首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Mn2+ on the pattern of emergence of enzymes in rat liver and adipose tissue was studied in weaned rats given a milk diet (high fat) or sucrose-casein diet (high carbohydrate) for three weeks. Addition of Mn2+ to the high fat diet was associated with induction of key glycolytic, lipogenic and pentose pathway enzymes in both liver and adipose tissue; parallel increases were found in the incorporation of [1-14C] glucose into lipid and CO2. Mn2+ induced a change in the profile of enzyme activity similar in pattern to that found in rats given a high sucrose diet or that produced by insulin treatment. Mn2+ appears partially to overcome the regulatory feed-back mechanisms of the high fat diet and to provide a signal for the coordinated increase of glucose catabolic and lipogenic processes.  相似文献   

2.
Activities of key lipogenic and glycolytic enzymes were determined in extracts of crude homogenates to elucidate the rate-limiting step(s) for lipogenesis from lactate and glucose in bovine subcutaneous adipose tissue. The enzymes ATP-citrate lyase, NADP-malate dehydrogenase, and pyruvate carboxylase were shown to have enough activity to account for the rates of in vitro lipogenesis from 10 mm lactate with or without 2 mm glucose. Glucose utilization for fatty acid synthesis appears to be limited by the low activities of key glycolytic enzymes, especially hexokinase. Attempts were also made to estimate enzyme activities in bovine subcutaneous adipose tissue being incubated in vitro by relating primary substrate levels to kinetic characteristics for the enzymes. ATP-citrate lyase was estimated to be operating at levels equivalent to the rates of lactate incorporation into fatty acids in the absence or presence of 2 mm glucose in the incubation media. Additionally, metabolite levels were measured in rapidly frozen samples of bovine subcutaneous adipose tissue to estimate the relative importance of key lipogenic enzymes in vivo. At the citrate and malate levels measured in vivo, ATP-citrate lyase would be operating at levels that approximate those estimated in vitro.  相似文献   

3.
A theoretical analysis of the energy metabolism associated with the conversion of glucose to fat is presented. In tissues where the pentose cycle furnishes some of the NADPH required for fatty acid synthesis, this conversion is an ATP-yielding process. In rat adipose tissue the maximal rate of glucose conversion to fat can be quantatively predicted on the basis of the tissue's ability to use the ATP which is generated in excess during this conversion. The energy-generating nature of this process provides the means for a type of regulation which depends on metabolic state and which, during fasting, contributes to the sparing of carbohydrate. Impairment of lipogenesis in the fasting state is attributed to a decrease in the activity of the malate cycle and to the presence of free fatty acids. However, rather than by inhibiting specific enzymes, it is by virtue of their quality as substrates for energy production that free fatty acids and their CoA derivatives appear to inhibit de novo lipogenesis. The regulatory phenomena discussed here may explain the failure of the attempts made to identify the rate-limiting step for de novo lipogenesis in adipose tissue.  相似文献   

4.
Gluconobacter oxydans oxidizes glucose via alternative pathways: one involves the non-phosphorylative, direct oxidation route to gluconic acid and ketogluconic acids, and the second requires an initial phosphorylation and then oxidation via the pentose phosphate pathway enzymes. During growth of G. oxydans in glucose-containing media, the activity of this pathway is strongly influenced by (1) the pH value of the environment and (2) the actual concentration of glucose present in the culture. At pH values below 3.5 the activity of the pentose phosphate pathway was completely inhibited resulting in an increased requirement of the organism for nutrient substances, and a poor cell yield. At pH 5.5 a triphasic growth response was observed when G. oxydans was grown in a defined medium. Above a threshold value of 5–15 mM glucose, oxidation of both glucose and gluconate by the pentose phosphate pathway enzymes was repressed, causing a rapid accumulation of gluconic acid in the culture medium. When growing under these conditions, a low affinity for the oxidation of glucose was found (K s=13 mM). Below this threshold glucose concentration, pentose phosphate pathway enzymes were synthesized and glucose was actively assimilated via this pathway. It was shown that de novo enzyme synthesis was necessary for increased pentose phosphate pathway activity and that assimilation of gluconate by washed cell suspensions was inhibited by glucose.  相似文献   

5.
Intraperitoneal administration of [1,2-14C]-acetate to Wistar rats was used to assess tissue lipogenic rates after estimating the incorporation of the label into the tissular lipid fractions. Refeeding the animals with glucose (after an overnight fast) induced an increase in white adipose tissue (4.5 fold), liver (4.1 fold), small intestine (1.9 fold), carcass (2.9 fold) and spleen (3.7 fold) lipogenesis (expressed as the radioactivity present in the lipid fraction corrected by the plasma circulating radioactivity). No changes were found following refeeding in either brain or brown adipose tissue. Administration of mannoheptulose (an inhibitor of insulin secretion) to refed rats completely abolished the increased lipogenesis in white adipose tissue, liver, carcass, spleen and small intestine, thus suggesting that insulin secretion is involved in this phenomenon. This is the first report showing that spleen lipogenesis may be modulated by refeeding via insulin secretion and suggests an important role of this organ on the in vivo lipogenic response of the organism after carbohydrate refeeding. (Mol Cell Biochem 175: 149–152, 1997)  相似文献   

6.
R J Martin  P Lamprey 《Life sciences》1974,14(6):1121-1131
Introduction of hyperphagia by injection of aurothioglucose resulted in rapid deposition of tissue lipid. The changes in tissue enzyme levels and in vivo rates of lipogenesis from U-14C glucose were measured at 2, 4, and 8-week intervals post-aurothioglucose injection. Rapid increases of both enzyme activity and in vivo lipogenesis were observed during the onset of obesity. The elevated levels of adipose tissue enzyme activities were restored to normal levels 8 weeks post-injection. However, some lipogenic enzymes in liver tissue remained elevated throughout the experimental period. Liver tissue enzymes normally associated with glucogenesis were slightly elevated during the onset of obesity.  相似文献   

7.
Serum α1-acid glycoprotein (AGP) is elevated during late gestation and at birth in the pig and rapidly declines postnatally. In contrast, the pig is born with minimal lipid stores in the adipose tissue, but rapidly accumulates lipid during the first week. The present study examined if AGP can affect adipose tissue metabolism in the neonatal pig. Isolated cell cultures or tissue explants were prepared from dorsal subcutaneous adipose tissue of preweaning piglets. Porcine AGP was used at concentrations of 0, 100, 1000 and 5000 ng/ml medium in 24 h incubations. AGP reduced the messenger RNA (mRNA) abundance of the lipogenic enzymes, malic enzyme (ME), fatty acid synthase and acetyl coA carboxylase by at least 40% (P<0.001). The activity of ME and citrate lyase were also reduced by AGP (P<0.05). Glucose oxidation was reduced by treatment with 5000 ng AGP/ml medium (P<0.05). The 14C-glucose incorporation into fatty acids was reduced by ~25% by AGP treatment for 24 h with 1000 ng AGP/ml medium (P<0.05). The decrease in glucose metabolism by AGP appears to function through an inhibition in insulin-mediated glucose oxidation and incorporation into fatty acids. This was supported by the analysis of the mRNA abundance for sterol regulatory element-binding protein (SREBP), carbohydrate regulatory element-binding protein (ChREBP) and insulin receptor substrate 1 (IRS1), which all demonstrated reductions of at least 23% in response to AGP treatment (P<0.05). These data demonstrate an overall suppression of lipogenesis due to AGP inhibition of lipogenic gene expression in vitro, which the metabolic data and SREBP, ChREBP and IRS1 gene expression analysis suggest is through an inhibition in insulin-mediated events. Second, these data suggest that AGP may contribute to limiting lipogenesis within adipose tissue during the perinatal period, as AGP levels are highest for any serum protein at birth.  相似文献   

8.
Effects of carbohydrate availability on lipogenesis in sheep   总被引:5,自引:4,他引:1       下载免费PDF全文
1. Lipogenesis in sheep liver and adipose tissue was investigated by incorporation studies in vitro with radioactive glucose and acetate and by assays of key enzymes. 2. Carbohydrate availability to sheep was increased by feeding on a diet containing 70% soluble carbohydrate, by infusing glucose into the abomasum or by direct intravenous infusion of glucose. 3. Under these conditions lipogenesis from glucose and acetate was increased from very low values in lìver and adipose tissue, especially in those animals where rumen fermentation was by-passed by glucose infusion. 4. Large increases in the activities of ATP citrate lyase (EC 4.1.3.8) and NADP-malate dehydrogenase (EC 1.1.1.40) occurred in both tissues when lipogenesis was increased. 5. No adaptations were found in the activities of pyruvate carboxylase (EC 6.4.1.1) in adipose tissue, glucokinase (EC 2.7.1.2) in liver or 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) in liver. It is proposed that the absence of these enzymes is not related to glucose availability. 6. The effect of glucose on liver lipogenesis was to increase conversion of acetate into lipid. 7. This effect also occurred in adipose tissue, but in this tissue glucose also became a quantitatively important precursor of triglyceride fatty acid.  相似文献   

9.
1. In vitro activities of glucose oxidation, de novo lipogenesis and lipolysis were compared in normal (Dw) and dwarf (dw) laying hens. 2. Dwarfism reduced the hepatic glucose oxidation while de novo lipogenesis was not altered. As liver weight was depressed, total liver lipogenesis capacity was probably reduced by dwarfism. 3. As compared to normal hens, de novo lipogenesis and basal or stimulated lipolysis were lower in dwarf adipose tissue while its lipid content was enhanced in dwarfs. 4. Results suggest that in laying hens dwarfism reduces the adipose tissue lipid mobilization but probably also the liver de novo lipogenesis.  相似文献   

10.
Three groups of 3 sheep were penned individually and provided with pelleted dried grass. In addition two of the groups received either dextrin or glucose via duodenal cannulae. The rate of in vitro lipogenesis, from acetate of glucose, in subcutaneous adipose tissue was significantly increased in the carbohydrate-infused sheep. The increase in lipogenesis in response to glucose infusion was much greater than that to dextrin infusion. The changes in lipogenesis induced by dextrin or glucose infusion were reflected in the specific activities of the various lipogenic enzymes examined. These results are discussed in relation to the capacity of the sheep small intestine to hydrolyse alpha-linked glucose polymer.  相似文献   

11.
In order to evaluate the modulatory effects of manganese, high fat diet fed and alloxan diabetic rats were taken and the changes in the glucose oxidation, glycerol release and effects of manganese on these parameters were measured from adipose tissue. An insulin-mimetic effect of manganese was observed in the adipose tissue in the controls and an additive effect of insulin and manganese on glucose oxidation was seen when Mn2+ was addedin vitro. The flux of glucose through the pentose phosphate pathway and glycolysis was significantly decreased in high fat fed animals. Although thein vitro addition of Mn2+ was additive with insulin when14CO2 was measured from control animals, it was found neither in young diabetic animals (6–8 weeks old) nor in the old (16 weeks old). Both insulin and manganese caused an increased oxidation of carbon-1 of glucose and an increase of its incorporation into14C-lipids in the young control animals; the additive effect of insulin and manganese suggests separate site of action. This effect was decreased in fat fed animals, diabetic animals and old animals. Manganese alone was found to decrease glycerol in both the control and diabetic adipose tissue inin vitro incubations. The results of the effects of glucose oxidation, lipogenesis, and glycerol release in adipose tissue of control and diabetic animals of different ages are presented together with the effect of manganese on adipose tissue from high fat milk diet fed animals.  相似文献   

12.
Changes in the specific activities of acetyl-CoA-carboxylase (ACX), malic enzyme (ME) and glucose-6-phosphate dehydrogenase (G-6-PD) were compared to changes in de novo lipogenesis measured by in vivo incorporation of [3H] of tritiated water into fatty acids of liver and of perirenal and dorsal subcutaneous adipose tissues. In the adipose tissues, the specific activities of the three enzymes rather closely followed fluctuations in the rate of fatty acid synthesis. In the liver, ACX and especially ME activities were satisfactory indicators of de novo lipogenesis; G-6-PD activity did not depend on de novo lipogenesis.  相似文献   

13.
1. Regulation of lipogenesis and lipolysis by insulin was studied on adipocytes isolated from 100 kg Large white male pigs. Two adipose tissues were studied: subcutaneous and perirenal. Animals were fed either a control low fat diet or a diet containing 14.7% sunflower seed oil. 2. The cell diameter was higher in the group fed the sunflower diet. 3. De novo lipogenesis was decreased for each adipose tissue in the group fed the sunflower diet. The perirenal site had a higher lipogenic activity than subcutaneous site whatever the diet. 4. Insulin did not significantly stimulate lipogenesis but had an important antilipolytic effect on stimulated lipolysis by isoproterenol. 5. The antilipolytic action of insulin was higher in perirenal adipocytes with the control diet. With the sunflower diet, the decrease was about 54.4% for subcutaneous adipocytes, whereas the inhibition was decreased in perirenal adipocytes. Addition of theophylline reversed the antilipolytic action of insulin. 6. Insulin binding was not affected neither by the dietary fat nor by the adipose tissue location. 7. Absence of de novo lipogenesis stimulation by insulin was not due to an impairment in insulin binding. 8. The different effects of dietary fat and adipose tissue location on the antilipolytic action of insulin could not be explained by a modification of insulin binding but rather by a latter event, probably at a post-insulin binding stage.  相似文献   

14.
15.
16.
Indirect evidence suggests that impaired triglyceride storage in the subcutaneous fat depot contributes to the development of insulin resistance via lipotoxicity. We directly tested this hypothesis by measuring, in vivo, TG synthesis, de novo lipogenesis (DNL), adipocyte proliferation, and insulin suppression of lipolysis in subcutaneous adipose tissue of BMI-matched individuals classified as insulin resistant (IR) or insulin sensitive (IS). Nondiabetic, moderately obese subjects with BMI 25–35 kg/m2, classified as IR or IS by the modified insulin suppression test, consumed deuterated water (2H2O) for 4 weeks. Deuterium incorporation into glycerol, palmitate, and DNA indicated TG synthesis, DNL, and adipocyte proliferation, respectively. Net TG synthesis and DNL in adipose cells were significantly lower in IR as compared with IS subjects, whereas adipocyte proliferation did not differ significantly. Plasma FFAs measured during an insulin suppression test were 2.5-fold higher in IR subjects, indicating resistance to insulin suppression of lipolysis. Adipose TG synthesis correlated directly with DNL but not with proliferation. These results provide direct in vivo evidence for impaired TG storage in subcutaneous adipose tissue of IR as compared with IS. Relative inability to store TG in the subcutaneous depot may represent a mechanism contributing to the development of insulin resistance in the setting of obesity.  相似文献   

17.
HAUSMAN, D.B., G.J. HAUSMAN, AND R.J. MARTIN. Endocrine regulation of fetal adipose tissue metabolism in the pig: interaction of porcine growth hormone and thyroxine. Obes Res. 1999;7:76–82. Objective : This study tested the hypothesis that combined treatment of thyroxine (T4) and growth hormone (GH) could normalize cellular and metabolic aspects of adipose tissue development of hypophysectomized fetal pigs. Research Methods and Procedures : On day 70 of gestation, pig fetuses were hypophysectomized by microcauterization or remained intact. Hypophysectomized fetuses remained untreated or were treated from day 90 to day 105 of gestation with T4, GH, or a combination of both hormones. Results : Body weights were unaffected by hypophysectomy or hormone treatment. De novo lipogenesis in subcutaneous adipose tissue was increased 10-fold by hypophysectomy, consistent with our previous results. This increase was abolished by GH treatment in the hypophysectomized fetuses. In contrast, T4 treatment of the hypophysectomized fetuses resulted in a 12-fold further increase in adipose tissue lipogenesis, an effect that was negated by concomitant administration of GH. Lipolytic response to isoproterenol was decreased by hypophysectomy, unaffected by GH treatment, and restored to intact values by T4 or by T4+GH treatment in the hypophysectomized fetuses. Discussion : In contrast to T4, GH does not influence serum insulin-like growth factor-I or adipose tissue lipolysis, but decreases lipogenesis in the fetal pig. However, replacing both T4 and GH normalized hypophysectomized fetuses to a greater extent than either GH or T4 alone. Thus, any influence of thyroid hormones on stimulating adipose tissue lipogenesis in the developing fetal pig may be normally counterregulated by pituitary-derived growth hormone.  相似文献   

18.
Objective: This study investigated the effect of different sodium content diets on rat adipose tissue carbohydrate metabolism and insulin sensitivity. Methods and Procedures: Male Wistar rats were fed on normal‐ (0.5% Na+; NS), high‐ (3.12% Na+; HS), or low‐sodium (0.06% Na+; LS) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail‐cuff system. An intravenous insulin tolerance test (ivITT) was performed in fasted animals. At the end of each period, rats were killed and blood samples were collected for glucose and insulin determinations. The white adipose tissue (WAT) from abdominal and inguinal subcutaneous (SC) and periepididymal (PE) depots were weighed and processed for adipocyte isolation and measurement of in vitro rates of insulin‐stimulated 2‐deoxy‐d ‐[3H]‐glucose uptake (2DGU) and conversion of ‐[U‐14C]‐glucose into 14CO2. Results: After 6 weeks, HS diet significantly increased the BP, SC and PE WAT masses, PE adipocyte size, and plasma insulin concentration. The sodium dietary content did not influence the whole‐body insulin sensitivity. A higher half‐maximal effective insulin concentration (EC50) from the dose‐response curve of 2DGU and an increase in the insulin‐stimulated glucose oxidation rate were observed in the isolated PE adipocytes from HS rats. Discussion: The chronic salt overload enhanced the adipocyte insulin sensitivity for glucose uptake and the insulin‐induced glucose metabolization, contributing to promote adipocyte hypertrophy and increase the mass of several adipose depots, particularly the PE fat pad.  相似文献   

19.
Alterations of carbohydrate metabolism associated with parasitism were examined in an insect, Manduca sexta L. In insect larvae maintained on a low carbohydrate diet gluconeogenesis from [3-13C]alanine was established from the fractional 13C enrichment in trehalose, a disaccharide of glucose and the blood sugar of insects and other invertebrates. After transamination of the isotopically substituted substrate to [3-13C]pyruvate, the latter was carboxylated to oxaloacetate ultimately leading to de novo glucose synthesis and trehalose formation. Trehalose was selectively enriched with 13C at C1 and C6 followed by C2 and C5. 13C enrichment of blood sugar in insects parasitized by Cotesia congregata (Say) was significantly greater than was observed in normal animals. The relative contributions of pyruvate carboxylation and decarboxylation to trehalose labeling were determined from the 13C distribution in glutamine, synthesized as a byproduct of the tricarboxylic acid cycle. The relative contribution of carboxylation was significantly greater in parasitized larvae than in normal insects providing additional evidence of elevated gluconeogenesis due to parasitism. Despite the increased gluconeogenesis in parasitized insects the level of blood sugar was the same in all animals. Because de novo glucose synthesis does not normally maintain blood sugar level in insects maintained under these dietary conditions the findings suggest an aberrant regulation over gluconeogenesis. The 13C labeling in trehalose was nearly symmetric in all insects but the mean C1/C6 13C ratio was higher in parasitized animals suggesting a lower activity of the pentose phosphate pathway that brings about a redistribution of 13C in trehalose following de novo glucose synthesis. Additional studies with insects maintained on a high carbohydrate diet and administered [1,2-13C2]glucose confirmed a decreased level of pentose cycling during parasitism consistent with a lower level of lipogenesis. It is suggested, however, that the pentose pathway may facilitate the synthesis of trehalose from dietary carbohydrate by directing hexose phosphate cycled through the pathway to the production of energy.  相似文献   

20.
Objective: Salt restriction has been reported to increase white adipose tissue (WAT) mass in rodents. The objective of this study was to investigate the effect of different sodium content diets on the lipogenic and lipolytic activities of WAT. Research Methods and Procedures: Male Wistar rats were fed on normal‐sodium (NS; 0.5% Na+), high‐sodium (HS; 3.12% Na+), or low‐sodium (LS; 0.06% Na+) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail‐cuff system. At the end of each period, rats were killed and blood samples were collected for leptin determinations. The WAT from abdominal and inguinal subcutaneous (SC), periepididymal (PE) and retroperitoneal (RP) depots was weighed and processed for adipocyte isolation, rate measurement of lipolysis and d ‐[U‐14C]‐glucose incorporation into lipids, glucose‐6‐phosphate dehydrogenase (G6PDH) and malic enzyme activity evaluation, and determination of G6PDH and leptin mRNA expression. Results: After 6 weeks, HS diet significantly increased BP; SC, PE, and RP WAT masses; PE adipocyte size; plasma leptin concentration; G6PDH activity in SC WAT; and PE depots and malic activity only in SC WAT. The leptin levels correlated positively with WAT masses and adipocyte size. An increase in the basal and isoproterenol‐stimulated lipolysis and in the ability to incorporate glucose into lipids was observed in isolated adipocytes from HS rats. Discussion: HS diet induced higher adiposity characterized by high plasma leptin concentration and adipocyte hypertrophy, probably due to an increased lipogenic capacity of WAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号