首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
烟碱型乙酰胆碱受体参与乙酰胆碱调控的气孔运动   总被引:2,自引:0,他引:2  
动物细胞中 ,乙酰胆碱功能的发挥要求乙酰胆碱受体的参与 ,烟碱型受体的激活剂可以直接影响膜对离子的通透性 .在乙酰胆碱诱导的气孔开放过程中 ,可能同样涉及到烟碱型受体的作用 ,药理学的证据表明烟碱型乙酰胆碱受体参与乙酰胆碱调控的气孔运动 ,而且烟碱型乙酰胆碱受体介导的气孔开放与介质中的离子组成密切相关 ,只有在含K+的介质中烟碱才可以诱导气孔开放而在含Ca2 +的介质中没有作用 ;同样 ,烟碱型乙酰胆碱受体的抑制剂只有在含K+的介质中才能抑制乙酰胆碱诱导的气孔开放 .进一步利用荧光定位技术证明烟碱型受体存在于蚕豆气孔保卫细胞中 ,而且主要分布在保卫细胞原生质体的表面 .免疫印迹实验初步证明在保卫细胞原生质体的微粒体中存在着能与动物烟碱型乙酰胆碱受体的α和β亚基发生免疫交叉反应的蛋白条带 .以上结果表明烟碱型乙酰胆碱受体存在于保卫细胞中 ,而且介导了乙酰胆碱诱导的气孔在含K+介质中的开放 .  相似文献   

2.
烟碱是烟草中备受关注的致瘾性物质,是吸烟者持续使用烟草制品的主要原因之一.Alpha7烟碱型乙酰胆碱受体(alpha7 nicotinic acetylcholine receptor,α7nAChR)在中枢神经系统广泛存在,其功能涵盖学习记忆、认知障碍、神经退行性疾病和药物成瘾等多个方面.近年来,大量研究报道了调控α...  相似文献   

3.
哺乳动物脑烟碱型乙酰胆碱受体的研究进展(综述)   总被引:2,自引:0,他引:2  
哺乳动物烟碱乙酰胆碱型受体(nAChR)丰要分布于神经肌肉接点、自主神经节及脑组织。神经肌肉接点突触后膜nAChR的功能为十烃季胺(C_(10))所竞争性拮抗,称C_(10)型nAChR。自主神经节突触后膜nAChR的功能为六烃季铵(C_6)所竞争性拮抗,称C_6型nAChR。脑nAChR对激动剂烟碱、对拮抗剂C_6、C_(10)的敏感性等药理学性质不同于C_(10)nAChR,也不完全与C_6nAchR相似,是nAChR的一种新亚型。与CmnAChR的研究相比,脑nAChR的研究明  相似文献   

4.
新近研究证实,神经元烟碱型乙酰胆碱受体(nAChR)激动后可起到一定的神经保护作用.目前,一些作用于烟碱受体的激动剂已被作为治疗神经退行性疾病如阿尔茨海默病(AD)和帕金森病(PD)的候选药物,但是关于烟碱受体激动后如何发挥神经保护作用及其潜在的分子机制还不清楚,其中有与Ca2+相关的信号转导假说以及神经营养因子等假说.本文就烟碱型乙酰胆碱受体及其神经保护作用的研究进展予以综述.  相似文献   

5.
烟碱型乙酰胆碱受体及其亚单位的结构功能   总被引:5,自引:0,他引:5  
烟碱型乙酰胆碱受体是配体门控的离子通道蛋白,每个受体由5个亚单位组成,每个亚单位具有4个跨膜α螺旋结构域。通道孔由5个亚单位的M2结构域(α螺旋)环绕围成,它们放射状地排列,使通道孔在膜中部逐渐变细。另外15个α螺旋相互盘绕,构成通道的外环。至今已确认了17种亚单位,它们由一个共同起源的基因家族编码,在中枢神经系统、周围神经系统和肌肉组织广泛表达。众多的亚单位,再加上组织表达的特异性导致受体类型的多样性,结果使该受体具有广泛的生理、药理特性和功能。进年来,基因敲除等现代遗传操作技术提供了在体内研究各类型受体的有效手段,使人类对该受体及亚单位的结构和功能有了长足的认识。  相似文献   

6.
烟碱样乙酰胆碱受体(AChR)是一种配基门控性离子通道,由5个亚单位(α_2βγα)构成。利用非洲蟾蜍卵母细胞的表达系统可以研究AChR的通道特性和各亚单位所起的作用。电鳗电器官AChR和小牛肌AChR之间门控特性的差别,主要是由δ亚单位决定的;而小牛肌成年型AChR与胚胎型AChR之间的差别,则由ε亚单位决定。  相似文献   

7.
烟碱型乙酰胆碱受体(nAChR)介导昆虫中枢神经系统中胆碱能突触兴奋性神经递质的快速传递,也是新烟碱类杀虫剂和多杀菌素的作用靶标。本研究利用RT-PCR和RACE技术,克隆了小菜蛾Plutella xylostella nAChR α亚基的一个新基因(Pxα8)的全长cDNA(GenBank登录号为EU914853)。Pxα8的cDNA序列全长1 744 bp,开放阅读框为1 602 bp,编码534个氨基酸,具有nAChR α亚基的典型特征,与其他昆虫nAChR α8亚基具有77%~96%的相似性,与果蝇nAChR β2亚基具有76%的相似性。Pxα8的开放阅读框存在单核苷酸多态性位点,导致多个位点氨基酸的替换。雌性4龄幼虫的多态性位点多于雄性4龄幼虫,而且雌、雄4龄幼虫的多态性位点均不相同。半定量RT-PCR研究结果表明,Pxα8 mRNA在成虫期表达量高于蛹期和4龄幼虫期。本研究结果为进一步研究小菜蛾nAChR 亚基的多样性和对多杀菌素的靶标抗性机制提供重要基础。  相似文献   

8.
哺乳动物有三种脂肪细胞:白色脂肪细胞(white adipocyte)、褐色脂肪细胞(brown adipocyte)、米色脂肪细胞(beige adipocyte)。白色脂肪细胞主要储存甘油三酯、并分泌脂肪因子(adipokines);褐色脂肪细胞,可利用葡萄糖和脂肪酸经“非寒战产热”(non-shivering thermogenesis)为机体提供热量;褐色脂肪细胞是人类婴儿期的重要热量来源,但却在成年期退化。  相似文献   

9.
《生命科学研究》2017,(1):85-94
芋螺毒素(conotoxin,conopeptide,CTx)是由热带海洋中的肉食性软体动物芋螺分泌产生的一大类生物活性肽,它们相对分子质量小,能特异地作用于动物体内各种离子通道和受体,具有巨大的药物开发价值。其中,A-超家族的α-芋螺毒素(α-CTx)是发现最早的且最重要的一类成员,它能特异性作用于烟碱型乙酰胆碱受体(nicotinic acetylcholine receptors,nAChRs),是肌肉或神经型nAChRs的选择性阻断剂。nAChRs与中枢神经系统紊乱如疼痛、成瘾、癌症等多种疾病密切相关。近年来,人们陆续发现其他超家族的芋螺毒素中也有成员可阻断nAChRs,如αA-、αB-、αO-、αC-、αD-、αS-等家族的芋螺毒素。上述能阻断nAChRs的芋螺毒素统称为α~*-芋螺毒素(α~*-CTx)。α~*-芋螺毒素对nAChRs阻断活性的差别与它们的结构有着密切的联系。结合国内外研究现状,对α~*-CTx与nAChRs相互作用的关键位点以及结构与功能的关系进行综述,可为相关研究提供参考。  相似文献   

10.
采用原位杂交和免疫细胞化学的方法检测原代培养的SD大鼠成骨细胞烟碱型乙酰胆碱受体(nicotinicacetylcholinereceptor,nAChR)α1亚基的表达,结果显示nAChRα1亚基mRNA和蛋白质在原代培养的SD大鼠成骨细胞上呈阳性表达,提示骨内可能存在胆碱能神经和突触样结构,调控骨组织的各种生理活动。  相似文献   

11.
12.
To determine whether prolonged depolarization and/or changes in intracellular Ca2+ concentrations stimulate adaptive responses of neuronal nicotinic acetylcholine receptors, PC12 pheochromocytoma cells were grown in medium containing various concentrations of K+. Nicotinic receptor function was determined as carbachol-stimulated uptake of 86Rb+. Cells were exposed to 50 mM K+ for up to 4 days and then allowed to repolarize for 60 min. Under these conditions, no changes in basal or carbachol-stimulated uptake of 86Rb+ were observed. Furthermore, neither the time course of carbachol-stimulated uptake or the carbachol concentration dependence of 86Rb+ uptake was altered. Finally, concurrent depolarization did not affect the functional down-regulation produced by chronic exposure of the cells to carbachol. Thus, neuronal nicotinic acetylcholine receptors on PC12 cells do not appear to be regulated by depolarization or prolonged elevation of the intracellular Ca2+ level.  相似文献   

13.
1. Evidence exists that associations of adrenal nicotinic acetylcholine receptors (nAChRs) with the cytoskeleton play an important role in signal transduction pathways by maintaining these receptors in a functional state. These studies were designed to explore this possibility and elucidate the mechanism by which antimitotic agents inhibit activation of adrenal nAChRs.2. Functional studies demonstrated that vincristine, tubulozole, podophyllotoxin, and demecolcine inhibited nAChR-stimulated catecholamine release noncompetitively and in a concentration-dependent manner, with IC50 values of 3 (1–10), 5 (2–10), 8 (4–15), and 19 (9–39) M, respectively.3. Detergent extraction experiments indicated that approximately 36% of adrenal nAChRs were associated with the detergent-insoluble cytoskeletal fraction. When chromaffin cells were first treated with antimitotic agents and then detergent solubilized, a significant reduction occurred in the population of adrenal nAChRs associated with the detergent-insoluble cytoskeleton.4. These studies support an association of adrenal nAChRs with microtubules and suggest that the mechanism by which the antimitotic drugs interfere with the signal transduction pathway is by inducing dissociation of nAChRs from the microtubular network.  相似文献   

14.
Abstract: Heterologous expression of cloned Drosophila nicotinic acetylcholine receptor (nAChR) subunits indicates that these proteins misfold when expressed in mammalian cell lines at 37°C. This misfolding can, however, be overcome either by growing transfected mammalian cells at lower temperatures or by the expression of Drosophila nAChR subunits in a Drosophila cell line. Whereas the Drosophila nAChR β subunit (SBD) cDNA, reported previously, lacked part of the SBD coding sequence, here we report the construction and expression of a full-length SBD cDNA. We have examined whether problems in expressing functional Drosophila nAChRs in either Xenopus oocytes or mammalian cell lines can be attributed to an inability of these expression systems to assemble correctly Drosophila nAChRs. Despite expression in what might be considered a more native cellular environment, we have been unable to detect functional nAChRs in a Drosophila cell line unless Drosophila nAChR subunit cDNAs are coexpressed with vertebrate nAChR subunits. Our results indicate that the folding of Drosophila nAChR subunits is temperature-sensitive and strongly suggest that the inability of these Drosophila nAChR subunits to generate functional channels in the absence of vertebrate subunits is due to a requirement for coassembly with as yet unidentified Drosophila nAChR subunits.  相似文献   

15.
Abstract

This report provides evidence that physostigmine (Phy) and benzoquinonium (BZQ) are able to activate nicotinic acetylcholine receptors (nAChRs) through binding site(s) distinct from those of the natural transmitter, ACh. Such findings are in agreement with a second pathway of activation of nAChRs. Receptor activation may be modulated through the novel site, and, consequently, physiological processes involving nicotinic synapses could be controlled. Using patch clamp techniques, single channel currents activated by ACh and anatoxin were recorded from frog interosseal muscle fibers under cell-attached condition and outside-out patches excised from cultured rat hippocampal neurons. Whole cell nicotinic currents were also studied in the cultured neurons. In most of the neurons, nicotinic responses were blocked by the nicotinic antagonists methyllycaconitine (MLA) and α-bungarotoxin (α-BGT). Evaluation of the effects of Phy and BZQ on the muscle and on the α-BGT- and MLA-sensitive neuronal nAChRs demonstrated that both compounds were open channel blockers at these receptors. Furthermore, at low micromolar concentrations, Phy and BZQ activated the nAChRs of all preparations tested, such an effect being unexpectedly resistant to α-BGT or MLA. Thus, the nAChRs could be activated via two distinct binding sites: one for ACh and the other for Phy and BZQ. These findings and previous biochemical results led us to suggest that a putative endogenous ligand could bind to the new site and thereby regulate the activation of nAChRs in nicotinic synapses.  相似文献   

16.
To study the effects of food additives on nicotinic acetylcholine receptors (nAChR), they were expressed in Xenopus oocytes that received an injection of mRNA prepared from electroplax of Electrophorus electricus. The response of nAChR elicited by acetylcholine (ACh) was measured electrophysiologically in the presence and absence of aliphatic alcohols and food additives. All compounds examined inhibited nAChR non-competitively in a concentration-dependent way. The inhibition was stronger when the inhibitors were perfused lmin before ACh, than when they were perfused simultaneously with ACh. The inhibition of nAChR by aliphatic alcohols (propanol to hexanol) increased as the number of carbon chains increased. The addition of alcohols and food additives did not affect the desensitization of nAChR caused by 2 μm ACh. These results suggest that alcohols and food additives bind to the anesthetic binding site in nAChR and inhibit it noncompetitively. However, these compounds will not hinder signal transmission in neuromuscular junctions under physiological conditions, because their inhibition constants are more than 1 mm and muscles usually have more receptors than the number necessary for signal transmission.  相似文献   

17.
Neosurugatoxin, a Specific Antagonist of Nicotinic Acetylcholine Receptors   总被引:8,自引:6,他引:2  
Neosurugatoxin (NSTX) (3 nM-30 nM), recently isolated from the Japanese ivory mollusc (Babylonia japonica) exerted a potent antinicotinic action in the isolated guinea pig ileum. Specific [3H]nicotine binding to rat forebrain membranes was saturable, reversible, and of high affinity. Nicotinic cholinergic agonists exhibited a markedly greater affinity for [3H]nicotine binding sites than a muscarinic agonist, oxotremorine. Although alpha-bungarotoxin had no effect on [3H]nicotine binding, low concentrations (1 nM-1 microM) of NSTX inhibited [3H]nicotine binding in the forebrain membranes and its IC50 value was 69 +/- 6 nM. On the other hand, NSTX did not affect muscarinic receptor binding in the brain. These data indicate that NSTX may be of appreciable interest as a neurotoxin with a selective affinity for ganglionic nicotinic receptors.  相似文献   

18.
1. The potency of agonists and competitive antagonists on the two expressed forms of the nicotinic acetylcholine receptor (adult or junctional subtype, -AChR; fetal or extrajunctional subtype, -AChR) have not previously been compared systematically in homogeneous receptor preparations.2. Each subtype of the receptor was expressed separately in Xenopus oocytes by cytoplasmic injection of combinations of RNA transcribed in vitro. The presence of each type of receptor was confirmed by single-channel recordings. Expressing oocytes were assayed using discontinuous, single-electrode voltage clamp by measuring peak currents in response to test compounds.3. The extrajunctional subtype was more potently activated by the nicotinic agonist dimethylphenyl piperazinium iodide (DMPP) than was the junctional form. There was no statistically significant difference in potency between the two subtypes for other nicotinic agonists (nicotine, cytisine and succinylcholine). The rank order of potency for -AChR was succinylcholine>cytisine>DMPP>nicotine, and that for -AChR was DMPP>cytisine>succinylcholine>nicotine.4. Two agonists (cytisine and succinylcholine) displayed six- to eight-fold greater intrinsic activity in activating -AChR over -AChR. There was no difference between the two forms of receptor in efficacy for nicotine.5. The extrajunctional form was much more potently inhibited by the steroidal competitive antagonist pancuronium than was the junctional receptor. However, there was no significant difference in potency of inhibition by the curariform drug atracurium.6. Contrary to previous reports, there is no consistent relation between the effect of agonists and antagonists and the subtype of receptor. These data suggest that the resistance or sensitivity to these agents seen in various clinical settings are related to other cellular factors.  相似文献   

19.
Abstract: Nicotinic acetylcholine receptors (nAChR) are diverse members of the ligand-gated ion channel superfamily of neurotransmitter receptors and play critical roles in chemical signaling throughout the nervous system. The present study tests whether nAChR are potential targets for steroids. Acute or short-term (5 min) preexposure to steroids such as progesterone (which acts most potently), estradiol, corticosterone, or dexamethasone inhibits function of human muscle-type (α1β1γδ) or ganglionic (α3β4) nAChR measured using 86Rb+ efflux assays in TE671/RD clonal or SH-SY5Y neuroblastoma cells. Absolute (high nanomolar to intermediate micromolar range) and rank-order potencies for steroid-mediated functional inhibition are similar across nAChR subtypes but differ for some steroid derivatives. At concentrations that produce blockade of nAChR function, steroids do not affect binding of radioligands such as 125I-labeled α-bungarotoxin or [3H]acetylcholine to muscle-type or ganglionic nAChR or to neuronal toxin-binding nAChR that contain α7 subunits (α7-nAChR). Steroid-mediated blockade of nAChR function is insurmountable by increasing agonist concentrations, and cell-impermeant progesterone:bovine serum albumin conjugates have full potency as inhibitors of ganglionic or muscle-type nAChR function. Chronic (48 h) exposure to progesterone or estradiol, but not the other steroids, also produces blockade of nAChR function, without significant effects on numbers of nAChR radioligand-binding sites. Collectively, these results suggest that steroids act noncompetitively at extracellular sites to inhibit nAChR function with unique potencies for different steroid-nAChR subtype combinations. Thus, nAChR could be among the targets mediating physiologically relevant effects of steroid action in the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号