首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetic analysis of early endocrine pancreas formation in zebrafish   总被引:3,自引:0,他引:3  
Endocrine pancreas of zebrafish consist of at least four different cell types that function similarly to mammalian pancreatic islet. No mutants specifically affecting formation of the endocrine pancreas have been identified during the previous large-scale mutagenesis screens in zebrafish due to invisibility of a pancreatic islet. We combined in situ hybridization method to visualize pancreatic islet with an ethyl-nitroso-urea mutagenesis screen to identify novel genes involved in pancreatic islet formation in zebrafish. We screened 900 genomes and identified 11 mutations belonging to nine different complementation groups. These mutants fall into three major phenotypic classes displaying severely reduced insulin expression, reduced insulin expression with abnormal islet morphology, or abnormal islet morphology with relatively normal number of insulin expressing cells. Seven of these mutants do not have any other visible phenotypes associated. These mutations affect different processes in pancreatic islet development. Additional analysis on glucagon and somatostatin cell specification revealed that somatostatin cells are specified at a separate domain from insulin cells whereas glucagon cells are specified adjacent to insulin cells. Furthermore, glucagon cells and somatostatin cells are always associated with insulin cells in mutants that have scattered insulin expression. These data indicate that there are separate mechanisms regulating endocrine cell migration, proliferation, and differentiation. Further study on these mutants will reveal important information on novel genes involved in pancreatic islet cell specification and morphogenesis.  相似文献   

3.
Antibodies to insulin, glucagon, pancreatic polypeptide hormone and somatostatin were utilized to demonstrate the cellular localization of the hormones in pancreatic tissue of fetal guinea pig of advanced gestation by immunofluorescence histochemistry. The topographical distribution of the 4 endocrine cell types was compared with those of the adult pancreas and was found to be significantly different particularly for cells immunostaining for insulin, glucagon and somatostatin. These observations suggest changes in histogenesis of pancreatic endocrine cells during transition from fetal to postnatal and adult life. The presence of the 4 islet hormones in the fetal pancreas of this species implies that they may be important in fetal metabolism and growth.  相似文献   

4.
Summary Ablation, transplantation and culture experiments were used to determine the respective roles of the pancreatic dorsal and ventral anlagen in the formation of the endocrine cells. Three successive waves of endocrine formation occur in the pancreas of Bufo bufo at three developmental stages (III6, IV1 and IV2). Each wave is derived from a different source: the first originates from the dorsal anlage, the second from the exocrine tissue of the cortex of the pancreas and the third from the pancreatic duct. Each generation of islets has a specific composition of different cell types. The first wave is only composed of insulin islets; the second wave gives rise to single insulin, glucagon and somatostatin cells; while the third wave generates single cells synthesizing one of the three hormones, homogeneous islets of insulin cells, rare glucagon islets and heterogeneous islets containing insulin cells in the centre and a few glucagon or somatostatin cells at the periphery.  相似文献   

5.
Summary Rats rendered diabetic by streptozotocin were subjected to pancreas transplantation. After twenty weeks, the duct-ligated pancreas transplant was studied morphometrically to determine the effect of duct occlusion on the various cell populations of the islets. Concomitantly, the streptozotocin-treated host pancreas was examined for a possible influence of the graft on the diabetic pattern of islet cell population. Twenty weeks after pancreas transplantation, the volume fractions of insulin, glucagon, somatostatin and pancreatic polypeptide cells in the graft islets did not differ from those of the normal control pancreas. In the pancreas of nontransplanted diabetic rats, insulin-positive B cells were reduced from 60–65% to less than 10% of the islet volume, whereas non-B cells were significantly increased in volume density. The changes in fractional volume of the various islet cells correlated fairly well with changes in plasma concentration of the corresponding pancreas hormones. In the recipient's own pancreas, the relative volumes of glucagon and somatostatin cells were unaffected by the pancreas transplant. However, the insulin cell mass was significantly increased, and comprised about 20% of the islet volume, while cells containing pancreatic polypeptide were found only sporadically.Supported by Nordic Insulin Fund, The Swedish Diabetes Association, and MFR, proj. no. 4499. The technical assistance by M. Maxe and M. Carlesson is gratefully acknowledged  相似文献   

6.
FMRF-NH2-like immunoreactivity was localized in the pancreatic polypeptide containing cells of the rat islet. FMRF-NH2 was investigated with regard to its effect on insulin, somatostatin and glucagon secretion from the isolated perfused rat pancreas. FMRF-NH2 (1 microM) significantly inhibited glucose stimulated (300 mg/dl) insulin release (p less than 0.005) and somatostatin release (p less than 0.01) from the isolated perfused pancreas. FMRF-NH2 (1 and 10 microM) was without effect on glucagon secretion, either in low glucose (50 mg/dl), high glucose (300 mg/dl), or during arginine stimulation (5 mM). These findings indicate that these FMRF-NH2 antisera recognize a substance in the pancreatic polypeptide cells of the islet which may be capable of modulating islet beta and D cell activity.  相似文献   

7.
Summary The endocrine pancreas of the grass lizard, Mabuya quinquetaeniata, and of the desert lizard, Uromastyx aegyptia, was investigated histologically and immunohistochemically. In both lizard species four cell types were observed in the endocrine pancreas, namely insulin (B), glucagon (A), somatostatin (D) and pancreatic polyeptide (PP) cells. In both species the B, A and D cells could be detected by their cross-reactivity with antisera raised against mammalian insulin, glucagon and somatostatin. However, these cells showed different tinctorial properties in the two lizard species. In both species the endocrine tissues were concentrated in the splenic lobe of the pancreas. In the grass lizard the endocrine tissue in the splenic lobe consisted mainly of B, A and D cells and in the ventral lobe the major cell types were PP and D cells. In the desert lizard, on the other hand, the frequency and the pattern of orientation of B, A and D cells were the same in both the splenic and the ventral lobes, but PP cells in the ventral lobe outnumbered those of the splenic lobe. The PP and D cells scattered in the exocrine parenchyma and the long protrusions which they exhibited suggested that these cells exerted paracrine control on the acinar cells. It is speculated that this control by PP cells may be trophic and by D cells inhibitory.  相似文献   

8.
Summary Immunocytochemical methods for light and electron microscopy were used to demonstrate the regulatory peptides present in the endocrine pancreas of thealligator, Alligator mississippiensis.The peptides studied included insulin, glucagon (pancreatic and enteric), somatostatin, pancreatic polypeptide (avian, bovine and human), vasoactive intestinal polypeptide, substance P, metenkephalin, -endorphin, C-terminal gastrin/CCK and gastric inhibitory polypeptide. Endocrine cells were detected using antisera to insulin, pancreatic glucagon, somatostatin and avian pancreatic polypeptide, whereas peptidergic nerves were stained with antisera to vasoactive intestinal polypeptide. All other antisera were unreactive in the alligator pancreas. The peptide-containing structures were identified ultrastructurally by both the semithin/thin and immuno-gold methods. The results showed that five of the regulatory peptides commonly detected in the mammalian pancreas were immunologically recognisable in the alligator. In addition, the ultrastructural appearance of the peptide-containing cells was clearly distinct from that reported in mammals.  相似文献   

9.
S Alpert  D Hanahan  G Teitelman 《Cell》1988,53(2):295-308
Insulin appears in the developing mouse pancreas at embryonic day 12 (e12). Transgenic mice harboring three distinct hybrid genes utilizing insulin gene regulatory information first express the transgene product two days earlier, at e10, in a few cells of the pancreatic bud. Throughout development and postnatal life, all of the insulin-producing (beta) cells coexpress the hybrid insulin gene. In addition, islet cells containing glucagon, somatostatin, pancreatic polypeptide, and the neuronal enzyme tyrosine hydroxylase coexpress the transgene when they first arise. Similarly, coexpression of these normally distinct islet cell markers occurs during differentiation of the four endocrine cell types. The transgene product also appears transiently during embryogenesis in cells of the neural tube and in neural crest. The results suggest a common precursor for the endocrine cells of the pancreas. Moreover, they imply a relationship between neural and pancreatic endocrine tissue.  相似文献   

10.
Summary This study describes the establishment and characterization of an immortalized cell line derived from the pancreas of an adult H-2Kb-tsA58 transgenic mouse. These cells, designated IMPAN for IMmortalized PANcreatic cells, displayed a cobblestone appearance typical of confluent epithelial cells and a distinct polarity in the organization of their cytoplasmic organelles. Immunocytochemical studies revealed that all IMPAN cells stained positively for a wide range of markers characteristic of pancreatic acinar cells, namely the secretory products α-amylase, chymotrypsinogen, DNAse, the lectinlike secretory protein PAP (pancreatitis associated protein), and the zymogen granule membrane proteins GP-2 and gp300. They also stained positively for carbonic anhydrase II and cytokeratin 19, two proteins characteristic of pancreatic duct cells, as well as for rab3A, a small GTP-binding protein specifically localized in pancreatic islet cells. No reactivity was ever obtained with insulin antibodies. Taken together, these results show that the IMPAN cells exhibit a phenotype comparable to exocrine pancreatic acinar cells. However the expression of some proteins more specific to duct and islet cells make them similar to in vivo or in vitro growing acinar cells. The cell line should be a valuable model to study the mechanisms of growth, differentiation, and transformation of the exocrine pancreatic acinar cell.  相似文献   

11.
Glucagon, insulin, somatostatin, and pancreatic polypeptide have been localized in the anolian pancreas using peroxidase-antiperoxidase immunocytochemistry. The most abundant endocrine cell type contains glucagon. Insulin-containing cells are the next most numerous. Somatostatin-immunoreactive cells tend to be localized at the periphery of the islet cords. Pancreatic polypeptide-containing cells are a minor endocrine component scattered throughout the exocrine pancreas and occasionally within the islet areas. No staining was observed after application of antigastrin serum.  相似文献   

12.
Polyhormonal aspect of the endocrine cells of the human fetal pancreas   总被引:7,自引:0,他引:7  
Histological studies were performed on 30 pancreases obtained from normal human fetuses aged between the 9th and 38th week. For immunocytochemistry, the avidin-biotin-peroxidase method was used to identify and colocalise insulin, glucagon, somatostatin, pancreatic polypeptide and proliferating cell nuclear antigen. In the 9th week, cells containing all investigated peptides were present. During the fetal period, two populations of endocrine cells have been distinguished, Langerhans islets and freely dispersed cells. The free cells were polyhormonal, containing insulin, glucagon, somatostatin and pancreatic polypeptide, and were localised in the walls of pancreatic ducts throughout the whole gland. During the development of the islets we have observed four stages: (1) the scattered polyhormonal cell stage (9th–10th week), (2) the immature polyhormonal islet stage (11th–15th week), (3) the insulin monohormonal core islet stage (16th–29th week), in which zonular and mantle islets are observed, and (4) the polymorphic islet stage (from the 30th week onwards), which is characterised by the presence of monohormonal cells expressing glucagon or somatostatin. Bigeminal and polar islets also appeared during this last stage. The islets consisted of an insulin core surrounded by a thick (in the part developing from the dorsal primordium) or thin rim (part of the pancreas concerned with the ventral primordium) of intermingled mono- or dihormonal glucagon-positive or somatostatin-positive cells. The most externally located polyhormonal cells exhibited a reaction for glucagon, somatostatin and pancreatic polypeptide. Apart from the above-mentioned types of islets, all arrangements observed in earlier stages were present. Proliferating cell nuclear antigen-positive cells (single in the large islets and more numerous in the smaller ones) were predominantly observed in the outermost layer. Taken together our data indicate that, during the human prenatal development of the islet, endocrine cells are able to synthesise several different hormones. Maturation of these cells involved or depended on a change from a polyhormonal to a monohormonal state and is concerned with decreasing proliferative capacity. This supports the concept of a common precursor stem cell for the hormone-producing cells of the fetal human pancreas. Accepted: 1 June 1999  相似文献   

13.
By using both immunofluorescence and peroxidase-anti-peroxidase procedures to detect cells producing the four islet hormones, supplemented by biochemical, biological, and radioimmunological assays of tissue extracts, it has been shown that insulin seems to be the most original hormone, apparently occurring already in invertebrates in cells of open type in the alimentary tract mucosa. Insulin cells also predominate in the first islet organ, namely that of the cyclostomes. The order of appearance in the endocrine pancreas during the subsequent evolution is: somatostatin; glucagon; and the pancreatic polypeptide. Even in lower vertebrates pancreatic polypeptide cells occur in those parts of the pancreas situated in close proximity to the gut.  相似文献   

14.
Perfusion of isolated dog pancreases with arginine (20 mM) was associated with a prompt and sustained increase in immunoreactive somatostatin (IRS) in the venous effluent while insulin and glucagon rose promptly but soon receded from their peak levels. These results are compatible with a postulated feedback relationship between somatostatin-, glucagon-, and perhaps insulin-secreting cells of the islets in which somatostatin, stimulated by local glucagon, restrains glucagon secretion and perhaps glucagon-mediated insulin release as well.The demonstration that D-cells of the pancreatic islets contain immunoreactive somatostatin (1, 2, 3) which is probably biologically active (4), and are situated topographically between the A-cells and B-cells in the heterocellular region of the islet (5) has suggested a functional role for these components of the islet of Langerhans (6). In view of the inhibitory action of somatostatin upon both insulin and glucagon secretion (7, 8, 9), it was postulated that the D-cell might serve to restrain glucagon and/or insulin secretion (6). We have since reported that the release of IRS from the isolated dog pancreas increases promptly during the perfusion of high concentrations of glucagon whereas high concentrations of insulin do not appear to stimulate IRS release (10). In this study we examine the effect of perfusion with arginine, a potent stimulus of both glucagon and insulin secretion, upon pancreatic IRS release.  相似文献   

15.
In this Special Issue of the Int. J. Dev. Biol., we summarize our own studies on the development of the mouse endocrine pancreas, with special emphasis on the cell lineage relationships between the four islet cell types. Considerable knowledge concerning the ontogeny of the endocrine pancreas has been gained in recent years, mainly through the use of two complementary genetic approaches in mice: gene inactivation and genetic labelling of precursor cells. However, neither gene inactivation in KO mice nor co-localisation of hormones in single cells during development can be taken as evidence for cell lineage relationships among different cell types. The beta-cell lineage analysis was started by selectively ablating specific islet cell types in transgenic mice. We used the diphtheria toxin A subunit coding region under the control of insulin, glucagon or pancreatic polypeptide (PP) promoters, in order to eliminate insulin-, glucagon- or PP-expressing cells, respectively. Contrary to the common view, we demonstrated that glucagon cells are not precursors of insulin-producing cells. These results were in addition the first evidence of a close ontogenetic relationship between insulin and somatostatin cells. We pursued these analyses using a novel, more subtle approach: progenitor cell labelling through the expression of Cre recombinase in doubly transgenic mice. We were able to unequivocally establish that 1) adult glucagon- and insulin-producing cells derive from precursors which have never transcribed insulin or glucagon, respectively; 2) insulin cell progenitors, but not glucagon cell progenitors transcribe the PP gene and 3) adult glucagon cells derive from progenitors which do express pdx1.  相似文献   

16.
17.
Tissue kallikreins are thought to be present in the pancreatic islets of Langerhans and to aid in the conversion of proinsulin to insulin. In recent immunohistochemical studies, we observed strong staining of the newly identified human kallikreins 6 and 10 (hK6 and hK10) in the islets of Langerhans. Here, we examine hK6 and hK10 immunoexpression in different types of islet cells of the endocrine pancreas, in order to obtain clues for hK6 and hK10 function in these cells. Ten cases of normal pancreatic tissue, two cases of nesidioblastosis, five insulin-producing tumours and one case of multiple endocrine neoplasia 1 syndrome, containing an insulin-, a somatostatin- and several glucagon-producing tumours, as well as tiny foci of endocrine dysplasia with different predominance of the secreted hormones (mainly glucagon and pancreatic polypeptide) were included in the study. A streptavidin–biotin–peroxidase and an alkaline phosphatase protocol, as well as a sequential immunoenzymatic double staining method were performed, using specific antibodies against hK6, hK10, insulin, glucagon, somatostatin, pancreatic polypeptide, and serotonin. hK6 and hK10 immunoexpression was observed in the islets of Langerhans, including the pancreatic polypeptide-rich islets, in the normal pancreas. Scattered hK6 and hK10 positive cells were localized in relationship with pancreatic acinar cells. In the exocrine pancreas, a cytoplasmic and/or brush border hK6 and hK10 immunoexpression was observed in the median and small sized pancreatic ducts, while the acinar cells were negative. Foci of nesidioblastosis and endocrine dysplasia expressed both kallikreins. hK6 and hK10 were also strongly and diffusely expressed throughout all insulin-, glucagon- and somatostatin-producing tumours. The double staining method revealed co-localization of each hormone and hK6/hK10 respectively, in the same cellular population, in the normal as well as in the diseased pancreas. Our results support the view that hK6 and hK10 may be involved in insulin and other pancreatic hormone processing and/or secretion, as well as in physiological functions related to the endocrine pancreas.  相似文献   

18.
19.
Porcine islet isolation, cellular composition and secretory response   总被引:1,自引:0,他引:1  
Porcine islets were isolated by infusion of a warm collagenase solution into whole pancreata followed by static incubation at 37 degrees C for 15 minutes. The pancreata were then chopped into small pieces and the free islets purified by filtration and centrifugation over a ficoll gradient. The insulin:amylase ratio of the islets compared to that in the intact pancreas was determined in 19 pancreata and indicates that the isolated islets were of a high degree of purity. The distribution of insulin, glucagon, somatostatin and pancreatic polypeptide containing cells in pig pancreas sections was compared with that in rat. Porcine islets were much smaller and less well defined than rat islets with infiltration of acinar material even into the islet core. The levels of insulin, glucagon and somatostatin in porcine pancreas and isolated porcine islets were measured using conventional radioimmunoassay techniques. The ratio of these hormones in the pancreas was 105.1:5.8:1 respectively, and in the islets 105.1:0.68:0.087 respectively. Fragmentation of the islets during the isolation may have led to the loss of glucagon and somatostatin-containing cells. Islets cultured overnight and tested with a range of glucose concentrations for one hour did not show a significant stimulation of insulin secretion in the presence of 8.3 mM or 16.7 mM glucose compared to that in 2.8 mM glucose. However freshly isolated islets challenged with 8.3 mM, 13.9 mM and 22.2 mM glucose showed a 1.8 fold, 2.0 fold and 2.3 fold response respectively, over that in 2.8 mM glucose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Antibodies to insulin, glucagon, pancreatic polypeptide hormone (PP) and somatostatin were used in the immunofluorescence histochemical procedure to study the ontogeny of pancreatic endocrine cells containing the four hormones in the bovine fetus of approximately 100 days gestation to term. Pancreatic sections from the bovine neonate and adult were also examined for the cellular distribution of the four hormones. Immunoreactive cells staining for insulin, glucagon, PP and somatostatin were present in the pancreas of all fetuses studied. Each endocrine cell type displayed a characteristic distribution within the developing pancreas and in the neonate and adult. The presence of the four islet hormones relatively early in bovine fetal life suggests that they may be important in intra- and extra-islet metabolism in the fetus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号