首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
骨关节炎(OA)是最常见的慢性退行性骨关节疾病,目前对骨关节炎的治疗还没有特效疗法。间充质干细胞(MSC)对软骨修复有较好的疗效,间充质干细胞来源外泌体可能在这一治疗过程中发挥重要作用。外泌体是细胞间的通讯载体,能在细胞间传递生物活性脂质、核酸以及蛋白质等生物活性分子对骨关节炎产生一定影响。本文就探讨间充质干细胞来源的外泌体治疗骨关节炎过程中的作用机制与可行性做出综述。  相似文献   

2.
骨关节炎是一种涉及所有关节成分(包括关节软骨、软骨下骨、滑膜、韧带、关节囊和关节周围肌肉)的关节退行性疾病,会导致严重的残疾,其中最常见的是膝骨关节炎(knee osteoarthritis,KOA)。外泌体是一种由不同细胞分泌的直径为40~100 nm的胞外囊泡,可以传递DNA、微小RNA、mRNA、蛋白质等多种物质,并通过多种方式进行细胞间的信息传递和功能调节。间充质干细胞(mesenchymal stem cells,MSCs)可以从骨髓、脂肪、滑膜及外周血等组织分离,是一类具有多向分化潜能的祖细胞,以干细胞为基础的疗法可以修复软骨损伤,对抗KOA的发展,间充质干细胞能够分泌多种营养因子来调节受损的微环境,其中间充质干细胞来源的外泌体被认为在KOA炎症反应及软骨细胞代谢中发挥着重要的作用,其能够调节膝骨关节微环境中B细胞、T细胞、滑膜细胞、软骨细胞代谢及其细胞外基质的分解与合成平衡,维持软骨稳态。近期有多项研究表明,不同组织来源的间充质干细胞外泌体对骨关节炎均有明确的治疗作用,本文就MSCs来源的外泌体治疗KOA的具体机制进行综述,以期对干细胞治疗KOA提供理论依据。  相似文献   

3.
血管新生(angiogenesis)是机体内一个复杂的生理学和病理学过程,是治疗缺血性疾病的重要措施。大量实验研究已表明间充质干细胞(mesenchymal stem cells, MSCs)等干细胞移植可促进心肌梗死后血管新生,近期研究证实这一作用可能主要通过分泌外泌体形式介导。外泌体(exosome)通过传递与血管新生相关微RNA(microRNA, mi RNA)或蛋白质等生物活性物质,调控靶器官中与血管新生相关通路的基因表达,提高内皮细胞在缺血缺氧环境下的存活、迁移、成管能力,促进心肌梗死区域血管新生。通过基因修饰手段增强外泌体介导的心脏修复作用,以及将外泌体与生物活性肽结合形成工程外泌体来靶向缺血心肌治疗,是目前外泌体在心血管领域的热点研究方向。本文结合近年外泌体研究的相关文献,就MSCs来源外泌体促进心肌梗死血管新生的具体机制及现状研究作一综述。  相似文献   

4.
丁庆凯  唐旭东 《生命科学》2023,(8):1043-1051
外泌体是具有细胞间信号传递生物学功能的一种脂质双分子层囊泡,其内包含RNA、DNA、蛋白质等生物分子,近年来其在疾病发生发展、早期诊断和治疗等方面的作用被广泛研究。环状RNA (circular RNA, circRNA)是一类可以存在于外泌体中的单链闭合环状RNA。越来越多的研究表明外泌体源性circRNA与肺癌的发生发展密切相关,为了更好地了解外泌体源性circRNA在肺癌病理进程中的作用,本文重点讲述了外泌体源性circRNA在肺癌增殖、侵袭与转移、免疫逃逸和耐药中的作用,以及其在肺癌诊断、预后评估及治疗方面的研究进展。  相似文献   

5.
外泌体是一种小的单层膜结构的细胞外小囊泡,可在细胞间传递蛋白质、脂质、mRNA和miRNA等物质。间充质干细胞来源的外泌体可以作为无细胞系统减少心肌梗死后梗死面积、促进心肌再生并改善心功能,其作用机制可能与激活抗炎和促存活通路、调控细胞自噬和促进血管新生等有关。通过表面修饰或改造来源细胞以提高外泌体的靶向性或改变其内含物质值得深入研究。  相似文献   

6.
骨关节炎(osteoarthritis, OA)是一种常见的退行性关节疾病。研究表明,TAK1的抑制剂小分子药物5Z-7-Oxozeaenol(5Z-7),用于治疗OA时直接将药物进行频繁关节腔注射,药物的治疗效果有限。本研究选取小鼠胚胎瘤成软骨细胞系(ATDC5),是一种理想的成软骨细胞模型,其增殖速度和培养稳定性均优于间充质干细胞,用于提取外泌体作为药物的载体。本研究提取ATDC5来源的外泌体(ATDC5-Exos),包载药物5Z-7。在炎性细胞因子诱导大鼠软骨细胞模型中,载药外泌体可以促进合成代谢相关基因Col2a1、Sox9的表达,抑制分解代谢相关基因Adamts5、Mmp13的表达。本研究使用8周龄雄性小鼠,行前交叉韧带离断术(ACLT)诱导OA小鼠模型,关节腔注射外泌体或载药外泌体治疗,取膝关节石蜡切片进行组织学评估。结果显示,载药外泌体可缓解创伤后OA模型的病理表型。结合Micro-CT影像学结果显示,治疗能改善ACLT术后膝关节软骨下骨骨小梁的流失和骨赘减少,关节表面更为光滑。本研究证实,ATDC5-Exos包载药物5Z-7在体内和体外实验中均可缓解OA表型。外泌体包载...  相似文献   

7.
外泌体是直径为30~150 nm的细胞外囊泡,内含细胞来源的核酸和蛋白质等生物活性分子,在细胞间通讯过程中发挥重要作用。间充质干细胞来源的外泌体可有效转运mRNA、microRNA及蛋白质等生物活性物质,具有促进血管生成、减轻炎症反应、调节自噬水平、抑制细胞凋亡和焦亡等重要生物学功能,其在改善神经系统疾病预后方面有着良好的临床应用前景。该文就间充质干细胞来源的外泌体对缺血性脑卒中的神经保护作用及机制进行了综述,并讨论了靶向修饰的外泌体在治疗缺血性脑卒中的应用,以期为后续研究提供参考。  相似文献   

8.
9.
10.
外泌体是细胞外膜质纳米囊泡,将蛋白质、核酸(DNA和RNA)转运到靶细胞中,介导局部和系统的细胞间通信,从而改变受体细胞的行为.这些小泡在许多生物功能中发挥重要作用,如脂肪合成、免疫调节、神经再生和肿瘤调节等.脂肪间充质干细胞目前被认为是细胞治疗和再生医学领域中一种功能丰富的工具,可产生和分泌多种外泌体,继承细胞的多种...  相似文献   

11.
Mesenchymal stem cells can be replaced by exosomes for the treatment of inflammatory diseases, injury repair, degenerative diseases, and tumors. Exosomes are small vesicles rich in a variety of nucleic acids [including messenger RNA, Long non-coding RNA, microRNA (miRNA), and circular RNA], proteins, and lipids. Exosomes can be secreted by most cells in the human body and are known to play a key role in the communication of information and material transport between cells. Like exosomes, miRNAs were neglected before their role in various activities of organisms was discovered. Several studies have confirmed that miRNAs play a vital role within exosomes. This review focuses on the specific role of miRNAs in MSC-derived exosomes (MSC-exosomes) and the methods commonly used by researchers to study miRNAs in exosomes. Taken together, miRNAs from MSC-exosomes display immense potential and practical value, both in basic medicine and future clinical applications, in treating several diseases.  相似文献   

12.

Background

Exosomes are membrane nano-vesicles secreted by a multitude of cells that harbor biological constituents such as proteins, lipids, mRNA and microRNA. Exosomes can potentially transfer their cargo to other cells, implicating them in many patho-physiological processes. Mesenchymal stem cells (MSCs), residents of the bone marrow and metastatic niches, potentially interact with cancer cells and/or their derived exosomes. In this study, we investigated whether exosomes derived from adult T-cell leukemia/lymphoma (ATL) cells act as intercellular messengers delivering leukemia-related genes that modulate the properties of human MSCs in favor of leukemia. We hypothesized that the cargo of ATL-derived exosomes is transferred to MSCs and alter their functional behavior to support the establishment of the appropriate microenvironment for leukemia.

Results

We showed that both ATL cells (C81 and HuT-102) and patient-derived cells released Tax-containing exosomes. The cargo of HuT-102-derived exosomes consisted of miR-21, miR-155 and vascular endothelial growth factor. We demonstrated that HuT-102-derived exosomes not only deliver Tax to recipient MSCs, but also induce NF-κB activation leading to a change in cellular morphology, increase in proliferation and the induction of gene expression of migration and angiogenic markers.

Conclusions

This study demonstrates that ATL-derived exosomes deliver Tax and other leukemia-related genes to MSCs and alter their properties to presumably create a more conducive milieu for leukemia. These findings highlight the contribution of leukemia-derived exosomes in cellular transformation and their potential value as biomarkers and targets in therapeutic strategies.
  相似文献   

13.
Mesenchymal stem cells (MSCs) are multipotent stem cells with marked potential for regenerative medicine because of their strong immunosuppressive and regenerative abilities. The therapeutic effects of MSCs are based in part on their secretion of biologically active factors in extracellular vesicles known as exosomes. Exosomes have a diameter of 30-100 nm and mediate intercellular communication and material exchange. MSC-derived exosomes (MSC-Exos) have potential for cell-free therapy for diseases of, for instance, the kidney, liver, heart, nervous system, and musculoskeletal system. Hence, MSC-Exos are an alternative to MSC-based therapy for regenerative medicine. We review MSC-Exos and their therapeutic potential for a variety of diseases and injuries.  相似文献   

14.
目的 探讨间充质干细胞外泌体(MSC-Exo)对海马星形胶质细胞活化的抑制作用.方法 实验通过超速离心法提取脐带MSC-Exo,并使用PKH-26染料标记;MSC-Exo预处理原代海马星形胶质细胞后使用脂多糖(LPS)诱导细胞活化,并分为对照组、LPS组和LPS+MSC-Exo组,进而行免疫细胞化学检测胶质纤维酸性蛋白...  相似文献   

15.
Dendritic cells (DCs) orchestrate innate inflammatory responses and adaptive immunity through T-cell activation via direct cell–cell interactions and/or cytokine production. Tolerogenic DCs (tolDCs) help maintain immunological tolerance through the induction of T-cell unresponsiveness or apoptosis, and generation of regulatory T cells. Mesenchymal stromal cells (MSCs) are adult multipotent cells located within the stroma of bone marrow (BM), but they can be isolated from virtually all organs. Extracellular vesicles and exosomes are released from inflammatory cells and act as messengers enabling communication between cells. To investigate the effects of MSC-derived exosomes on the induction of mouse tolDCs, murine adipose-derived MSCs were isolated from C57BL/6 mice and exosomes isolated by ExoQuick-TC kits. BM-derived DCs (BMDCs) were prepared and cocultured with MSCs-derived exosomes (100 μg/ml) for 72 hr. Mature BMDCs were derived by adding lipopolysaccharide (LPS; 0.1μg/ml) at Day 8 for 24 hr. The study groups were divided into (a) immature DC (iDC, Ctrl), (b) iDC + exosome (Exo), (c) iDC + LPS (LPS), and (d) iDC + exosome + LPS (EXO + LPS). Expression of CD11c, CD83, CD86, CD40, and MHCII on DCs was analyzed at Day 9. DC proliferation was assessed by coculture with carboxyfluorescein succinimidyl ester-labeled BALB/C-derived splenocytes p. Interleukin-6 (IL-6), IL-10, and transforming growth factor-β (TGF-β) release were measured by enzyme-linked immunosorbent assay. MSC-derived exosomes decrease DC surface marker expression in cells treated with LPS, compared with control cells ( ≤ .05). MSC-derived exosomes decrease IL-6 release but augment IL-10 and TGF-β release (p ≤ .05). Lymphocyte proliferation was decreased (p ≤ .05) in the presence of DCs treated with MSC-derived exosomes. CMSC-derived exosomes suppress the maturation of BMDCs, suggesting that they may be important modulators of DC-induced immune responses.  相似文献   

16.
17.
To explore whether granulosa cell (GC)-derived exosomes (GC-Exos) and follicular fluid-derived exosomes (FF-Exos) have functional similarities in follicle development and to establish relevant experiments to validate whether GC-Exos could serve as a potential substitute for follicular fluid-derived exosomes to improve folliculogenesis. GC-Exos were characterized. MicroRNA (miRNA) profiles of exosomes from human GCs and follicular fluid were analyzed in depth. The signature was associated with folliculogenesis, such as phosphatidylinositol 3 kinases-protein kinase B signal pathway, mammalian target of rapamycin signal pathway, mitogen-activated protein kinase signal pathway, Wnt signal pathway, and cyclic adenosine monophosphate signal pathway. A total of five prominent miRNAs were found to regulate the above five signaling pathways. These miRNAs include miRNA-486-5p, miRNA-10b-5p, miRNA-100-5p, miRNA-99a-5p, and miRNA-21-5p. The exosomes from GCs and follicular fluid were investigated to explore the effect on folliculogenesis by injecting exosomes into older mice. The proportion of follicles at each stage is counted to help us understand folliculogenesis. Exosomes derived from GCs were isolated successfully. miRNA profiles demonstrated a remarkable overlap between the miRNA profiles of FF-Exos and GC-Exos. The shared miRNA signature exhibited a positive influence on follicle development and activation. Furthermore, exosomes derived from GCs and follicular fluid promoted folliculogenesis in older female mice. Exosomes derived from GCs had similar miRNA profiles and follicle-promoting functions as follicular fluid exosomes. Consequently, GC-Exos are promising for replacing FF-Exos and developing new commercial reagents to improve female fertility.  相似文献   

18.
《Cytotherapy》2023,25(4):353-361
Fractures in bone, a tissue critical in protecting other organs, affect patients’ quality of life and have a heavy economic burden on societies. Based on regenerative medicine and bone tissue engineering approaches, stem cells have become a promising and attractive strategy for repairing bone fractures via differentiation into bone-forming cells and production of favorable mediators. Recent evidence suggests that stem cell-derived exosomes could mediate the therapeutic effects of their counterpart cells and provide a cell-free therapeutic strategy in bone repair. Since bone is a highly vascularized tissue, coupling angiogenesis and osteogenesis is critical in bone fracture healing; thus, developing therapeutic strategies to promote angiogenesis will facilitate bone regeneration and healing. To this end, stem cell-derived exosomes with angiogenic potency have been developed to improve fracture healing. This review summarizes the effects of stem cell-derived exosomes on the repair of bone tissue, focusing on the angiogenesis process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号