首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Contradictory findings regarding the gene expression of the main lipogenic enzymes in human adipose tissue depots have been reported. In this cross‐sectional study, we aimed to evaluate the mRNA expression of fatty acid synthase (FAS) and acetyl‐CoA carboxilase (ACC) in omental and subcutaneous (SC) fat depots from subjects who varied widely in terms of body fat mass. FAS and ACC gene expression were evaluated by real time‐PCR in 188 samples of visceral adipose tissue which were obtained during elective surgical procedures in 119 women and 69 men. Decreased sex‐adjusted FAS (?59%) and ACC (?49%) mRNA were found in visceral adipose tissue from obese subjects, with and without diabetes mellitus type 2 (DM‐2), compared with lean subjects (both P < 0.0001). FAS mRNA was also decreased (?40%) in fat depots from overweight subjects (P < 0.05). Indeed, FAS mRNA was significantly and positively associated with ACC gene expression (r = 0.316, P < 0.0001) and negatively with BMI (r = ?0.274), waist circumference (r = ?0.437), systolic blood pressure (r = ?0.310), serum glucose (r = ?0.277), and fasting triglycerides (r = ?0.226), among others (all P < 0.0001). Similar associations were observed for ACC gene expression levels. In a representative subgroup of nonobese (n = 4) and obese women (n = 6), relative FAS gene expression levels significantly correlated (r = 0.657, P = 0.034; n = 10) with FAS protein values. FAS protein levels were also inversely correlated with blood glucose (r = ?0.640, P = 0.046) and fasting triglycerides (r = ?0.832, P = 0.010). In conclusion, the gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue from obese subjects.  相似文献   

3.
4.
Adiponectin is an adipocyte-derived hormone associated with insulin sensitivity and atherosclerotic risk. As central rather than gluteofemoral fat is known to increase the risk of type 2 diabetes and cardiovascular disease, we investigated the mRNA and protein expression of adiponectin in human adipose tissue depots. RNA was extracted from 46 human adipose tissue samples from non-diabetic subjects aged 44.33 +/- 12.4 with a BMI of 28.3 +/- 6.0 (mean +/- SD). The samples were as follows: 21 abdominal subcutaneous, 13 omentum, 6 thigh; samples were also taken from diabetic subjects aged 66.6 +/- 7.5 with BMI 28.9 +/- 3.17; samples were: 6 abdominal subcutaneous; 3 thigh. Quantitative PCR and Western analysis was used to determine adiponectin content. Protein content studies determined that when compared with non-diabetic abdominal subcutaneous adipose tissue (Abd Sc AT) (values expressed as percentage relative to Abd Sc AT -100 %). Adiponectin protein content was significantly lower in non-diabetic omental AT (25 +/- 1.6 %; p < 0.0001, n = 6) and in Abd Sc AT from diabetic subjects (36 +/- 1.5 %; p < 0.0001, n = 4). In contrast, gluteal fat maintained high adiponectin protein content from non-diabetic patients compared with diabetic patients. An increase in BMI was associated with lower adiponectin protein content in obese ND Abd Sc AT (25 +/- 0.4 %; p < 0.0001). These findings were in agreement with the mRNA expression data. In summary, this study indicates that adiponectin protein content in non-diabetic subjects remains high in abdominal subcutaneous fat, including gluteal fat, explaining the high serum adiponectin levels in these subjects. Omental fat, however, expresses little adiponectin. Furthermore, abdominal and gluteal subcutaneous fat appears to express significantly less adiponectin once diabetic status is reached. In conclusion, the adipose tissue depot-specific expression of adiponectin may influence the pattern of serum adiponectin concentrations and subsequent disease risk.  相似文献   

5.
6.
The objective of this study was to establish the relationship between the plasminogen activator inhibitor-1 (PAI-1), antithrombin-III (ATIII), fibrinogen, and white blood cell (WBC) levels in severely obese patients. We analyzed various plasma parameters implicated in the intrinsic and extrinsic coagulation pathway from 34 severely obese patients before and 1, 6, and 12 months after gastric bypass. In obese people, ATIII, fibrinogen, and WBC levels were in the upper limit of the normal range, and all were higher and significantly different from nonobese people. After bariatric surgery, the ATIII level continued to be high during the first month and increased until 12 months, while fibrinogen decreased only at that time. PAI-1 plasma protein and PAI-1 mRNA levels in liver and adipose tissue show similar profiles and had a strong positive correlation (r = 0.576, P = 0.0003 in liver; r = 0.433, P = 0.0004 in adipose tissue). They were higher in obese patients compared with nonobese control, but tended to recover normal values 1 month after surgery. Thus, the liver and adipose tissue could be an important source of PAI-1 protein in plasma. Gastric bypass surgery leads to a normalization of the hematological profile and a decrease in PAI-1 levels, which entails a decrease of risk for thromboembolism in severely obese.  相似文献   

7.
Diacylglycerol acyltransferase (DGAT) could be a rate limiting step in triglyceride (TG) synthesis as it is the final step in this pathway. As such, between depot differences in DGAT activity could influence regional fat storage. DGAT activity and in vitro rates of direct free fatty acid (FFA) storage were measured in abdominal subcutaneous and omental adipose tissue samples from 12 nonobese (BMI <30 kg/m2) and 23 obese men and women (BMI >30 kg/m2) undergoing elective surgery. DGAT activity was greater in omental than in abdominal subcutaneous adipose tissue from nonobese patients (2.0 ± 0.9 vs. 0.9 ± 0.3 pmol/min/mg lipid, respectively, P = 0.003), but not from obese patients (1.4 ± 0.6 vs. 1.7 ± 0.7 pmol/min/mg lipid, respectively, P = 0.10). DGAT activity per unit adipose weight was negatively correlated with adipocyte size (P < 0.01) and positively correlated with direct FFA storage in omental (P < 0.001) but not in abdominal subcutaneous fat. Tissue DGAT activity varies as a function of adipocyte size, but this relationship differs between visceral and abdominal subcutaneous fat in obese and nonobese humans. Our results are consistent with the hypothesis that interindividual variations in DGAT activity may be an important regulatory step in visceral adipose tissue FFA uptake/storage.  相似文献   

8.
Hepcidin, the body's main regulator of systemic iron homeostasis, is upregulated in response to inflammation and is thought to play a role in the manifestation of iron deficiency (ID) observed in obese populations. We determined systemic hepcidin levels and its association with body mass, inflammation, erythropoiesis, and iron status in premenopausal obese and nonobese women (n = 20/group) matched for hemoglobin (Hb). The obese participants also had liver and abdominal visceral and subcutaneous adipose tissue assessed for tissue iron accumulation and hepcidin mRNA expression. Despite similar Hb levels, the obese women had significantly higher serum hepcidin (88.02 vs. 9.70 ng/ml; P < 0.0001) and serum transferrin receptor (sTfR) (P = 0.001) compared to nonobese. In the obese women hepcidin was not correlated with serum iron (r = ?0.02), transferrin saturation (Tsat) (r = 0.17) or sTfR (r = ?0.12); in the nonobese it was significantly positively correlated with Tsat (r = 0.70) and serum iron (r = 0.58), and inversely with sTfR (r = ?0.63). Detectable iron accumulation in the liver and abdominal adipose tissue of the obese women was minimal. Liver hepcidin mRNA expression was ~700 times greater than adipose tissue production and highly correlated with circulating hepcidin levels (r = 0.61). Serum hepcidin is elevated in obese women despite iron depletion, suggesting that it is responding to inflammation rather than iron status. The source of excess hepcidin appears to be the liver and not adipose tissue. The ID of obesity is predominantly a condition of a true body iron deficit rather than maldistribution of iron due to inflammation. However, these findings suggest inflammation may perpetuate this condition by hepcidin‐mediated inhibition of dietary iron absorption.  相似文献   

9.
The development of metabolic complications of obesity has been associated with the existence of depot-specific differences in the biochemical properties of adipocytes. The aim of this study was to investigate, in severely obese men and women, both gender- and depot-related differences in lipoprotein lipase (LPL) expression and activity, as well as the involvement of endocrine and biometric factors and their dependence on gender and/or fat depot. Morbidly obese, nondiabetic, subjects (9 men and 22 women) aged 41.1+/-1.9 years, with a body mass index (BMI) of 54.7+/-1.7 kg/m(2) who had undergone abdominal surgery were studied. Both expression and activity of LPL and leptin expression were determined in adipose samples from subcutaneous and visceral fat depots. In both men and women, visceral fat showed higher LPL mRNA levels as well as lower ob mRNA levels and tissue leptin content than the subcutaneous one. In both subcutaneous and visceral adipose depots, women exhibited higher protein content, decreased fat cell size and lower LPL activity than men. The gender-related differences found in abdominal fat LPL activity could contribute to the increased risk for developing obesity-associated diseases shown by men, even in morbid obesity, in which the massive fat accumulation could mask these differences. Furthermore, the leptin content of fat depots as well as plasma insulin concentrations appear in our population as the main determinants of adipose tissue LPL activity, adjusted by gender, depot and BMI.  相似文献   

10.
11.
12.
A previous expression profiling of visceral adipose tissue (VAT) revealed that the immune response gene interferon-gamma-inducible protein 30 (IFI30) gene was 1.72-fold more highly expressed in non-diabetic severely obese men with the metabolic syndrome as compared to those without. Given the importance of low-grade inflammation in obesity-related metabolic complications, we hypothesized that variants in the IFI30 gene are associated with cardiovascular disease (CVD) risk factors. A detailed genetic investigation was performed at the IFI30 locus by sequencing its promoter, exons and intron–exon junction boundaries using DNA of 25 severely obese men. Among the 21 sequence-derived single-nucleotide polymorphisms (SNPs), 5 tagged SNPs (covering 100% of the common SNPs identified) were genotyped in two independent samples of severely obese patients (total n = 1,283). Using a multistage experimental design, chi-square analyses and logistic regressions were performed to compare genotype frequencies and compute odds-ratios (OR) for low and high CVD risk groups (dyslipidemia, hyperglycemia/diabetes and hypertension). A significant association was observed with the non-synonymous SNP rs11554159 (p.R76Q), where GA individuals showed lower risk (OR = 0.67; P = 0.0009) for hyperglycemia/diabetes as compared to homozygotes for the major allele (GG). No association was observed between rs11554159 and VAT IFI30 mRNA levels (P = 0.81), and the expression levels were not correlated with fasting plasma glucose levels (P = 0.31) in 112 non-diabetic severely obese women. The localization of rs11554159 near the active site of IFI30 suggests a functional effect of this SNP. This study showed a novel association between rs11554159 (p.R76Q) polymorphism at the IFI30 locus and the risk of hyperglycemia/diabetes in severely obese individuals.  相似文献   

13.
14.
15.
16.
Visceral fat has been linked to insulin resistance and type 2 diabetes mellitus (T2DM); and emerging data links RBP4 gene expression in adipose tissue with insulin resistance. In this study, we examined RBP4 protein expression in omental adipose tissue obtained from 24 severely obese patients undergoing bariatric surgery, and 10 lean controls (4 males/6 females, BMI = 23.2 ± 1.5 kg/m2) undergoing elective abdominal surgeries. Twelve of the obese patients had T2DM (2 males/10 females, BMI: 44.7 ± 1.5 kg/m2) and 12 had normal glucose tolerance (NGT: 4 males/8 females, BMI: 47.6 ± 1.9 kg/m2). Adipose RBP4, glucose transport protein‐4 (GLUT4), and p85 protein expression were determined by western blot. Blood samples from the bariatric patients were analyzed for serum RBP4, total cholesterol, triglycerides, and glucose. Adipose RBP4 protein expression (NGT: 11.0 ± 0.6; T2DM: 11.8 ± 0.7; lean: 8.7 ± 0.8 arbitrary units) was significantly increased in both NGT (P = 0.03) and T2DM (P = 0.005), compared to lean controls. GLUT4 protein was decreased in both NGT (P = 0.02) and T2DM (P = 0.03), and p85 expression was increased in T2DM subjects, compared to NGT (P = 0.03) and lean controls (P = 0.003). Regression analysis showed a strong correlation between adipose RBP4 protein and BMI for all subjects, as well as between adipose RBP4 and fasting glucose levels in T2DM subjects (r = 0.76, P = 0.004). Further, in T2DM, serum RBP4 was correlated with p85 expression (r = 0.68, P = 0.01), and adipose RBP4 protein trended toward an association with p85 protein (r = 0.55, P = 0.06). These data suggest that RBP4 may regulate adiposity, and p85 expression in obese‐T2DM, thus providing a link to impaired insulin signaling and diabetes in severely obese patients.  相似文献   

17.
Objective: Our main objective was to compare the regulation of cortisol production within omental (Om) and abdominal subcutaneous (Abd sc) human adipose tissue. Methods and Procedures: Om and Abd sc adipose tissue were obtained at surgery from subjects with a wide range of BMI. Hydroxysteroid dehydrogenase (HSD) activity (3H‐cortisone and 3H‐cortisol interconversion) and expression were measured before and after organ culture with insulin and/or dexamethasone. Results: Type 1 HSD (HSD1) mRNA and reductase activity were mainly expressed within adipocytes and tightly correlated with adipocyte size within both depots. There was no depot difference in HSD1 expression or reductase activity, while cortisol inactivation and HSD2 mRNA expression (expressed in stromal cells) were higher in Om suggesting higher cortisol turnover in this depot. Culture with insulin decreased HSD reductase activity in both depots. Culture with dexamethasone plus insulin compared to insulin alone increased HSD reductase activity only in the Om depot. This depot‐specific increase in reductase activity could not be explained by an alteration in HSD1 mRNA or protein, which was paradoxically decreased. However, in Om only, hexose‐6‐phosphate dehydrogenase (H6PDH) mRNA levels were increased by culture with dexamethasone plus insulin compared to insulin alone, suggesting that higher nicotinamide adenine dinucleotide phosphate‐oxidase (NADPH) production within the endoplasmic reticulum (ER) contributed to the higher HSD reductase activity. Discussion: We conclude that in the presence of insulin, glucocorticoids cause a depot‐specific increase in the activation of cortisone within Om adipose tissue, and that this mechanism may contribute to adipocyte hypertrophy and visceral obesity.  相似文献   

18.
Fatty acid transporter protein (FATP)-1 mRNA expression was investigated in skeletal muscle and in subcutaneous abdominal adipose tissue of 17 healthy lean, 13 nondiabetic obese, and 16 obese type 2 diabetic subjects. In muscle, FATP-1 mRNA levels were higher in lean women than in lean men (2.2 +/- 0.1 vs. 0.6 +/- 0.2 amol/microg total RNA, P < 0.01). FATP-1 mRNA expression was decreased in skeletal muscle in obese women both in nondiabetic and in type 2 diabetic patients (P < 0.02 vs. lean women in both groups), and in all women there was a negative correlation with basal FATP-1 mRNA level and body mass index (r = -0.74, P < 0.02). In men, FATP-1 mRNA was expressed at similar levels in the three groups both in skeletal muscle (0.6 +/- 0.2, 0.6 +/- 0.2, and 0.8 +/- 0.2 amol/microg total RNA in lean, obese, and type 2 diabetic male subjects) and in adipose tissue (0.9 +/- 0.2 amol/microg total RNA in the 3 groups). Insulin infusion (3 h) reduced FATP-1 mRNA levels in muscle in lean women but not in lean men. Insulin did not affect FATP-1 mRNA expression in skeletal muscle in obese nondiabetic or in type 2 diabetic subjects nor in subcutaneous adipose tissue in any of the three groups. These data show a gender-related difference in the expression of the fatty acid transporter FATP-1 in skeletal muscle of lean individuals and suggest that changes in FATP-1 expression may not contribute to a large extent to the alterations in fatty acid uptake in obesity and/or type 2 diabetes.  相似文献   

19.
Lactoferrin is an innate immune system protein with anti‐inflammatory and antioxidant activities. We aimed to evaluate circulating lactoferrin levels in association with lipid concentrations, and parameters of oxidative stress and inflammation in subjects with morbid obesity after an acute fat intake. The effects of a 60 g fat overload on circulating lactoferrin and antioxidant activities were evaluated in 45 severely obese patients (15 men and 30 women, BMI 53.4 ± 7.2 kg/m2). The change in circulating lactoferrin after fat overload was significantly and inversely associated with the free fatty acid (FFA) change. In those subjects with the highest increase in lactoferrin (in the highest quartile), high‐density lipoprotein (HDL)‐cholesterol decreased after fat overload to a lesser extent (P = 0.03). In parallel to lipid changes, circulating lactoferrin concentrations were inversely linked to the variations in catalase (CAT) and glutathione reductase (GSH‐Rd). Baseline circulating lactoferrin concentration was also inversely associated with the absolute change in antioxidant activity after fat overload, and with the change in C‐reactive protein (CRP). Furthermore, those subjects with higher than the median value of homeostasis model assessment of insulin secretion (HOMAIS) had significantly increased lactoferrin concentration after fat load (885 ± 262 vs. 700 ± 286 ng/ml, P = 0.03). Finally, we further explored the action of lactoferrin in vitro. Lactoferrin (10 µmol/l) led to significantly lower triglyceride (TG) concentrations and lactate dehydrogenase activity (as expression of cell viability) in the media from adipose explants obtained from severely obese subjects. In conclusion, circulating lactoferrin concentrations, both at baseline and fat‐stimulated, were inversely associated with postprandial lipemia, and parameters of oxidative stress and fat‐induced inflammation in severely obese subjects.  相似文献   

20.
Common polymorphisms in the fat mass and obesity-associated gene (FTO) have shown strong association with obesity in several populations. In the present study, we explored the association of FTO gene polymorphisms with obesity and other biochemical parameters in the Mexican population. We also assessed FTO gene expression levels in adipose tissue of obese and nonobese individuals. The study comprised 788 unrelated Mexican-Mestizo individuals and 31 subcutaneous fat tissue biopsies from lean and obese women. FTO single-nucleotide polymorphisms (SNPs) rs9939609, rs1421085, and rs17817449 were associated with obesity, particularly with class III obesity, under both additive and dominant models (P = 0.0000004 and 0.000008, respectively). These associations remained significant after adjusting for admixture (P = 0.000003 and 0.00009, respectively). Moreover, risk alleles showed a nominal association with lower insulin levels and homeostasis model assessment of B-cell function (HOMA-B), and with higher homeostasis model assessment of insulin sensitivity (HOMA-S) only in nonobese individuals (P (dom) = 0.031, 0.023, and 0.049, respectively). FTO mRNA levels were significantly higher in subcutaneous fat tissue of class III obese individuals than in lean individuals (P = 0.043). Risk alleles were significantly associated with higher FTO expression in the class III obesity group (P = 0.047). In conclusion, FTO is a major risk factor for obesity (particularly class III) in the Mexican-Mestizo population, and is upregulated in subcutaneous fat tissue of obese individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号