首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
巨噬细胞在不同环境刺激下分化为经典活化巨噬细胞和选择性活化巨噬细胞,巨噬细胞选择性活化的信号通路包括:JAK/STAT6途径、M2分化成熟的转录调节途径(KLF4的转录调节,PPARs的转录调节)以及Jmjd3表观遗传学调节途径。选择性活化对机体而言是一种保护机制,可以依据上述分子理论予以干预,如:细胞因子、PPARγ完全性激动剂、PPARγ部分性激动剂、微量元素硒以及生活方式等通过IL-4/STAT6/PPARγ途径促进巨噬细胞选择性极化。对巨噬细胞选择性活化的信号通路及其促进措施进行了简述。  相似文献   

2.
白血病抑制因子与胚胎干细胞   总被引:3,自引:0,他引:3  
白血病抑制因子对细胞的生长和分化有多种作用,通过与其受体结合传导信号,gp130与LIF受体β链的结合激活JAK激酶(JAK1和JAK2),JAK激酶磷酸化STAT信号转录子,STAT3的磷酸化对于阻止体外培养的干细胞的分化具有十分重要的作用。  相似文献   

3.
线粒体疾病(mitochondrial diseases, MDs)与电子传递链功能缺陷密切相关。电子传递链上的五种复合物共同维持电子传递链的正常功能,从而确保ATP的产生。电子传递链上任何一种复合物的功能缺陷都会损伤线粒体功能,导致线粒体疾病的发生。因此,针对不同的复合物功能缺陷,可以采取相应的治疗措施来挽救其功能,达到缓解或治愈线粒体疾病的目的。本文以电子传递链上五种复合物为研究对象,阐述不同复合物功能缺陷导致的线粒体疾病以及相应的治疗措施。  相似文献   

4.
5.
6.
线粒体呼吸链膜蛋白复合体的结构   总被引:8,自引:0,他引:8  
线粒体作为真核细胞的重要“能量工厂”,是细胞进行呼吸作用的场所,呼吸作用包括柠檬酸循环和氧化磷酸化两个过程,其中氧化磷酸化过程的电子传递链(又称线粒体呼吸链)位于线粒体内膜上,由四个相对分子质量很大的跨膜蛋白复合体(Ⅰ、Ⅱ、Ⅲ、和Ⅳ)、介于Ⅰ/Ⅱ与Ⅲ之间的泛醌以及介于Ⅲ与Ⅳ之间的细胞色素c共同组成。线粒体呼吸链的功能是进行生物氧化,并与称之为复合物V的ATP合成酶(磷酸化过程)相偶联,共同完成氧化磷酸化过程,并生产能量分子ATP。线粒体呼吸链的结构生物学研究对于彻底了解电子传递和能量转化的机理是至关重要的,本文分别论述线粒体呼吸链复合体Ⅰ、Ⅱ、Ⅲ和Ⅳ的结构,并跟踪线粒体呼吸链超复合体的结构研究进展。  相似文献   

7.
本文采用免疫荧光染色、凝胶阻滞电泳(EMSA)和Western blot等方法,观察AngⅡ刺激人胚肺二倍体成纤维细胞WI-38细胞前后,细胞中信号转导子和转录激活子STAT3、STAT1的活化状态,进而了解AngⅡ的信号转导通路.结果显示AngⅡ通过其AT1受体诱导WI-38细胞中STAT3、STAT1的磷酸化,形成以磷酸化的STAT3同源二聚体SIF-A为主的复合物,并转位入核与DNA结合,参与调控基因的表达;AngⅡ的作用存在量效及时效效应,10-3mmol/L的AngⅡ刺激60min能最强诱导WI-38细胞STAT3、STAT1的活化.因此JAK/STAT途径参与介导了An-gⅡ在WI-38中的信号转导.  相似文献   

8.
本研究旨在探讨锌转运体Zip2 (SLC39A2)在心肌缺血再灌注(ischemia/reperfusion, I/R)过程中对线粒体呼吸的调控作用及其机制。通过冠状动脉左前降支结扎建立小鼠在体心肌I/R损伤模型,用电感耦合离子发射光谱仪(inductively coupled plasma-optical emission spectrometer, ICP-OES)测量心肌组织的锌含量,用高分辨呼吸测定系统(Oxygraph-2K)检测小鼠心肌线粒体呼吸功能和氧化磷酸化水平,采用Western blot技术检测小鼠心肌组织STAT3和ERK的磷酸化水平。结果显示:(1)与假手术组相比,野生型小鼠I/R心肌组织的锌含量明显降低,Zip2基因敲除小鼠I/R心肌组织的锌含量进一步降低;(2)与野生对照组相比,Zip2基因敲除组小鼠心肌线粒体呼吸控制率(respiratory control ratio, RCR)和氧化磷酸化水平降低,I/R后上述指标进一步降低;(3)与野生对照组相比,I/R后Zip2基因敲除组小鼠心肌组织STAT3 (Ser~(727))和ERK的蛋白磷酸化水平均明显降低;(4)与空载体感染组相比,I/R后STAT3感染组心肌线粒体呼吸功能明显提高,而STAT3负突变体感染组心肌线粒体呼吸功能则降低。STAT3过表达可逆转Zip2基因敲除对线粒体呼吸的抑制作用。以上结果提示,心肌I/R时Zip2通过STAT3来调控线粒体呼吸,其机制可能与STAT3 (Ser~(727))的磷酸化有关,这可能是Zip2保护心肌的分子机制之一。  相似文献   

9.
10.
由于线粒体能敏感地感受机体内氧浓度的变化,缺氧时会影响线粒体氧化磷酸化过程中电子传递链的正常功能,抑制ATP生成,产生大量活性氧(ROS)。ROS蓄积导致氧化损伤细胞内脂质、DNA和蛋白质等大分子物质,线粒体肿胀,通透性转换孔开放,释放细胞色素C等促凋亡因子,最终严重影响细胞的存活。因此这些功能异常或受损线粒体是缺氧应激状态下细胞是否存活的危险因素,及时清除这些线粒体,对维持线粒体质量、数量及细胞稳态具有重要意义。线粒体自噬是近年来发现的细胞适应缺氧的一种防御性代谢过程,它通过自噬途径选择性清除损伤、衰老和过量产生ROS的线粒体,促进线粒体更新和循环利用,确保细胞内线粒体功能稳定,保护缺氧应激下细胞的正常生长发挥重要的调节作用。本文就线粒体自噬在缺氧条件下发生过程、参与相关蛋白及调节机制等方面研究进行了综述。  相似文献   

11.
目的:通过建立星形胶质细胞机械性损伤模型,研究烟碱型乙酰胆碱受体α7亚单位(α7nAChR)在创伤性脑损伤后星形胶质细胞炎症反应中的作用及调控机制。方法:建立星形胶质细胞机械性损伤模型,通过ELISA检测炎症因子IL-1β、TNF-α、IL-10和TGF-β的表达;利用α7n ACh R抑制剂α-BGT和激动剂PHA-543613处理星形胶质细胞,检测相关炎症因子表达,并通过Western blot检测信号传导及转录活化因子3(STAT3)和磷酸化STAT3(p-STAT3)的表达;利用α-BGT和STAT3抑制剂Stattic处理星形胶质细胞,检测相关炎症因子表达。结果:①星形胶质细胞机械性损伤后,促炎因子IL-1β、TNF-α表达增加,抗炎因子IL-10、TGF-β表达降低(P0.05)。②利用α-BGT抑制α7nAChR可增加损伤后IL-1β、TNF-α的表达,减少IL-10、TGF-β的表达(P0.05);而利用PHA-543613激活α7nAChR功能,则发挥相反作用(P0.05)。③α-BGT可促进STAT3磷酸化,而PHA-543613抑制STAT3磷酸化(P0.05)。④STAT3抑制剂Stattic可减少IL-1β和TNF-α的表达,增加IL-10和TGF-β的表达,并部分阻断α-BGT对IL-1β、TNF-α、IL-10及TGF-β表达的影响(P0.05)。结论:机械性损伤后,激活α7nAChR可减轻星形胶质细胞炎症反应,而抑制STAT3磷酸化是其重要的下游机制。  相似文献   

12.
该文探讨肿瘤坏死因子α(TNFα)活化信号转导和转录激活因子3(STAT3)的分子机制。采用流式细胞术(FACS)检测TNF受体TNFR1在鼻咽癌细胞5-8F和宫颈癌细胞HeLa中的蛋白表达水平;qRT-PCR检测TNFα对其受体TNFR1和TNFR2的mRNA水平的影响;ELISA检测细胞因子白细胞介素8(IL-8)的蛋白水平;Western blot检测受体和信号转导分子的总蛋白水平及蛋白磷酸化水平。结果显示,5-8F和HeLa细胞表达功能性的TNF受体和表皮生长因子受体(EGFR);TNFα处理细胞可诱导STAT3的活化,且呈时间和剂量依赖性;TNFα也能活化EGFR,用EGFR的抑制剂进行处理,逆转了TNFα诱导的EGFR(Y1068)的磷酸化,也逆转了STAT3的磷酸化;进一步研究结果显示,TNFα可活化促癌酪氨酸蛋白激酶SRC,用SRC抑制剂处理,逆转了TNFα诱导的EGFR活化及其下游STAT3的磷酸化。总之,在肿瘤细胞中存在TNFα-SRC-EGFR-STAT3信号转导通路,提示EGFR可能是炎症诱导肿瘤的桥梁。  相似文献   

13.
人胚肺成纤维细胞WI—38中AngII信号转导途径的研究   总被引:1,自引:1,他引:0  
本采用免疫荧光染色、凝胶阻滞电泳(EMSA)和Western blot等方法,观察AngII刺激人胚肺二倍体成纤维细胞WI-38细胞前后,细胞中信号转导子和转录激活子STAT3、STAT1的活化状态,进而了解AngII的信号转导通路。结果显示AngII通过其AT1受体诱导WI-38细胞中STAT3、STAT1的磷酸化,形成以磷酸化的STAT3同源二聚体SIF-A为主的复合物,并转位入核与DNA结合,参与调控基因的表达;AngII的作用存在量效及时效效应,10^-3mmol/L的AngII刺激60min能最强诱导WI-38细胞STAT3、STAT1的活化。因此JAK/STAT途径参与介导了An-gII在WI-38中的信号转导。  相似文献   

14.
STAT3入核的核定位序列研究   总被引:3,自引:1,他引:2  
  相似文献   

15.
下丘脑是人体的摄食中枢,它通过抑制食欲的阿黑皮素原(POMC)神经元和促进食欲的神经肽相关蛋白(AgRP)神经元调节摄食及能量代谢。叉头转录因子O亚族1(FoxO1)是胰岛素信号通路和瘦素信号通路中重要的调节蛋白,FoxO1的生理作用是促进下丘脑Agrp基因表达、抑制Pomc基因表达,抑制瘦素信号通路的转录激活因子3(STAT3)蛋白对Pomc基因转录的促进作用,从而促进食欲。瘦素和胰岛素均可激活经典的IRS/PI(3)K/Akt信号通路,使FoxO1磷酸化失去活性,抑制食欲。此外,沉默信息调节因子Sirt1也可以通过去乙酰化,影响FoxO1的转录活性。本文综述了胰岛素、瘦素、Sirt1通过FoxO1调节下丘脑摄食中枢的作用机制。  相似文献   

16.
辅酶Q10的生理作用及临床应用   总被引:6,自引:0,他引:6  
辅酶Q10是线粒体电子传递链中的一种重要辅酶,参与细胞氧化磷酸化及ATP生成过程。辅酶Q10是细胞代谢呼吸激活剂和免疫增强剂,具有抗氧化和自由基清除功能。辅酶Q10药物的临床应用主要在心血管疾病、高血压、神经系统疾病和免疫系统疾病方面。  相似文献   

17.
雌激素受体信号通路新进展   总被引:3,自引:0,他引:3  
雌激素通过直接与两类核内雌激素受体ERα和ERβ结合,活化靶基因的转录,这是经典的雌激素受体信号转导途径。近来发现,雌激素受体还能够通过依赖或不依赖雌激素的方式与胞内一些信号通路对话,使自身被磷酸化而活化;雌激素受体还能与其它转录因子相互作用,调节自身或者其它转录因子的活化功能,参与ER阳性细胞的增殖调节。此外,雌激素能通过细胞膜上的雌激素受体进行信号转导,引起靶细胞的快速反应及活化靶基因转录,参与骨和心血管保护。  相似文献   

18.
为探讨Janus蛋白酪氨酸激酶2-转导及转录激活因子5(JAK2-STAT5)途径在介导血管紧张素Ⅱ(AngⅡ)诱导的血管平滑肌细胞(VSMC)血管舒-缩肽表达调节的作用及分子机制, 以Ang Ⅱ为诱发因素刺激培养的大鼠VSMC, 用免疫共沉淀、Western印迹分析和激光共聚焦显微镜观察STAT5磷酸化及其核转位, 用电泳迁移率改变分析(EMSA)确定STAT5与血管活性肽基因调控区顺式调控元件的结合活性. 结果显示, STAT5磷酸化水平分别于Ang Ⅱ刺激10 min和12 h出现两个高峰, 增加的磷酸化STAT5主要分布在细胞核内. Ang Ⅱ诱导的STAT5活化与核转位可被JAK2的特异抑制剂AG490所抑制. EMSA结果显示, 用Ang Ⅱ刺激VSMC后, 核蛋白与含有血管紧张素原基因启动子STAT5识别序列的探针结合活性显著升高,而核蛋白与含有心钠素(ANF)基因启动子STAT5识别序列的探针结合活性则呈下降趋势, 核蛋白与两种探针的结合活性均可被JAK2抑制剂AG490所消除, 并且加入抗STAT5抗体后均可出现滞后的超迁移带. 结果提示, Ang Ⅱ通过激活JAK2-STAT5介导信号向胞核内传递, STAT5与相应的顺式元件结合是启动血管紧张素原和心钠素基因表达所必需的转录调控机制之一.  相似文献   

19.
PIAS(protein inhibitor of activated STAT)家族蛋白是作为活化的STAT的转录活性抑制蛋白被发现的,有5个成员,5种PIAS蛋白都具有3个共同的结构域特征,即N端SAP结构域,中间的锌结合模体Zn-RF和C端的富含丝氨酸/苏氨酸区域。现发现PIAS蛋白不但与激活的STAT蛋白相互作用,还与核内激素受体、TGFβ通路的Smad、Wnt通路的LEF1、细胞周期相关的P53等转录因子和HDAC、FAK等非转录因子相互作用,并调节转录因子的活性。PIAS对转录因子活性的调节有正或负调节,这决定于不同的PIAS分子与不同的转录因子的相互作用。随着对PIAS的研究增多,也引发出许多重要问题需待未来研究去回答。  相似文献   

20.
信号转导子与转录活化子3(STAT3)是一个具有信号转导和转录调控双重功能的转录因子,有文献报道STAT3在乳腺癌中的表达显著升高,并能促进乳腺癌的转移。为了深入探索STAT3在肿瘤发生发展中的作用和影响乳腺癌转移的分子机制,采用RNA干扰技术在小鼠乳腺癌细胞株4T1中沉默STAT3的表达。MTT实验结果显示STAT3沉默对4T1细胞的增殖能力没有影响;细胞迁移实验结果表明STAT3表达被沉默后4T1细胞的迁移能力明显被抑制;定量PCR结果显示,STAT3基因沉默后4T1细胞中VEGF和IL-6的mRNA水平下降,E-cadherin表达上升,mosin表达下降;信号通路检测显示STAT3基因表达沉默后MAPK的活化明显降低。研究表明STAT3在小鼠乳腺癌细胞的迁移过程中发挥重要作用,为以STAT3基因为靶向的治疗提供了一定的实验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号