprotein PC-1 (6q22-q23). The genetic location on chromosome 6q, near marker D6S264 (6q25.2-q26), was also identified by the bivariate analysis as exerting significant pleiotropic influences on IRS-related phenotypes (e.g., LOD(eq) for traits-specific insulin and leptin was 4.1). This chromosomal region harbors positional candidate genes, such as the insulin-like growth factor 2 receptor (IGF2R, 6q26) and acetyl-CoA acetyltransferase 2 (ACAT2, 6q25.3-q26). In sum, we found substantial evidence for susceptibility loci on chromosome 6q that influence insulin concentrations and other IRS-related phenotypes in Mexican Americans.  相似文献   

14.
On the basis of accumulating evidence that obesity has a substantial genetic component, a genomewide search for linkages of DNA markers to percent body fat is ongoing in Pima Indians, a population with a very high prevalence of obesity. An initial screen of the genome (>600 markers in 874 individuals) has been completed using highly polymorphic markers (mean heterozygosity = .67). Reported here are the sib-pair linkage results for percent body fat (277 siblings), the best available indicator of overall obesity. Single-marker linkages to percent body fat were evaluated by sib-pair analysis for quantitative traits. From these analyses, the best evidence of genes influencing body fat came from markers at chromosome 11q21-q22 and 3p24.2-p22 (P = .001; LOD = 2.0). Regions flanking these markers were further investigated by multipoint linkage. The evidence for linkage at 11q21-q22 increased to P = .0002 (LOD = 2.8), peaking between markers D11S2000 and D11S2366. Evidence for linkage at 3p24.2-p22 did not change. No association was detected for any marker in the region. Although several genes are known in the 11q21-q22 region, none have been implicated as candidate genes for obesity.  相似文献   

15.
The National Heart, Lung, and Blood Institute Family Heart Study (FHS) genome‐wide linkage scan identified a region of chromosome 7q31–34 with a lod score of 4.9 for BMI at D7S1804 (131.9 Mb). We report the results of linkage and association to BMI in this region for two independent FHS samples. The first sample includes 225 FHS pedigrees with evidence of linkage to 7q31–34, using 1,132 single‐nucleotide polymorphisms (SNPs) and 7 microsatellites. The second represents a case–control sample (318 cases; BMI >25 and 325 controls; BMI <25) derived from unrelated FHS participants who were not part of the genome scan. The latter set was genotyped for 606 SNPs, including 37 SNPs with prior evidence for association in the linked families. Although variance components linkage analysis using only SNPs generated a peak lod score that coincided with the original linkage scan at 131.9 Mb, a conditional linkage analysis showed evidence of a second quantitative trait locus (QTL) near 143 cM influencing BMI. Three SNPs (rs161339, rs12673281, and rs1993068) located near the three genes pleiotrophin (PTN), diacylglycerol (DAG) kinase iota (DGKι), and cholinergic receptor, muscarinic 2 (CHRM2) demonstrated significant association in both linked families (P = 0.0005, 0.002, and 0.03, respectively) and the case–control sample (P = 0.01, 0.0003, and 0.03, respectively), regardless of the genetic model tested. These findings suggest that several genes may be associated with BMI in the 7q31–34 region.  相似文献   

16.
A combined analysis of genome scans for obesity was undertaken using the interim results from the National Heart, Lung, and Blood Institute Family Blood Pressure Program. In this research project, four multicenter networks of investigators conducted eight individual studies. Data were available on 6,849 individuals from four ethnic groups (white, black, Mexican American, and Asian). The sample represents the largest single collection of genomewide scan data that has been analyzed for obesity and provides a test of the reproducibility of linkage analysis for a complex phenotype. Body mass index (BMI) was used as the measure of adiposity. Genomewide linkage analyses were first performed separately in each of the eight ethnic groups in the four networks, through use of the variance-component method. Only one region in the analyses of the individual studies showed significant linkage with BMI: 3q22.1 (LOD 3.45, for the GENOA network black sample). Six additional regions were found with an associated LOD >2, including 3p24.1, 7p15.2, 7q22.3, 14q24.3, 16q12.2, and 17p11.2. Among these findings, the linkage at 7p15.2, 7q22.3, and 17p11.2 has been reported elsewhere. A modified Fisher's omnibus procedure was then used to combine the P values from each of the eight genome scans. A complimentary approach to the meta-analysis was undertaken, combining the average allele-sharing identity by descent (pi) for whites, blacks, and Mexican Americans. Using this approach, we found strong linkage evidence for a quantitative-trait locus at 3q27 (marker D3S2427; LOD 3.40, P=.03). The same location has been shown to be linked with obesity-related traits and diabetes in at least two other studies. These results (1) confirm the previously reported obesity-susceptibility locus on chromosomes 3, 7, and 17 and (2) demonstrate that combining samples from different studies can increase the power to detect common genes with a small-to-moderate effect, so long as the same gene has an effect in all samples considered.  相似文献   

17.
Objective: Cholecystokinin (CCK) is known to inhibit food intake and is an important signal for controlling meal volume, indicating a possible role in weight regulation. Our objective was to investigate genetic influences on plasma CCK in baboons. Research Methods and Procedures: Subjects were 376 baboons (males = 113, females = 263) from the Southwest National Primate Research Center, housed at the Southwest Foundation for Biomedical Research, San Antonio, Texas. Anthropometric and biochemical parameters were analyzed. Genetic effects on plasma CCK were estimated by the maximum likelihood‐based variance components method implemented in the software program SOLAR (Sequential Oligogenic Linkage Analysis Routines). Results: Male baboons (32.7 ± 6 kg) were much heavier than females (20.2 ± 4 kg). Similarly, mean (± standard deviation) plasma CCK values were also higher in male baboons (13.8 ± 6 pM) than female baboons (12.5 ± 4 pM). Significant heritabilities were observed for plasma CCK (0.14 ± 0.1, p < 0.05), body weight (h2 = 0.62 ± 0.15, p < 10?8), and glucose (h2 = 0.68 ± 0.17, p < 10?7). A genome‐wide scan of plasma CCK detected a strong signal for a quantitative trait locus (QTL) on chromosome 17p12–13 [logarithm of the odds (LOD) = 3.1] near marker D17S804. Suggestive evidence of a second QTL was observed on chromosome 4q34–35 (LOD = 2.3) near marker D4S2374. Discussion: A substantial contribution of additive genetic effects to the variation in plasma levels of CCK was demonstrated in baboons. The identification of a QTL for plasma CCK on chromosome 17p is significant, as several obesity‐related traits such as BMI, leptin, adiponectin, and acylation stimulating protein have already been mapped to this region.  相似文献   

18.
While it is widely appreciated that prostate cancers vary substantially in their propensity to progress to a life-threatening stage, the molecular events responsible for this progression have not been identified. Understanding these molecular mechanisms could provide important prognostic information relevant to more effective clinical management of this heterogeneous cancer. Hence, through genetic linkage analyses, we examined the hypothesis that the tendency to develop aggressive prostate cancer may have an important genetic component. Starting with 1,233 familial prostate cancer families with genome scan data available from the International Consortium for Prostate Cancer Genetics, we selected those that had at least three members with the phenotype of clinically aggressive prostate cancer, as defined by either high tumor grade and/or stage, resulting in 166 pedigrees (13%). Genome-wide linkage data were then pooled to perform a combined linkage analysis for these families. Linkage signals reaching a suggestive level of significance were found on chromosomes 6p22.3 (LOD = 3.0), 11q14.1–14.3 (LOD = 2.4), and 20p11.21–q11.21 (LOD = 2.5). For chromosome 11, stronger evidence of linkage (LOD = 3.3) was observed among pedigrees with an average at diagnosis of 65 years or younger. Other chromosomes that showed evidence for heterogeneity in linkage across strata were chromosome 7, with the strongest linkage signal among pedigrees without male-to-male disease transmission (7q21.11, LOD = 4.1), and chromosome 21, with the strongest linkage signal among pedigrees that had African American ancestry (21q22.13–22.3; LOD = 3.2). Our findings suggest several regions that may contain genes which, when mutated, predispose men to develop a more aggressive prostate cancer phenotype. This provides a basis for attempts to identify these genes, with potential clinical utility for men with aggressive prostate cancer and their relatives. The names of all authors and their affiliations are listed in the Acknowledgements. The fact that Dr Schaid’s name is given here for purposes of correspondence should not be taken to imply that he played the sole leading part in writing this article. An erratum to this article can be found at  相似文献   

19.
BACKGROUND: NTDs are considered complex disorders that arise from an interaction between genetic and environmental factors. NTD family 8776 is a large multigenerational Caucasian family that provides a unique resource for the genetic analysis of NTDs. Previous linkage analysis using a genome‐wide SNP screen in family 8776 with multipoint nonparametric mapping methods identified maximum LOD* scores of ~3.0 mapping to 2q33.1–q35 and 7p21.1–pter. METHODS: We ascertained an additional nuclear branch of 8776 and conducted additional linkage analysis, fine mapping, and haplotyping. Expression data from lymphoblast cell lines were used to prioritize candidate genes within the minimum candidate intervals. Genomic copy number changes were evaluated using BAC tiling arrays and subtelomeric fluorescent in situ hybridization probes. RESULTS: Increased evidence for linkage was observed with LOD* scores of ~3.3 for both regions. Haplotype analyses narrowed the minimum candidate intervals to a 20.3 Mb region in 2q33.1–q35 between markers rs1050347 and D2S434, and an 8.3 Mb region in 7p21.1–21.3 between a novel marker 7M0547 and rs28177. Within these candidate regions, 16 genes were screened for mutations; however, no obvious causative NTD mutation was identified. Evaluation of chromosomal aberrations using comparative genomic hybridization arrays, subtelomeric fluorescent in situ hybridization, and copy number variant detection techniques within the 2q and 7p regions did not detect any chromosomal abnormalities. CONCLUSIONS: This large NTD family has identified two genomic regions that may harbor NTD susceptibility genes. Ascertainment of another branch of family 8776 and additional fine mapping permitted a 9.1 Mb reduction of the NTD candidate interval on chromosome 7 and 37.3 Mb on chromosome 2 from previously published data. Identification of one or more NTD susceptibility genes in this family could provide insight into genes that may affect other NTD families. Birth Defects Research (Part A), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Genome scans in Icelandic, Australian and New Zealand, and Finnish families have localized putative susceptibility loci for preeclampsia/ eclampsia to chromosome 2. The locus mapped in the Australian and New Zealand study (designated PREG1) was thought to be the same locus as that identified in the Icelandic study. In both these studies, two distinct quantitative trait locus (QTL) regions were evident on chromosome 2. Here, we describe our fine mapping of the PREG1 locus and a genetic analysis of two positional candidate genes. Twenty-five additional microsatellite markers were genotyped within the 74-cM linkage region defined by the combined Icelandic and Australian and New Zealand genome scans. The overall position and shape of the localization evidence obtained using nonparametric multipoint analysis did not change from that seen previously in our 10-cM resolution genome scan; two peaks were displayed, one on chromosome 2p at marker D2S388 (107.46 cM) and the other on chromosome 2q at 151.5 cM at marker D2S2313. Using the robust two-point linkage analysis implemented in the Analyze program, all 25 markers gave positive LOD scores with significant evidence of linkage being seen at marker D2S2313 (151.5 cM), achieving a LOD score of 3.37 under a strict diagnostic model. Suggestive evidence of linkage was seen at marker D2S388 (107.46 cM) with a LOD score of 2.22 under the general diagnostic model. Two candidate genes beneath the peak on chromosome 2p were selected for further analysis using public single nucleotide polymorphisms (SNPs) within these genes. Maximum LOD scores were obtained for an SNP in TACR1 (LOD = 3.5) and for an SNP in TCF7L1 (LOD = 3.33), both achieving genome-wide significance. However, no evidence of association was seen with any of the markers tested. These data strongly support the presence of a susceptibility gene on chromosome 2p11-12 and substantiate the possibility of a second locus on chromosome 2q23.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号