共查询到20条相似文献,搜索用时 0 毫秒
1.
Givens DI Kliem KE Humphries DJ Shingfield KJ Morgan R 《Animal : an international journal of animal bioscience》2009,3(7):1067-1074
Inclusion of rapeseed feeds in dairy cow diets has the potential to reduce milk fat saturated fatty acid (SFA) and increase cis-monounsaturated fatty acid (cis-MUFA) content, but effectiveness may depend on the form in which the rapeseed is presented. Four mid-lactation Holstein dairy cows were allocated to four maize silage-based dietary treatments according to a 4 × 4 Latin Square design, with 28-day experimental periods. Treatments consisted of a control diet (C) containing 49 g/kg dry matter (DM) of calcium salts of palm oil distillate (CPO), or 49 g/kg DM of oil supplied as whole rapeseeds (WR), rapeseeds milled with wheat (MR) or rapeseed oil (RO). Replacing CPO with rapeseed feeds had no effect (P > 0.05) on milk fat and protein content, while milk yields were higher (P < 0.05) for RO and MR compared with WR (37.1, 38.1 and 34.3 kg/day, respectively). Substituting CPO with RO or MR reduced (P < 0.05) milk fat total SFA content (69.6, 55.6, 71.7 and 61.5 g/100 g fatty acids for C, RO, WR and MR, respectively) and enhanced (P < 0.05) milk cis-9 18:1 MUFA concentrations (corresponding values 18.6, 24.3, 17.0 and 23.0 g/100 g fatty acids) compared with C and WR. Treatments RO and MR also increased (P < 0.05) milk trans-MUFA content (4.4, 6.8, 10.5 g/100 g fatty acids, C, MR and RO, respectively). A lack of significant changes in milk fat composition when replacing CPO with WR suggests limited bioavailability of fatty acids in intact rapeseeds. In conclusion, replacing a commercial palm oil-based fat supplement in the diet with milled rapeseeds or rapeseed oil represented an effective strategy to alter milk fatty acid composition with the potential to improve human health. Inclusion of processed rapeseeds offered a good compromise for reducing milk SFA and increasing cis-MUFA, whilst minimising milk trans-MUFA and negative effects on animal performance. 相似文献
2.
Anne Flint Berit Helt Anne Raben Sren Toubro Arne Astrup 《Obesity (Silver Spring, Md.)》2003,11(12):1449-1455
Objective: Observational studies suggest that monounsaturated (MUFA) and trans fatty acids (TRANS) are more fattening than polyunsaturated fatty acids (PUFA). Therefore, the aim of this study was to investigate the acute effect of intake of PUFA, MUFA, or TRANS on appetite and energy expenditure (EE). Research Methods and Procedures: Three test meals were randomly given in a cross‐over design to 19 overweight (BMI: 26.8 ± 0.4 kg/m2), young (25.2 ± 0.7 years) men. The fat‐rich breakfasts (0.8 g fat/kg body weight, 60% energy from fat) varied only in the source of C:18‐fat. EE was measured continuously in a respiration chamber, and appetite sensations were rated by visual analog scales before and every 30 minutes, for 5 hours, after the meal. After 5 hours, an ad libitum meal was served, and energy intake was registered. Sensory evaluations of all meals were given using visual analog scales. Data were analyzed by two‐way ANOVA. Results: There were no differences in basal or postprandial values of appetite ratings and EE, in subsequent ad libitum energy intake, or in the sensory evaluation of the test meals among the 3 test days. Discussion: Giving acutely large amounts of MUFA, PUFA, or TRANS did not impose any differences in appetite and EE in overweight humans. However, studies with extended protocols and other subject groups are warranted to investigate the long‐term effect of dietary fat quality on the regulation of energy balance and body weight. 相似文献
3.
Irina G. Stavrovskaya Susan S. Bird Vasant R. Marur Matthew J. Sniatynski Sergei V. Baranov Heather K. Greenberg Caryn L. Porter Bruce S. Kristal 《Journal of lipid research》2013,54(10):2623-2635
The interaction of dietary fats and carbohydrates on liver mitochondria were examined in male FBNF1 rats fed 20 different low-fat isocaloric diets. Animal growth rates and mitochondrial respiratory parameters were essentially unaffected, but mass spectrometry-based mitochondrial lipidomics profiling revealed increased levels of cardiolipins (CLs), a family of phospholipids essential for mitochondrial structure and function, in rats fed saturated or trans fat-based diets with a high glycemic index. These mitochondria showed elevated monolysocardiolipins (a CL precursor/product of CL degradation), elevated ratio of trans-phosphocholine (PC) (18:1/18:1) to cis-PC (18:1/18:1) (a marker of thiyl radical stress), and decreased ubiquinone Q9; the latter two of which imply a low-grade mitochondrial redox abnormality. Extended analysis demonstrated: i) dietary fats and, to a lesser extent, carbohydrates induce changes in the relative abundance of specific CL species; ii) fatty acid (FA) incorporation into mature CLs undergoes both positive (>400-fold) and negative (2.5-fold) regulation; and iii) dietary lipid abundance and incorporation of FAs into both the CL pool and specific mature tetra-acyl CLs are inversely related, suggesting previously unobserved compensatory regulation. This study reveals previously unobserved complexity/regulation of the central lipid in mitochondrial metabolism. 相似文献
4.
5.
Lichtenstein AH 《Journal of lipid research》2006,47(8):1661-1667
In general, under isoweight conditions, different types of dietary protein or individual amino acids have little effect on lipoprotein patterns. Dietary carbohydrate tends to increase plasma triglyceride when it displaces fat, accompanied by a decrease in HDL cholesterol concentrations. Potential differential effects of types of carbohydrate are difficult to assess because of differences in rates of absorption and confounding of dietary fiber. Saturated fatty acids increase LDL and HDL cholesterol, whereas trans fatty acids increase LDL but not HDL cholesterol. Unsaturated fatty acids decrease LDL and HDL cholesterol, polyunsaturated more so than monounsaturated. There has been considerable interest in the potential benefit of major shifts in dietary macronutrients on weight loss and lipoprotein patterns. Short-term data favor substituting protein and fat for carbohydrate, whereas long-term data have failed to show a benefit for weight loss. During an active weight loss period low-carbohydrate diets more favorably affect triglyceride and HDL and less favorably affect LDL cholesterol concentrations. Additional efforts need to be focused on gaining a better understanding of the effect of dietary macronutrient profiles on established and emerging cardiovascular disease risk factors, mechanisms for changes observed and contributors to individual variability. Such data are needed to allow reassessment and, if necessary, modification of current recommendations. 相似文献
6.
《Animal : an international journal of animal bioscience》2017,11(2):354-364
Supplementing dairy cow diets with oilseed preparations has been shown to replace milk saturated fatty acids (SFA) with mono- and/or polyunsaturated fatty acids (MUFA, PUFA), which may reduce risk factors associated with cardio-metabolic diseases in humans consuming milk and dairy products. Previous studies demonstrating this are largely detailed, highly controlled experiments involving small numbers of animals, but in order to transfer this feeding strategy to commercial situations further studies are required involving whole herds varying in management practices. In experiment 1, three oilseed supplements (extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) and milled rapeseed (MR)) were included in grass silage-based diets formulated to provide cows with ~350 g oil/day, and compared with a negative control (Control) diet containing no supplemental fat, and a positive control diet containing 350 g/cow per day oil as calcium salt of palm oil distillate (CPO). Diets were fed for 28-day periods in a 5×4 Latin Square design, and milk production, composition and fatty acid (FA) profile were analysed at the end of each period. Compared with Control, all lipid supplemented diets decreased milk fat SFA concentration by an average of 3.5 g/100 g FA, by replacement with both cis- and trans-MUFA/PUFA. Compared with CPO, only CPLO and MR resulted in lower milk SFA concentrations. In experiment 2, 24 commercial dairy farms (average herd size±SEM 191±19.3) from the south west of the United Kingdom were recruited and for a 1 month period asked to supplement their herd diets with either CPO, EL, CPLO or MR at the same inclusion level as the first study. Bulk tank milk was analysed weekly to determine FA concentration by Fourier Transform mid-IR spectroscopy prediction. After 4 weeks, EL, CPLO and MR all decreased herd milk SFA and increased MUFA to a similar extent (average −3.4 and +2.4 g/100 g FA, respectively) when compared with CPO. Differing responses observed between experiments 1 and 2 may be due in part to variations in farm management conditions (including basal diet) in experiment 2. This study demonstrates the importance of applying experimental research into commercial practice where variations in background conditions can augment different effects to those obtained under controlled conditions. 相似文献
7.
Pamela S. Haines Mary Y. Hama David K. Guilkey Barry M. Popkin 《Obesity (Silver Spring, Md.)》2003,11(8):945-949
Objectives: To determine if macronutrient consumption for the U.S. population is greater on weekend days than weekdays. Research Methods and Procedures: The nationally representative 1994 to 1996 Continuing Survey of Food Intakes by Individuals was used for this analysis. Dietary intake was assessed using two independent days of dietary recall data. Ordinary least squares multivariate analysis was used to analyze dietary outcome variables to explore the effect of weekend day vs. weekday intake. Results: This study's results indicate that statistically significant dietary intake differences occur for different days of the week but not for all age groups—nor for all nutrients. The average American, 2 years and older, consumes 82 kcal more per day on each weekend day (Friday through Sunday) than they do on weekdays (Monday through Thursday). These overall increases in dietary intake are significant for the overall sample and are largest for the 19‐ to 50‐year‐old age group; among this age group, the weekend day increase (vs. weekday) is 115 kcal/d. The increased proportions of energy from fat and alcohol consumed on weekends are greater for this adult age group by 0.7% and 1.4%, respectively, whereas the proportion of energy from carbohydrate decreases 1.6%. Discussion: The effects of weekend days on nutrient intake are substantial and should be considered in future clinical and population‐based interventions and in dietary monitoring and research in the U.S. 相似文献
8.
《Animal : an international journal of animal bioscience》2019,13(2):309-317
It is known that supplementing dairy cow diets with full-fat oilseeds can be used as a strategy to mitigate methane emissions, through their action on rumen fermentation. However, direct comparisons of the effect of different oil sources are very few, as are studies implementing supplementation levels that reflect what is commonly fed on commercial farms. The objective was to investigate the effect of feeding different forms of supplemental plant oils on both methane emissions and milk fatty acid (FA) profile. Four multiparous, Holstein-Friesian cows in mid-lactation were randomly allocated to one of four treatment diets in a 4×4 Latin square design with 28-day periods. Diets were fed as a total mixed ration with a 50 : 50 forage : concentrate ratio (dry matter (DM) basis) with the forage consisting of 75 : 25 maize silage : grass silage (DM). Dietary treatments were a control diet containing no supplemental fat, and three treatment diets containing extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) or milled rapeseed (MR) formulated to provide each cow with an estimated 500 g additional oil/day (22 g oil/kg diet DM). Dry matter intake (DMI), milk yield, milk composition and methane production were measured at the end of each experimental period when cows were housed in respiration chambers for 4 days. There was no effect of treatment diet on DMI or milk protein or lactose concentration, but oilseed-based supplements increased milk yield compared with the control diet and milk fat concentration relative to control was reduced by 4 g/kg by supplemental EL. Feeding CPLO reduced methane production, and both linseed-based supplements decreased methane yield (by 1.8 l/kg DMI) and intensity (by 2.7 l/kg milk yield) compared with the control diet, but feeding MR had no effect on methane emission. All the fat supplements decreased milk total saturated fatty acid (SFA) concentration compared with the control, and SFA were replaced with mainly cis-9 18:1 but also trans FA (and in the case of EL and CPLO there were increases in polyunsaturated FA concentration). Supplementing dairy cow diets with these oilseed-based preparations affected milk FA profile and increased milk yield. However, only the linseed-based supplements reduced methane production, yield or intensity, whereas feeding MR had no effect. 相似文献
9.
Katherine Macrae Clare Stretton Christopher Lipina Agnieszka Blachnio-Zabielska Marcin Baranowski Jan Gorski Anna Marley Harinder S. Hundal 《Journal of lipid research》2013,54(9):2366-2378
Chronic exposure of skeletal muscle to saturated fatty acids, such as palmitate (C16:0), enhances proinflammatory IKK-NFκB signaling by a mechanism involving the MAP kinase (Raf-MEK-ERK) pathway. Raf activation can be induced by its dissociation from the Raf-kinase inhibitor protein (RKIP) by diacylglycerol (DAG)-sensitive protein kinase C (PKC). However, whether these molecules mediate the proinflammatory action of palmitate, an important precursor for DAG synthesis, is currently unknown. Here, involvement of DAG-sensitive PKCs, RKIP, and the structurally related monounsaturated fatty acid palmitoleate (C16:1) on proinflammatory signaling are investigated. Palmitate, but not palmitoleate, induced phosphorylation/activation of the MEK-ERK-IKK axis and proinflammatory cytokine (IL-6, CINC-1) expression. Palmitate increased intramyocellular DAG and invoked PKC-dependent RKIPSer153 phosphorylation, resulting in RKIP-Raf1 dissociation and MEK-ERK signaling. These responses were mimicked by PMA, a DAG mimetic and PKC activator. However, while pharmacological inhibition of PKC suppressed PMA-induced activation of MEK-ERK-IKK signaling, activation by palmitate was upheld, suggesting that DAG-sensitive PKC and RKIP were dispensable for palmitate''s proinflammatory action. Strikingly, the proinflammatory effect of palmitate was potently repressed by palmitoleate. This repression was not due to reduced palmitate uptake but linked to increased neutral lipid storage and enhanced cellular oxidative capacity brought about by palmitoleate''s ability to restrain palmitate-induced mitochondrial dysfunction. 相似文献
10.
Kimberly M. Hargrave Brett J. Meyer Changlong Li Michael J. Azain Clifton A. Baile Jess L. Miner 《Obesity (Silver Spring, Md.)》2004,12(9):1435-1444
Objective: To determine whether altered dietary essential fatty acid (linoleic and arachidonic acid) concentrations alter sensitivity to conjugated linoleic acid (CLA)‐induced body fat loss or DNA fragmentation. Research Methods and Procedures: Mice were fed diets containing soy oil (control), coconut oil [essential fatty acid deficient (EFAD)], or fish oil (FO) for 42 days, and then diets were supplemented with a mixture of CLA isomers (0.5% of the diet) for 14 days. Body fat index, fat pad and liver weights, DNA fragmentation in adipose tissue, and fatty acid profiles of adipose tissue were determined. Results: The EFAD diet decreased (p < 0.05) linoleic and arachidonic acid in mouse adipose tissue but did not affect body fat. Dietary CLA caused a reduction (p < 0.05) in body fat. Mice fed the EFAD diet and then supplemented with CLA exhibited a greater reduction (p < 0.001) in body fat (20.21% vs. 6.94% in EFAD and EFAD + CLA‐fed mice, respectively) compared with mice fed soy oil. Dietary FO decreased linoleic acid and increased arachidonic acid in mouse adipose tissue. Mice fed FO or CLA were leaner (p < 0.05) than control mice. FO + CLA‐fed mice did not differ in body fat compared with FO‐fed mice. Adipose tissue apoptosis was increased (p < 0.001) in CLA‐supplemented mice and was not affected by fat source. Discussion: Reductions in linoleic acid concentration made mice more sensitive to CLA‐induced body fat loss only when arachidonic acid concentrations were also reduced. Dietary essential fatty acids did not affect CLA‐induced DNA fragmentation. 相似文献
11.
12.
We introduce an in vivo spectroscopic method to assess the effects of diet on fatty acid composition of the predominant chemical constituent of adipocytes in mice. To do this, we make use of a nonlinear NMR signal that, unlike a standard NMR signal, is intrinsically insensitive to local magnetic field inhomogeneities and which naturally suppresses the large water signal from nonfatty tissues. Our method yields fat composition information from fat depots distributed over large sample volumes in a single experiment, without requiring the use of tedious shimming procedures, voxel selection, or water suppression. Our results suggest that this method can reveal clear differences in adipose tissue composition of mice fed a standard chow diet compared with mice fed a diet rich in polyunsaturated fatty acids. With further developments this method could be used to obtain information on human lipid composition noninvasively and to track changes in lipid composition induced by diet intervention, pharmaceutical drugs, and exercise. 相似文献
13.
Michael Pellizzon Anne Buison Frank Ordiz Lardo Santa Ana K.‐L. Catherine Jen 《Obesity (Silver Spring, Md.)》2002,10(9):947-955
Objective: To assess the interaction of high‐fat diets (HF) made with different dietary fatty acids and exercise on body‐weight regulation, adiposity, and metabolism. Research Methods and Procedures: Male Wistar rats born to dams fed HF diets (40% w/w) made with either fish oil (FO), soybean oil (SO), or palm oil (PO) were fed diets similar to their dams and divided randomly into exercise (EX, swimming) or sedentary control (SD) groups when they were 9 weeks old. EX lasted for 6 weeks. Twenty‐four hours after the last EX bout, fasted rats were killed by decapitation. Chemical analyses and body composition analysis were conducted. Results: The results demonstrated that different fatty acids had different effects on body weight, composition, and metabolism. SO‐fed rats gained the most weight and fat. EX reduced body weight of FO‐ and PO‐fed rats, but SO‐fed rats were still heavier and fatter than other rats. Data from SO‐ and PO‐fed rats suggested that they are insulin resistant and that EX normalized this abnormality. Of the three HF diets used, FO produced the least adverse effects compared with PO and SO. Discussion: Not only the quantity of dietary fat, but also the type of fat used, will produce different effects on body weight and metabolism. EX ameliorates the suggested insulin resistance induced in rats fed either highly saturated or n‐6 polyunsaturated fatty acids. Long‐chain n‐3 polyunsaturated fatty acids, as found in fish oil, are more beneficial than n‐6 polyunsaturated fatty acids when fed in high amounts to rats. 相似文献
14.
M Morrisson P A Wilce B C Shanley 《Biochemical and biophysical research communications》1984,122(2):516-521
Animals chronically exposed to ethanol show changes in neural membrane lipids which may underlie the development of tolerance and physical dependence. The object of this study was to investigate changes in the fatty acid composition of neuronal phospholipids cultured in the presence of ethanol (55 or 110 mM) for periods up to 7 days. Decreases were observed in the percentage of individual and total saturated fatty acids, while the double bond index: total saturated fatty acid ratio, increased. These changes do not support the hypothesis that neural membrane lipid composition changes to counteract the fluidizing action of ethanol. 相似文献
15.
Robert R. Miller Jr. Christina L. Taylor Deborah L. Spidle Angela M. Ugolini Randall A. Nothdorf 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》1996,115(4):465-474
Exposure to ethanol at 0 days of development induced changes in total membrane fatty acid composition at 18 days of development. When exposed to ethanol concentrations ranging from 0–743.27μm/kg egg wt, decreased levels of long-chain, unsaturated membrane fatty acids and increased levels of short-chain, saturated membrane fatty acids were observed in embryonic chick brains at 18 days of development. The ratios of unsaturated membrane/saturated membrane fatty acids correlated with an ethanol-induced reduction in neuron densities within the cerebral hemispheres and three different regions of the optic lobes with correlation coefficients (r) ranging from 0.44 [F = (1, 32) 7.84; P ≤ 0.009] to 0.59 [F = (1, 32) 17.38; P ≤ 0.0002]. The ratios of long-chain/short-chain membrane fatty acids also correlated with an ethanol-induced reduction in neuron densities within the cerebral hemispheres and three different regions of the optic lobes with correlation coefficients (r) ranging from 0.51 [F = (1, 32) 11.27; P≤ 0.002] to 0.66 [F = (1, 32) 24.40; P ≤ 0.0001]. Cell fractionation studies indicated that the ethanol-induced changes in brain membrane fatty acid composition were restricted to microsomal membranes. 相似文献
16.
17.
Scott Brian Lew James Clandinin M. T. Cinader B. 《Cellular and molecular neurobiology》1989,9(1):105-113
1. SJL/J mice were maintained on semipurified diets which differed in the ratio of polyunsaturated/saturated fatty acid content (P/S). Exposure was from conception and was maintained for periods ranging from 6 to 34 weeks. 2. Neural cell cultures were prepared from dorsal root ganglia (DRG). After 6 and 20 days of culture, neuronal electric membrane properties were determined quantitatively by intracellular recording. 3. A number of significant differences were observed for the two dietary conditions. DRG from mice on the low-P/s diet had an increase in the rate of fall of both phases of repolarization which, in conjunction with the reduced action potential overshoot, led to a reduced action potential duration. This shift to shorter-duration action potentials was accompanied by a shift to more monophasic falling phases. The low-P/S neurons also exhibited a decreased afterhyperpolarization, decreased specific membrane resistance, and decreased membrane electrical time constant compared to high-P/S neurons. 4. It was concluded that the P/S ratio in the diet can have a significant effect on the electric properties of neurons. The high-P/S neurons tended to have action potentials with biphasic repolarizations and longer durations. In contrast, the low-P/S neurons tended to have action potentials with monophasic repolarizations and shorter durations. Moreover, the known ionic dependence of these two types of action potentials suggested that the low-P/S diet resulted in action potentials with a more exclusive Na dependence, while the high-P/S diet resulted in action potentials with both Na and Ca dependence. 相似文献
18.
C. A. WINTERROWD S. D. FOLZ R. L. HEINRIKSON T. G. GEARY 《The Journal of eukaryotic microbiology》1989,36(2):146-149
Normal human milk (NHM) has antiprotozoal activity unrelated to immunological components; this activity extends to sporozoites of Eimeria tenella . This activity may be due to free fatty acids (FFA) enzymatically hydrolyzed from tnacyl glycerols by a bile salt-stimulated lipase (BSSL) found in NHM. Sporozoites were therefore incubated in the presence of several saturated and unsaturated FFA. Anticoccidial activity was observed for many unsaturated fatty acids and for some saturated fatty acids. In addition, sporozoites were added to solutions of triglycerides (trilinolein, triolein and trilinolenin) preincubated with BSSL and sodium cholate. which resulted in killing of the parasites. Triglycerides alone showed no anticoccidial activity. These results were duplicated with first generation merozoites. Intracellular stages of E. tenella were affected by FFA only at concentrations that inhibited host cells. 相似文献
19.
Martin-Paul Agbaga Md Nawajes A. Mandal Robert E. Anderson 《Journal of lipid research》2010,51(7):1624-1642
Compared with other mammalian tissues, retina is highly enriched in PUFA. Long-chain PUFA (LC-PUFA; C18-C24) are essential FAs that are enriched in the retina and are necessary for maintenance of normal retinal development and function. The retina, brain, and sperm also contain very LC-PUFA (VLC-PUFA; >C24). Although VLC-PUFA were discovered more than two decades ago, very little is known about their biosynthesis and functional roles in the retina. This is due mainly to intrinsic difficulties associated with working on these unusually long polyunsaturated hydrocarbon chains and their existence in small amounts. Recent studies on the FA elongase elongation of very long chain fatty acids-4 (ELOVL4) protein, however, suggest that VLC-PUFA probably play some uniquely important roles in the retina as well as the other tissues. Mutations in the ELOVL4 gene are found in patients with autosomal dominant Stargardt disease. Here, we review the recent literature on VLC-PUFA with special emphasis on the elongases responsible for their synthesis. We focus on a novel elongase, ELOVL4, involved in the synthesis of VLC-PUFA, and the importance of these FAs in maintaining the structural and functional integrity of retinal photoreceptors. 相似文献
20.
UV-B Induced Alterations in Composition of Thylakoid Membrane and Amino Acids in Leaves of Rhizophora Apiculata Blume 总被引:1,自引:0,他引:1
Seedlings of Rhizophora apiculata were exposed to UV-B radiation at four doses equivalent to 10, 20, 30, and 40 % ozone depletion. The seedlings irradiated with high doses of UV-B had characteristic decline in contents of specific proteins with molecular masses of 33, 23, and 17 kDa. On the contrary, proteins of 55, 33, 25, 23, and 17 kDa were accumulated in the seedlings exposed to low doses of UV-B. The UV-B, in general, enhanced formation of saturated fatty acids and reduced unsaturated fatty acids, to a maximum extent of 88 and 26 %, respectively. The low dose of UV-B increased content of oleic acid by 9 %, and the high dose reduced it by 34 %. The high dose of UV-B enhanced the lipid peroxidation by 48 %, whereas the low dose of UV-B did not show any significant effect. The contents of amino acids such as aspartate, glutamate, asparagine, serine, glutamine, threonine, and histidine were increased in low UV-B doses by 53, 86, 142, 72, 3, 119, and 32 %, respectively; while in high doses they were reduced significantly. 相似文献