首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: To test whether consumption of a beverage containing active ingredients will increase 24‐hour energy metabolism in healthy, young, lean individuals. Research Method and Procedures: Thirty‐one male and female subjects consumed 3 × 250‐mL servings of a beverage containing green tea catechins, caffeine, and calcium for 3 days in a single‐center, double‐blind, placebo‐controlled, cross‐over design study. On the 3rd day, 23‐hour energy metabolism, extrapolated to 24‐hour, was measured in a calorimeter chamber. Blood pressure and heart rate were measured, and total day and night urines were analyzed for urea and catecholamine excretion. Results: Twenty‐four‐hour energy expenditure (EE) and 24‐hour fat oxidation were lower in women than in men (p < 0.0001 and p < 0.015, respectively). Although there were no treatment or treatment/gender effects on substrate oxidation, treatment increased 24‐hour EE by 106 ± 31 kcal/24 hours (p = 0.002), equivalent to 4.7 ± 1.6 kcal/h (day; p = 0.005) and 3.3 ± 1.5 kcal/h (night; p = 0.04). No significant differences were observed in hemodynamic parameters. Discussion: The present study provides evidence that consumption of a beverage containing green tea catechins, caffeine, and calcium increases 24‐hour EE by 4.6%, but the contribution of the individual ingredients cannot be distinguished. Although this increase is modest, the results are discussed in relation to proposed public health goals, indicating that such modifications are sufficient to prevent weight gain. When consumed regularly as part of a healthy diet and exercise regime, such a beverage may provide benefits for weight control.  相似文献   

2.
Objective: To verify the accuracy of a new hand‐held metabolic rate measuring device (MedGem) in quantifying postprandial energy expenditure (PP EE). MedGem measurements were compared to measurements obtained with a conventional indirect calorimeter (Delta‐Trac). Research Methods and Procedures: The resting metabolic rate of 15 healthy subjects was measured for 20 minutes using Delta‐Trac followed by a 10‐minute measurement period using MedGem. EE was again measured for 7 hours after consumption of a 2510‐kJ breakfast. Measurements were read from the Delta‐Trac for the initial 50 minutes of each hour followed by a single reading from the MedGem after 5 to 10 minutes of measurement. Measured EE was calculated as the average of the total measurement period for Delta‐Trac and for eight readings using MedGem; PP EE was calculated as the average of all measurements obtained after breakfast consumption. Results: There was no difference in resting metabolic rate between the two methods (6455.1 ± 417.6 vs. 6468.5 ± 337.2 kJ/d for Delta‐Trac and MedGem, respectively). Measured EE and PP EE values with Delta‐Trac (7019.1 ± 400.8 and 7099.8 ± 399.2 kJ/d, respectively) and MedGem (6775.6 ± 372.0 and 6819.5 ± 379.9 kJ/d, respectively) were not significantly different. There was no bias detected in any of the measurements made with MedGem compared with those of Delta‐Trac. Discussion: The new hand‐held EE measuring device can accurately track PP EE relative to a conventional indirect calorimetry system and, therefore, provides a new opportunity to assess PP EE in research settings and large‐scale trials.  相似文献   

3.
Objective: Higher calcium and dairy intakes may be associated with lower body weights, but a mechanism in humans has yet to be elucidated. We compared the effects of a dairy‐based high‐calcium diet and a low‐calcium diet on macronutrient oxidation. Research Methods and Procedures: Subjects (10 men and nine women) consumed a low‐dairy (LD, ~one serving per day, ~500 mg Ca2+/d) or high‐dairy (HD, ~three to four servings per day, ~1400 mg Ca2+/d) energy balance diet for 1 week. Each diet condition was performed twice. On the 7th day, subjects were studied in a room calorimeter under one of four study conditions, applied in a randomized crossover design. Within each diet condition, subjects were studied under conditions of energy balance and acute energy deficit. The deficit (?600 kcal/d) was induced only for the 24 hours that subjects resided in the room and was achieved by a combination of caloric restriction and exercise. Results: Under energy balance conditions, there was no effect of diet treatment on respiratory quotient or 24‐hour macronutrient oxidation. Under energy deficit conditions, 24‐hour fat oxidation was significantly increased on the HD diet (HD with deficit = 136 ± 13 g/d, LD with deficit = 106 ± 7 g/d, p = 0.02). Discussion: Consumption of a dairy‐based high‐calcium diet increased 24‐hour fat oxidation under conditions of acute energy deficit. We hypothesize that these effects are due to an increased fat oxidation during exercise.  相似文献   

4.
Objective: A reported lower resting metabolic rate (RMR) in African‐American women than in white women could explain the higher prevalence of obesity in the former group. Little information is available on RMR in African‐American men. Research Methods and Procedures: We assessed RMR by indirect calorimetry and body composition by DXA in 395 adults ages 28 to 40 years (100 African‐American men, 95 white men, 94 African‐American women, and 106 white women), recruited from participants in the Coronary Artery Risk Development in Young Adults (CARDIA), Birmingham, Alabama, and Oakland, California, field centers. Results: Using linear models, fat‐free mass, fat mass, visceral fat, and age were significantly related to RMR, but the usual level of physical activity was not. After adjustment for these variables, mean RMR was significantly higher in whites (1665.07 ± 10.78 kcal/d) than in African Americans (1585.05 ± 11.02 kcal/d) by 80 ± 16 kcal/d (p < 0.0001). The ethnic × gender interaction was not significant (p = 0.9512), indicating that the difference in RMR between African‐American and white subjects was similar for men and women. Discussion: RMR is ~5% higher in white than in African‐American participants in CARDIA. The difference was the same for men and women and for lean and obese individuals. The prevalence of obesity is not higher in African‐American men than in white men. Because of these reasons, we believe that RMR differences are unlikely to be a primary explanation for why African‐American women are more prone to obesity than white women.  相似文献   

5.
Objective: A low resting metabolic rate for a given body size and composition, a low rate of fat oxidation, low levels of physical activity, and low plasma leptin concentrations are all risk factors for body weight gain. The aim of the present investigation was to compare resting metabolic rate (RMR), respiratory quotient (RQ), levels of physical activity, and plasma leptin concentrations in eight post‐obese adults (2 males and 6 females; 48.9 ± 12.2 years; body mass index [BMI]: 24.5 ± 1.0 kg/m2; body fat 33 ± 5%; mean ± SD) who lost 27.1 ± 21.3 kg (16 to 79 kg) and had maintained this weight loss for ≥2 months (2 to 9 months) to eight age‐ and BMI‐matched control never‐obese subjects (1 male and 7 females; 49.1 ± 5.2 years; BMI 24.4 ± 1.0 kg/m2; body fat 33 ± 7%). Research Methods and Procedures: Following 3 days of weight maintenance diet (50% carbohydrate and 30% fat), RMR and RQ were measured after a 10‐hour fast using indirect calorimetry and plasma leptin concentrations were measured using radioimmunoassay. Levels of physical activity were estimated using an accelerometer over a 48‐hour period in free living conditions. Results: After adjustment for fat mass and fat‐free mass, post‐obese subjects had, compared with controls, similar levels of physical activity (4185 ± 205 vs. 4295 ± 204 counts) and similar RMR (1383 ± 268 vs. 1430 ± 104 kcal/day) but higher RQ (0.86 ± 0.04 vs. 0.81 ± 0.03, p < 0.05). Leptin concentration correlated positively with percent body fat (r = 0.57, p < 0.05) and, after adjusting for fat mass and fat‐free mass, was lower in post‐obese than in control subjects (4.5 ± 2.1 vs. 11.6 ± 7.9 ng/mL, p < 0.05). Discussion: The low fat oxidation and low plasma leptin concentrations observed in post‐obese individuals may, in part, explain their propensity to relapse.  相似文献   

6.
Objective: To determine Trp64Arg β3‐adrenoceptor genotype‐specific differences in the components of energy expenditure. Hypothesis: We hypothesized that resting metabolic rate (RMR) and physical activity levels would be lower and that thermic effect of feeding (TEF) would be higher in those with the Arg64 allele. Research Methods and Procedures: RMR and TEF were measured by indirect calorimetry, physical activity by questionnaire, and total energy expenditure by the doubly labeled water method. Genotype‐specific measures were compared using ANOVA and analysis of covariance (ANCOVA). Results: RMR in Arg64 homozygotes was significantly lower than in Trp64 homozygotes [Arg64, 1373 ± 259 kcal/d (n = 15) vs. Trp64Arg, 1538 ± 238 kcal/d (n = 25) vs. Trp64, 1607 ± 290 kcal/d (n = 22); p < 0.01]. TEF was significantly higher in Arg64 homozygotes compared with Trp64 homozygotes (Arg64, 359 ± 28 kcal/d; Trp64Arg, 322 ± 22 kcal/d; and Trp64, 279 ± 23 kcal/d; p < 0.05). No differences were identified between genotypes in physical activity or in total energy expenditure. Discussion: Our results suggest that the Arg64 β3‐adrenoceptor allele contributes significantly to the genetic variability in both RMR and TEF.  相似文献   

7.
Objective: To investigate the ability of a newly developed triaxial accelerometer to predict total energy expenditure (EE) (TEE) and activity‐related EE (AEE) in free‐living conditions. Research Methods and Procedures: Subjects were 29 healthy subjects between the ages of 18 and 40. The Triaxial Accelerometer for Movement Registration (Tracmor) was worn for 15 consecutive days. Tracmor output was defined as activity counts per day (ACD) for the sum of all three axes or each axis separately (ACD‐X, ACD‐Y, ACD‐Z). TEE was measured with the doubly labeled water technique. Sleeping metabolic rate (SMR) was measured during an overnight stay in a respiration chamber. The physical activity level was calculated as TEE × SMR?1, and AEE was calculated as [(0.9 × TEE) ? SMR]. Body composition was calculated from body weight, body volume, and total body water using Siri's three‐compartment model. Results: Age, height, body mass, and ACD explained 83% of the variation in TEE [standard error of estimate (SEE) = 1.00 MJ/d] and 81% of the variation in AEE (SEE = 0.70 MJ/d). The partial correlations for ACD were 0.73 (p < 0.001) and 0.79 (p < 0.001) with TEE and AEE, respectively. When data on SMR or body composition were used with ACD, the explained variation in TEE was 90% (SEE = 0.74 and 0.77 MJ/d, respectively). The increase in the explained variation using three axes instead of one axis (vertical) was 5% (p < 0.05). Discussion: The correlations between Tracmor output and EE measures are the highest reported so far. To measure daily life activities, the use of triaxial accelerometry seems beneficial to uniaxial.  相似文献   

8.
Green tea is purported to promote weight loss. Resting metabolic rate (RMR) and the thermic effect of feeding (TEF) are significant components of total daily energy expenditure and are partially determined by the sympathetic nervous system via catecholamine‐mediated stimulation of β‐adrenergic receptors. Epigallocatechin‐3‐gallate (EGCG: the most bioactive catechin in green tea) inhibits catechol‐O‐methyltransferase, an enzyme contributing to the degradation of catecholamines. Accordingly, we hypothesized that short‐term consumption of a commercially available EGCG supplement (Teavigo) augments RMR and TEF. On two separate occasions, seven placebo or seven EGCG capsules (135 mg/capsule) were administered to 16 adults (9 males, 7 females, age 25 ± 2 years, BMI 24.6 ± 1.2 kg/m2 (mean ± s.e.)). Capsules (three/day) were consumed over 48 h; the final capsule was consumed 2 h prior to visiting the laboratory. Energy expenditure (ventilated hood technique) was determined at rest and for 5 h following ingestion of a liquid meal (caloric content: 40% RMR). Contrary to our hypothesis, RMR was not greater (P = 0.10) following consumption of EGCG (6,740 ± 373 kJ/day) compared with placebo (6,971 ± 352). Similarly, the area under the TEF response curve (Δ energy expenditure) was also unaffected by EGCG (246,808 ± 23,748 vs. 243,270 ± 22,177 kJ; P = 0.88). EGCG had no effect on respiratory exchange ratio at rest (P = 0.29) or throughout the TEF measurement (P = 0.56). In summary, together RMR and TEF may account for up to 85% of total daily energy expenditure; we report that short‐term consumption of a commercially available EGCG supplement did not increase RMR or TEF.  相似文献   

9.
Objective: A low resting metabolic rate (RMR) is considered a risk factor for weight gain and obesity; however, due to the greater fat‐free mass (FFM) found in obesity, detecting an impairment in RMR is difficult. The purposes of this study were to determine the RMR in lean and obese women controlling for FFM and investigate activity energy expenditure (AEE) and daily activity patterns in the two groups. Methods and Procedures: Twenty healthy, non‐smoking, pre‐menopausal women (10 lean and 10 obese) participated in this 14‐day observational study on free‐living energy balance. RMR was measured by indirect calorimetry; AEE and total energy expenditure (TEE) were calculated using doubly labeled water (DLW), and activity patterns were investigated using monitors. Body composition including FFM and fat mass (FM) was measured by dual energy X‐ray absorptiometry (DXA). Results: RMR was similar in the obese vs. lean women (1601 ± 109 vs. 1505 ± 109 kcal/day, respectively, P = 0.12, adjusting for FFM and FM). Obese women sat 2.5 h more each day (12.7 ± 3.2 h vs. 10.1 ± 2.0 h, P < 0.05), stood 2 h less (2.7 ± 1.0 h vs. 4.7 ± 2.2 h, P = 0.02) and spent half as much time in activity than lean women (2.6 ± 1.5 h vs. 5.4 ± 1.9 h, P = 0.002). Discussion: RMR was not lower in the obese women; however, they were more sedentary and expended less energy in activity than the lean women. If the obese women adopted the activity patterns of the lean women, including a modification of posture allocation, an additional 300 kcal could be expended every day.  相似文献   

10.
Objective: To develop regression‐based equations that estimate physical activity ratios [energy expenditure (EE) per minute/sleeping metabolic rate] for low‐to‐moderate intensity activities using total acceleration obtained by triaxial accelerometry. Research Methods and Procedures: Twenty‐one Japanese adults were fitted with a triaxial accelerometer while also in a whole‐body human calorimeter for 22.5 hours. The protocol time was composed of sleep (8 hours), four structured activity periods totaling 4 hours (sitting, standing, housework, and walking on a treadmill at speeds of 71 and 95 m/min, 2 × 30 minutes for each activity), and residual time (10.5 hours). Acceleration data (milligausse) from the different periods and their relationship to physical activity ratio obtained from the human calorimeter allowed for the development of EE equations for each activity. The EE equations were validated on the residual times, and the percentage difference for the prediction errors was calculated as (predicted value ? measured value)/measured value × 100. Results: Using data from triaxial accelerations and the ratio of horizontal to vertical accelerations, there was relatively high accuracy in identifying the four different periods of activity. The predicted EE (882 ± 150 kcal/10.5 hours) was strongly correlated with the actual EE measured by human calorimetry (846 ± 146 kcal/10.5 hours, r = 0.94 p < 0.01), although the predicted EE was slightly higher than the measured EE. Discussion: Triaxial accelerometry, when total, vertical, and horizontal accelerations are utilized, can effectively evaluate different types of activities and estimate EE for low‐intensity physical activities associated with modern lifestyles.  相似文献   

11.
Roux‐en‐Y gastric bypass (RYGB) surgery has become an accepted treatment for excessive obesity. We conducted a longitudinal study to assess regional body composition, muscle proteolysis, and energy expenditure before RYGB, and 6 and 12 months after RYGB. Whole‐body and regional fat mass (FM) and lean mass (LM) were assessed via dual energy X‐ray absorptiometry (DXA), and myofibrillar protein degradation was estimated by urinary 3‐methylhistidine (3‐MeH) in 29 subjects. Energy expenditure and substrate oxidation were also determined using a whole‐room, indirect calorimeter in 12 of these subjects. LM loss constituted 27.8 ± 10.2% of total weight loss achieved 12 months postoperatively, with the majority of LM loss (18 ± 6% of initial LM) occurring in the first 6 months following RYGB. During this period, the trunk region contributed 66% of whole‐body LM loss. LM loss occurred in the first 6 months after RYGB despite decreased muscle protein breakdown, as indicated by a decrease in 3‐MeH concentrations and muscle fractional breakdown rates. Sleep energy expenditure (SEE) decreased from 2,092 ± 342 kcal/d at baseline to 1,495 ± 190 kcal/day at 6 months after RYGB (P < 0.0001). Changes in both LM and FM had an effect on the reduction in SEE (P < 0.001 and P = 0.005, respectively). These studies suggest that loss of LM after RYGB is significant and strategies to maintain LM after surgery should be explored.  相似文献   

12.
The recovery of oxygen uptake to the standard metabolic rate (SMR) following exhaustive chasing exercise in Atlantic salmon Salmo salar parr occurred in three phases (rapid, plateau and slow). The initial recovery phase lasted 0·7 h and contributed 16% to the total excess post‐exercise oxygen consumption (EPOC). It was followed by a longer plateau phase that contributed 53% to the total EPOC. The slow recovery phase that completed recovery of SMR, which has not been reported previously, made a 31% contribution to the total EPOC. The plasticity of EPOC was demonstrated in exercise‐trained fish. Exercise training increased EPOC by 39% when compared with control fish (mean ± S.E., 877·7 ± 73·1 v . 629·2 ± 53·4 mg O2 kg?1, d.f. = 9, P <  0·05), with the duration of the plateau phase increasing by 38% (4·7 ± 0·58 v . 3·4 ± 0·16 h, d.f. = 9, P <  0·05) and the contribution of the slow phase to the total EPOC increasing by 80% (173·9 ± 23·9 v . 312·5 ± 50·4 mg O2 kg?1, d.f. = 9, P  < 0·05). As a result, the combination of the plateau and slow phases of exercise‐trained fish increased by 47% compared with control fish (756·6 ± 71·4 v . 513·6 ± 43·1 mg O2 kg?1; d.f. = 9, P  = 0·01). To substantiate the hypothesis that the plateau and slow recovery phase of EPOC was related to general metabolic recovery following exhaustive exercise, the time‐course for recovery of SMR was compared with previously published metabolite recovery profiles. The final phase of metabolic recovery was temporally associated with the final phases of gluconeogenesis, lactate oxidation and muscle intracellular pH regulation. Therefore, the plasticity of the latter phase of EPOC agreed with the known effects of exercise training in fishes.  相似文献   

13.
Objective: To determine the effects of a multidisciplinary weight reduction program on body composition and energy expenditure (EE) in severely obese adolescents. Research Methods and Procedures: Twenty‐six severely obese adolescents, 12 to 16 years old [mean BMI: 33.9 kg/m2; 41.5% fat mass (FM)] followed a 9‐month weight reduction program including moderate energy restriction and progressive endurance and resistance training. Body composition was assessed by DXA, basal metabolic rate by indirect calorimetry, and EE by whole‐body indirect calorimetry with the same activity program over 36‐hour periods before starting and 9 months after the weight reduction period. Results: Adolescents gained (least‐square mean ± SE) 2.9 ± 0.2 cm in height, lost 16.9 ± 1.3 kg body weight (BW), 15.2 ± 0.9 kg FM, and 1.8 ± 0.5 kg fat‐free mass (FFM) (p < 0.001). Basal metabolic rate, sleeping, sedentary, and daily EE were 8% to 14% lower 9 months after starting (p < 0.001) and still 6% to 12% lower after adjustment for FFM (p < 0.05). Energy cost of walking decreased by 22% (p < 0.001). The reduction in heart rate during sleep and sedentary activities (?10 to ?13 beats/min), and walking (?20 to ?25 beats/min) (p < 0.001) resulted from both the decrease in BW and physical training. Discussion: A weight reduction program combining moderate energy restriction and physical training in severely obese adolescents resulted in great BW and FM losses and improvement of cardiovascular fitness but did not prevent the decline in EE even after adjustment for FFM.  相似文献   

14.
YANOVSKI, SUSAN ZELITCH, JAMES C REYNOLDS, ALLISON J BOYLE, JACK A YANOVSKI. Resting metabolic rate in African-American and Caucasian girls. Recent studies have found a lower resting metabolic rate (RMR) in African-American (AA) women with obesity as compared with Caucasian (C) women with obesity. It is unknown if this difference in RMR is seen in prepubertal girls or in those of average body weight. Therefore, we studied RMR in 21 AA and 24 C girls, ages 7–10, who were well matched for age, weight, body mass index (BMI), and pubertal status. All had BMI between 15% and 85% for age and race, based on data from the First National Health and Nutrition Examination Survey. Fat free mass (FFM) was measured by dual-energy X-ray absorptiometry. RMR was measured with a Deltatrac indirect calorimeter under controlled conditions after the subjects underwent an overnight fast. The slopes of the regression equations were similar for both groups (ρ=0.7). After adjustment for FEM, the AA girls had a significantly lower RMR than did the C girls (?92 ± 32 kcal/d, ρ=0.007 by analysis of covariance). This significance was maintained after exclusion of total body bone mineral content. These data suggest that normal-weight prepubertal AA girls may have reduced resting energy expenditure compared with C girls.  相似文献   

15.
Atypical antipsychotic medications like olanzapine (OLZ) induce weight gain and increase the risk of diabetes in patients with schizophrenia. The goal of this study was to assess potential mechanisms of OLZ‐induced weight gain and accompanying metabolic effects. Healthy, lean, male volunteers received OLZ and placebo (PBO) in a randomized, double‐blind, crossover study. In periods 1 and 2, subjects received OLZ (5 mg for 3 days then OLZ 10 mg for 12 days) or matching PBO separated by a minimum 12‐day washout. Twenty‐four hour food intake (FI), resting energy expenditure (REE), activity level, metabolic markers, and insulin sensitivity (IS) were assessed. In total, 30 subjects were enrolled and 21 completed both periods. Mean age and BMI were 27 years (range: 18–49 years) and 22.6 ± 2.2 kg/m2, respectively. Relative to PBO, OLZ resulted in a 2.62 vs. 0.08 kg increase in body weight (P < 0.001) and 18% (P = 0.052 or 345 kcal) increase in FI. Excluding one subject with nausea and dizziness on the day of OLZ FI measurement, the increase in FI was 547 kcal, (P < 0.05). OLZ increased REE relative to PBO (113 kcal/day, P = 0.003). Significant increases in triglycerides, plasminogen activator inhibitor‐I (PAI‐I), leptin, and tumor necrosis factor‐α (TNF‐α) were observed. No significant differences in activity level or IS were observed. This study provides evidence that OLZ pharmacology drives the early increase in weight through increased FI, without evidence of decreased energy expenditure (EE), activity level, or short‐term perturbations in IS.  相似文献   

16.
Objective: Resting metabolic rate (RMR) is known to be proportional to body weight and to follow allometric scaling principles. We hypothesized that RMR can be predicted from an allometric formula with weight alone as an independent variable. Research Methods and Procedures: An allometric, power‐law scaling model was fit to RMR measurements obtained from a cohort of patients being treated for weight loss. This, as well as many of the commonly used RMR‐predicting formulas, was tested for RMR prediction ability against a large publicly available RMR database. Bland‐Altman analysis was used to determine the efficacy of the various RMR‐predicting formulas in obese and non‐obese subjects. Results: Power law modeling of the RMR—body weight relationship yielded the following RMR‐predicting equations: RMRWomen = 248 × Weight0.4356 ? (5.09 × Age) and RMRMen = 293 × Weight0.4330 ? (5.92 × Age). Partial correlation analysis revealed that age significantly contributed to RMR variance and was necessary to include in RMR prediction formulas. The James, allometric, and Harris‐Benedict formulas all yielded reasonable RMR predictions for normal sized and obese subjects. Discussion: A simple power formula relating RMR to body weight can be a reasonable RMR estimator for normal‐sized and obese individuals but still requires an age term and separate formulas for men and women for the best possible RMR estimates. The apparent performance of RMR‐predicting formulas is highly dependent on the methodology employed to compare the various formulas.  相似文献   

17.
Objective: To assess the validity of a new hand‐held indirect calorimeter [MedGem (MG)] in the determination of resting energy expenditure (REE; kilocalories per day) in children. Research Methods and Procedures: One hundred male (n = 54) and female (n = 46) children (10.6 ± 3.2 years, 43.9 ± 19.0 kg, 146.1 ± 18.8 cm, 19.6 ± 4.9 kg/m2) participated. Children arrived at the University of Oklahoma body composition laboratory between 5:30 am and 6:15 am after an overnight fast. On arrival, subjects voided and remained quietly in the supine position for 15 minutes before testing. REE was measured by indirect calorimetry (in random order), with both the MG (sitting upright) and the criterion Delta Trac II (DT) (supine). Data are reported as the mean ± standard deviation. Results: The mean MG REE (1452 ± 355 kcal/d) was significantly higher than DT REE (1349 ± 296 kcal/d, p < 0.001). Bland‐Altman analysis revealed a mean bias (MG ? DT) of 104 kcal/d, with limits of agreement of ?241 to +449 kcal/d. To examine the difference in subject positioning, an independent sample of 38 subjects performed the MG in its normal position (sitting) and holding the MG in a supine position. REE by the MG in the sitting position (1475 ± 350 kcal/d) was significantly (p < 0.05) higher than the MG in the supine position (1419 ± 286 kcal/d). Discussion: The mean difference in REE between MG and DT was relatively small (103 kcal/d) but significant; however, a portion of this difference may have been related to differences in subject positioning. These preliminary data indicate that the MG shows promise as a valid tool in the assessment of REE in children.  相似文献   

18.
The aim of this study was to investigate the ability of a novel activity monitor designed to be minimally obtrusive in predicting free‐living energy expenditure. Subjects were 18 men and 12 women (age: 41 ± 11 years, BMI: 24.4 ± 3 kg/m2). The habitual physical activity was monitored for 14 days using a DirectLife triaxial accelerometer for movement registration (TracmorD) (Philips New Wellness Solutions, Lifestyle Incubator, the Netherlands). TracmorD output was expressed as activity counts per day (Cnts/d). Simultaneously, total energy expenditure (TEE) was measured in free living conditions using doubly labeled water (DLW). Activity energy expenditure (AEE) and the physical activity level (PAL) were determined from TEE and sleeping metabolic rate (SMR). A multiple‐linear regression model predicted 76% of the variance in TEE, using as independent variables SMR (partial‐r2 = 0.55, P < 0.001), and Cnts/d (partial r2 = 0.21, P < 0.001). The s.e. of TEE estimates was 0.9 MJ/day or 7.4% of the average TEE. A model based on body mass (partial‐r2 = 0.31, P < 0.001) and Cnts/d (partial‐r2 = 0.23, P < 0.001) predicted 54% of the variance in TEE. Cnts/d were significantly and positively associated with AEE (r = 0.54, P < 0.01), PAL (r = 0.68, P < 0.001), and AEE corrected by body mass (r = 0.71, P < 0.001). This study showed that the TracmorD is a highly accurate instrument for predicting free‐living energy expenditure. The miniaturized design did not harm the ability of the instrument in measuring physical activity and in determining outcome parameters of physical activity such as TEE, AEE, and PAL.  相似文献   

19.
Seven nonobese adult females (40 +/- 8 years) were studied in a room calorimeter on a day that resistance exercise (REX) was performed (4 sets of 10 exercises) and on a nonexercise control day (CON). Twenty-four-hour energy expenditure (EE) on the REX day (mean +/- SD, 2,328 +/- 327 kcal.d(-1)) was greater than CON (2,001 +/- 369 kcal.d(-1), p < 0.001). The net increase in EE during and immediately after (30 minutes) exercise represented 76 +/- 12% of the total increase in 24-hour EE. Twenty four-hour RQ on the REX day (0.86 +/- 0.06) did not differ from CON (0.87 +/- 0.02). Twenty four-hour carbohydrate oxidation was elevated on the REX day, but 24-hour fat and protein oxidation were not different. Thus, in women, the increase in EE due to resistance exercise is largely seen during and immediately after the exercise. The increased energy demand is met by increased carbohydrate oxidation, with no increase in 24-hour fat oxidation.  相似文献   

20.
Resting metabolic rate (RMR) is a potentially important axis of physiological adaptation to the thermal environment. However, our understanding of the causes and consequences of individual variation in RMR in the wild is hampered by a lack of data, as well as analytical challenges. RMR measurements in the wild are generally characterized by large measurement errors and a strong dependency on mass. The latter is problematic when assessing the ability of RMR to evolve independently of mass. Mixed models provide a powerful and flexible tool to tackle these challenges, but they have rarely been used to estimate repeatability of mass‐independent RMR from field data. We used respirometry to obtain repeated measurements of RMR in a long‐term study population of snow voles (Chionomys nivalis) inhabiting an environment subject to large circadian and seasonal fluctuations in temperature. Using both uni‐ and bivariate mixed models, we quantify individual repeatability in RMR and decompose repeatability into mass‐dependent and mass‐independent components, while accounting for measurement error. RMR varies among individuals, that is, is repeatable (R = .46) and strongly co‐varies with BM. Indeed, much of the repeatability of RMR is attributable to individual variation in BM, and the repeatability of mass‐independent RMR is reduced by 41% to R = .27. These empirical results suggest that the evolutionary potential of RMR independent of mass may be severely constrained. This study illustrates how to leverage bivariate mixed models to model field data for metabolic traits, correct for measurement error and decompose the relative importance of mass‐dependent and mass‐independent physiological variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号