共查询到20条相似文献,搜索用时 15 毫秒
1.
A work‐for‐food enrichment program increases exploration and decreases stereotypies in four species of bears 下载免费PDF全文
Jason D. Wagman Kristen E. Lukas Patricia M. Dennis Mark A. Willis Joe Carroscia Curt Gindlesperger Mandi W. Schook 《Zoo biology》2018,37(1):3-15
Zoo‐housed bears are prone to exhibiting stereotypic behaviors, generally considered indicators of negative welfare. We explored the effects of a variable‐time feeding enrichment schedule on behavioral indicators of welfare in four bear species at Cleveland Metroparks Zoo. We distributed the diets of eight bears in one of five enrichment items, for two consecutive days each, and monitored behavior throughout the day. In Experiment 1, we compared variable‐time to fixed‐time presentation of enrichment over two, 10‐day periods. Overall, bears performed more exploratory behavior when enriched (p < 0.0001). Furthermore, variable‐time enrichment was associated with a greater increase in exploratory behavior than fixed‐time enrichment when compared to baseline (p < 0.001). Both fixed‐time (punadjusted <0.05, padjusted = 0.07) and variable‐schedule (punadjusted <0.05, padjusted = 0.09) enrichment were also associated with similar decreases in abnormal behavior compared to baseline. For Experiment 2, we tested habituation to enrichment over 30 days using multiple items and a semi‐variable presentation schedule. Again during the enrichment period, bears exhibited increased exploratory behavior (p < 0.0001) and decreased abnormal behaviors compared to baseline (punadjusted = 0.05, padjusted = 0.09). We observed no habituation during the 30‐day sustained enrichment period for these behaviors. Collectively, these results suggest that daily, variable‐schedule feeding enrichment, with intermittent presentation of unique enrichment items, increases behavioral indicators of positive welfare and decreases behavioral indicators of negative welfare. 相似文献
2.
In nature species react to a variety of endogenous and exogenous ecological factors. Understanding the mechanisms by which these factors interact and drive population dynamics is a need for understanding and managing ecosystems. In this study we assess, using laboratory experiments, the effects that the combinations of two exogenous factors exert on the endogenous structure of the population dynamics of a size‐structured population of Daphnia. One exogenous factor was size‐selective predation, which was applied on experimental populations through simulating: 1) selective predation on small prey, 2) selective predation on large prey and 3) non‐selective predation. The second exogenous factor was pesticide exposure, applied experimentally in a quasi‐continuous regime. Our analysis combined theoretical models and statistical testing of experimental data for analyzing how the density dependence structure of the population dynamics was shifted by the different exogenous factors. Our results showed that pesticide exposure interacted with the mode of predation in determining the endogenous dynamics. Populations exposed to the pesticide and to either selective predation on newborns or selective predation on adults exhibited marked nonlinear effects of pesticide exposure. However, the specific mechanisms behind such nonlinear effects were dependent on the mode of size‐selectivity. In populations under non‐selective predation the pesticide exposure exerted a weak lateral effect. The ways in which endogenous process and exogenous factors may interact determine population dynamics. Increases in equilibrium density results in higher variance of population fluctuations but do not modify the stability properties of the system, while changes in the maximum growth rate induce changes in the dynamic regimes and stability properties of the population. Future consideration for research includes the consequences of the seasonal variation in the composition and activity of the predator assembly in interaction with the seasonal variation in exposure to agrochemicals on freshwater population dynamics. 相似文献
3.
Linda Laikre 《Zoo biology》1999,18(2):81-99
The occurrence of hereditary disorders in conservation breeding programs may severely hamper the overall aim of such programs. The obstacles that arise in this context and the particular management strategies needed to deal with the problems are yet to be adequately addressed. Results from a literature review indicate that hereditary disorders may be fairly common in zoo populations. An example with albinism in a captive brown bear population bred in Nordic zoos is presented. It is demonstrated that the segregation pattern is consistent with an autosomal recessive allele, and carrier probabilities of live animals indicate that the allele occurs in high frequency in the present population. Removing animals with a probability of carrying the allele will result in loss of founder alleles considered particularly valuable. Zoo Biol 18:81–99, 1999. © 1999 Wiley‐Liss, Inc. 相似文献
4.
An integrated modeling approach to estimating Gunnison sage‐grouse population dynamics: combining index and demographic data 下载免费PDF全文
Amy J. Davis Mevin B. Hooten Michael L. Phillips Paul F. Doherty Jr 《Ecology and evolution》2014,4(22):4247-4257
Evaluation of population dynamics for rare and declining species is often limited to data that are sparse and/or of poor quality. Frequently, the best data available for rare bird species are based on large‐scale, population count data. These data are commonly based on sampling methods that lack consistent sampling effort, do not account for detectability, and are complicated by observer bias. For some species, short‐term studies of demographic rates have been conducted as well, but the data from such studies are typically analyzed separately. To utilize the strengths and minimize the weaknesses of these two data types, we developed a novel Bayesian integrated model that links population count data and population demographic data through population growth rate (λ) for Gunnison sage‐grouse (Centrocercus minimus). The long‐term population index data available for Gunnison sage‐grouse are annual (years 1953–2012) male lek counts. An intensive demographic study was also conducted from years 2005 to 2010. We were able to reduce the variability in expected population growth rates across time, while correcting for potential small sample size bias in the demographic data. We found the population of Gunnison sage‐grouse to be variable and slightly declining over the past 16 years. 相似文献
5.
Min Woo Lee Vassilios S. Vassiliadis Jong Moon Park 《Biotechnology and bioengineering》2009,103(5):891-899
In this article, we propose an individual‐based and stochastic modeling approach that is capable of describing the bacterial cell population dynamics during a batch culture. All stochastic nature inherent in intracellular molecular level reactions and cell division processes were considered in a single model framework by embedding a sub‐model describing individual cell's growth kinetics in a discrete event simulation algorithm. The resultant unique feature of the model is that the effects of the stochasticities on the cell population dynamics can be investigated for different substrate‐dependent cell growth kinetics. When Monod kinetics was used as the sub‐model, the stochasticities only slightly affected the cell mass increase and substrate consumption profiles during the batch culture although they were still important in describing the changes of cell population distributions. When Andrews substrate inhibition kinetics was used, however, it was revealed that the overall cell population dynamics could be seriously influenced by the stochasticities. Under a critical initial substrate level, the cell population could proliferate against the substrate inhibition only when the stochasticities were considered. Biotechnol. Bioeng. 2009;103: 891–899. © 2009 Wiley Periodicals, Inc. 相似文献
6.
7.
Genetic and demographic founder effects have long‐term fitness consequences for colonising populations 下载免费PDF全文
Marianna Szűcs Brett A. Melbourne Ty Tuff Christopher Weiss‐Lehman Ruth A. Hufbauer 《Ecology letters》2017,20(4):436-444
Colonisation is a fundamental ecological and evolutionary process that drives the distribution and abundance of organisms. The initial ability of colonists to establish is determined largely by the number of founders and their genetic background. We explore the importance of these demographic and genetic properties for longer term persistence and adaptation of populations colonising a novel habitat using experimental populations of Tribolium castaneum. We introduced individuals from three genetic backgrounds (inbred – outbred) into a novel environment at three founding sizes (2–32), and tracked populations for seven generations. Inbreeding had negative effects, whereas outbreeding generally had positive effects on establishment, population growth and long‐term persistence. Severe bottlenecks due to small founding sizes reduced genetic variation and fitness but did not prevent adaptation if the founders originated from genetically diverse populations. Thus, we find important and largely independent roles for both demographic and genetic processes in driving colonisation success. 相似文献
8.
城市住宅建筑系统流量-存量动态模拟——以北京市为例 总被引:1,自引:0,他引:1
地面建筑物的累积与更新是城市化过程的结果与显性特征之一。城市建筑系统在不同层面上与外部环境系统进行着物质能量交换,对这种交互产生的资源压力与环境胁迫的关注,使其成为城市代谢研究领域中的热点问题。系统分析与模拟城市建筑物流量-存量的动态变化过程及其资源环境响应,对于揭示城市建筑系统代谢机理,提高城市总体规划精准性、强化资源系统韧性管理、提升废弃物处置效率等宏观战略具有重要意义。以北京市为例,基于Stella建模平台,构建了城市居民住宅建筑系统流量-存量的动态模拟模型,定量模拟了不同管理情景下钢材需求量与建筑拆除垃圾产生量的变化区间。结果表明:(1)基准情景下,北京住宅建筑新建流量前期增速较快,2005年达到峰值3024.1万m~2,而拆除流量约于2057年达到峰值,拆除面积为2073.14万m~2;城市住宅建筑存量最高值出现在2075年左右,面积为7.51亿m~2;(2)与基准情景相比,如果人均住宅建筑面积提高到45 m~2,从现在到模拟期结束(2019—2100)将增加钢铁需求量3251.65万t;而如果延长住宅建筑寿命至设计值,同期可减少钢铁需求量3022.9万t;(3)基准情景、大面积情景以及长寿命情景下,北京市城镇住宅建筑拆除垃圾峰值产生量分别为0.29亿t、0.39亿t、0.20亿t,政府管理部门应采取有针对性的应对措施,提前做出综合利用和处理处置方案。 相似文献
9.
The role of harvest in the dynamics of waterfowl populations continues to be debated among scientists and managers. Our perception is that interested members of the public and some managers believe that harvest influences North American duck populations based on calls for more conservative harvest regulations. A recent review of harvest and population dynamics of North American mallard (Anas platyrhynchos) populations (Pöysä et al. 2004) reached similar conclusions. Because of the importance of this issue, we reviewed the evidence for an impact of harvest on duck populations. Our understanding of the effects of harvest is limited because harvest effects are typically confounded with those of population density; regulations are typically most liberal when populations are greatest. This problem also exists in the current Adaptive Harvest Management Program (Conn and Kendall 2004). Consequently, even where harvest appears additive to other mortality, this may be an artifact of ignoring effects of population density. Overall, we found no compelling evidence for strong additive effects of harvest on survival in duck populations that could not be explained by other factors. © 2012 The Wildlife Society. 相似文献
10.
Rhodes H. Makundi Apia W. Massawe Loth S. Mulungu Abdul Katakweba 《African Journal of Ecology》2010,48(2):313-320
A Capture‐Mark‐Recapture study was undertaken in Central Tanzania to compare variations in community structure and population dynamics of rodents in two types of habitats. The study was conducted in fallow field mosaic habitat dominated by perennial and annual grasses (grid BEA) and a more heterogeneous habitat (grid BEB) which was previously woodland cleared of most trees with vegetation dominated by shrubs, bushes, scattered trees and perennial grass. The relative abundance of rodents in BEA was: Mastomys natalensis (73.5%) > Aethomys chrysophilus (8.9%) > Gerbilliscus vicina (7.3%) > Arvicanthis neumanni (6.1%) > Acomys spinosissimus (4.1%) and for grid BEB: M. natalensis (67.6%) > G. vicina (11.2%) > A. neumanni (10.3%) > A. chrysophilus (7.6%) > A. spinosissimus (2.9%). Graphiurus sp., Mus minutoides, Saccostomus mearnsi, Lemniscomys striatus and L. griselda were rare and only occasionally trapped in BEB. Spatial variations in population density were non‐significant except for A. chrysophilus. Significant temporal variations within grids were observed, with synchrony of population peaks for some species. The rare species boosted species richness of grid BEB rather artificially, without significantly contributing to higher species diversity. Temporal variations in Simpson’s Diversity indices between grids were non‐significant except for three out of twenty‐one trapping sessions. 相似文献
11.
12.
Peter J. Clarke 《Hydrobiologia》1995,295(1-3):83-88
Population dynamics of the widespread mangrove Avicennia marina was studied over the complete life-history from zygotes through to adults in southeastern Australia. Zygote survival, propagule dispersal, seedling establishment, seedling recruitment and sapling recruitment were examined by demographic censuses over a range of spatial and temporal scales. Hypotheses about factors regulating survival were tested by manipulative field experiments. Life table statistics for survival and fecundity were used to calculate transition probabilities and their variance for seven stages of life history. These parameters were used as the basis of a stochastic model that predicts population structure after small and large scale perturbations. 相似文献
13.
Martina Kadin Morten Frederiksen Susa Niiranen Sarah J. Converse 《Ecology and evolution》2019,9(15):8587-8600
Alternatives in ecosystem‐based management often differ with respect to trade‐offs between ecosystem values. Ecosystem or food‐web models and demographic models are typically employed to evaluate alternatives, but the approaches are rarely integrated to uncover conflicts between values. We applied multistate models to a capture–recapture dataset on common guillemots Uria aalge breeding in the Baltic Sea to identify factors influencing survival. The estimated relationships were employed together with Ecopath‐with‐Ecosim food‐web model simulations to project guillemot survival under six future scenarios incorporating climate change. The scenarios were based on management alternatives for eutrophication and cod fisheries, issues considered top priority for regional management, but without known direct effects on the guillemot population. Our demographic models identified prey quantity (abundance and biomass of sprat Sprattus sprattus) as the main factor influencing guillemot survival. Most scenarios resulted in projections of increased survival, in the near (2016–2040) and distant (2060–2085) future. However, in the scenario of reduced nutrient input and precautionary cod fishing, guillemot survival was projected to be lower in both future periods due to lower sprat stocks. Matrix population models suggested a substantial decline of the guillemot population in the near future, 24% per 10 years, and a smaller reduction, 1.1% per 10 years, in the distant future. To date, many stakeholders and Baltic Sea governments have supported reduced nutrient input and precautionary cod fishing and implementation is underway. Negative effects on nonfocal species have previously not been uncovered, but our results show that the scenario is likely to negatively impact the guillemot population. Linking model results allowed identifying trade‐offs associated with management alternatives. This information is critical to thorough evaluation by decision‐makers, but not easily obtained by food‐web models or demographic models in isolation. Appropriate datasets are often available, making it feasible to apply a linked approach for better‐informed decisions in ecosystem‐based management. 相似文献
14.
While population declines can drive the loss of genetic diversity under some circumstances, it has been unclear whether this loss is a general consequence of overharvest in highly abundant marine fishes. We compiled data from 11 049 loci across 140 species and found that allelic richness was lower in overfished populations within 9 of 12 genera and families. A multiple linear regression showed that allelic richness was on average 12% lower (P < 0.0001) in overharvested populations after accounting for the effects of body size, latitude and other factors. Heterozygosity was on average 2% lower (P = 0.030). Simulations confirmed that these patterns are consistent with a recent bottleneck in abundant species and also showed that our analysis likely underestimates the loss of rare alleles by a factor of two or three. This evidence suggests that overharvest drives the decay of genetic diversity across a wide range of marine fishes. Such reductions of genetic diversity in some of the world's most abundant species may lead to a long‐term impact of fishing on their evolutionary potential, particularly if abundance remains low and diversity continues to decay. 相似文献
15.
Alexandre Millon Steve J. Petty Brian Little Olivier Gimenez Thomas Cornulier Xavier Lambin 《Global Change Biology》2014,20(6):1770-1781
Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent‐scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole‐eating predators remains unknown. To quantify this impact, we used a 27‐year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high‐ to a low‐amplitude fluctuation regime in the mid‐1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First‐year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole‐eating predators are likely to be threatened by dampening vole cycles throughout Europe. 相似文献
16.
Daisuke Goto 《Global Change Biology》2023,29(21):6018-6039
Large-scale commercial harvesting and climate-induced fluctuations in ocean properties shape the dynamics of marine populations as interdependent drivers at varied timescales. Persistent selective removals of larger, older members of a population can distort its demographic structure, eroding resilience to fluctuations in habitat conditions and thus amplifying volatility in transient dynamics. Many historically depleted marine fish stocks have begun showing signs of recovery in recent decades following the implementation of stricter management measures. But these interventions coincide with accelerated changes in the oceans triggered by increasingly warmer, more variable climates. Applying multilevel models to annual estimates of demographic metrics of 38 stocks comprising 11 species across seven northeast Atlantic ecoregions, this study explores how time-varying local and regional climates contributed to the transient dynamics of recovering populations exposed to variable fishing pressures moderated by management actions. Analyses reveal that progressive reductions in fishing pressure and shifting climate conditions discontinuously shaped rebuilding patterns of the stocks through restorations of maternal demographic structure (reversing age truncation) and reproductive capacity. As the survival rate and demographic structure of reproductive fish improved, transient growth became less sensitive to variability in recruitment and juvenile survival and more to that in adult survival. As the biomass of reproductive fish rose, recruitment success also became increasingly regulated by density-dependent processes involving higher numbers of older fish. When reductions in fishing pressure were insufficient or delayed, however, stocks became further depleted, with more eroded demographic structures. Although warmer local climates in spawning seasons promoted recruitment success in some ecoregions, changing climates in recent decades began adversely affecting reproductive performances overall, amplifying sensitivities to recruitment variability. These shared patterns underscore the value of demographic transients in developing robust strategies for managing marine resources. Such strategies could form the foundation for effective applications of adaptive measures resilient to future environmental change. 相似文献
17.
J. M. Cushing 《Journal of mathematical biology》1994,32(7):705-729
An age-structured population is considered in which the birth and death rates of an individual of age a is a function of the density of individuals older and/or younger than a. An existence/uniqueness theorem is proved for the McKendrick equation that governs the dynamics of the age distribution function. This proof shows how a decoupled ordinary differential equation for the total population size can be derived. This result makes a study of the population's asymptotic dynamics (indeed, often its global asymptotic dynamics) mathematically tractable. Several applications to models for intra-specific competition and predation are given. 相似文献
18.
Michelle L. McLellan Bruce N. McLellan Rahel Sollmann Heiko U. Wittmer 《Ecology and evolution》2021,11(7):3422
Identifying mechanisms of population change is fundamental for conserving small and declining populations and determining effective management strategies. Few studies, however, have measured the demographic components of population change for small populations of mammals (<50 individuals). We estimated vital rates and trends in two adjacent but genetically distinct, threatened brown bear (Ursus arctos) populations in British Columbia, Canada, following the cessation of hunting. One population had approximately 45 resident bears but had some genetic and geographic connectivity to neighboring populations, while the other population had <25 individuals and was isolated. We estimated population‐specific vital rates by monitoring survival and reproduction of telemetered female bears and their dependent offspring from 2005 to 2018. In the larger, connected population, independent female survival was 1.00 (95% CI: 0.96–1.00) and the survival of cubs in their first year was 0.85 (95% CI: 0.62–0.95). In the smaller, isolated population, independent female survival was 0.81 (95% CI: 0.64–0.93) and first‐year cub survival was 0.33 (95% CI: 0.11–0.67). Reproductive rates did not differ between populations. The large differences in age‐specific survival estimates resulted in a projected population increase in the larger population (λ = 1.09; 95% CI: 1.04–1.13) and population decrease in the smaller population (λ = 0.84; 95% CI: 0.72–0.95). Low female survival in the smaller population was the result of both continued human‐caused mortality and an unusually high rate of natural mortality. Low cub survival may have been due to inbreeding and the loss of genetic diversity common in small populations, or to limited resources. In a systematic literature review, we compared our population trend estimates with those reported for other small populations (<300 individuals) of brown bears. Results suggest that once brown bear populations become small and isolated, populations rarely increase and, even with intensive management, recovery remains challenging. 相似文献
19.
Census data aggregation decisions can affect population‐level inference in heterogeneous populations
Ss Engbo James C. Bull Luca Brger Thomas B. Stringell Kate Lock Lisa Morgan Owen R. Jones 《Ecology and evolution》2020,10(14):7487-7496
- Conservation and population management decisions often rely on population models parameterized using census data. However, the sampling regime, precision, sample size, and methods used to collect census data are usually heterogeneous in time and space. Decisions about how to derive population‐wide estimates from this patchwork of data are complicated and may bias estimated population dynamics, with important implications for subsequent management decisions.
- Here, we explore the impact of site selection and data aggregation decisions on pup survival estimates, and downstream estimates derived from parameterized matrix population models (MPMs), using a long‐term dataset on grey seal (Halichoerus grypus) pup survival from southwestern Wales. The spatiotemporal and methodological heterogeneity of the data are fairly typical for ecological census data and it is, therefore, a good model to address this topic.
- Data were collected from 46 sampling locations (sites) over 25 years, and we explore the impact of data handling decisions by varying how years and sampling locations are combined to parameterize pup survival in population‐level MPMs. We focus on pup survival because abundant high‐quality data are available on this developmental stage.
- We found that survival probability was highly variable with most variation being at the site level, and poorly correlated among sampling sites. This variation could generate marked differences in predicted population dynamics depending on sampling strategy. The sample size required for a confident survival estimate also varied markedly geographically.
- We conclude that for populations with highly variable vital rates among sub‐populations, site selection and data aggregation methods are important. In particular, including peripheral or less frequently used areas can introduce substantial variation into population estimates. This is likely to be context‐dependent, but these choices, including the use of appropriate weights when summarizing across sampling areas, should be explored to ensure that management actions are successful.