首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The role of pyrimidine dimers in mutagenesis by ultraviolet light was examined by measuring the UV-induced reversion of six different bacteriophage M13 amber mutants for which the neighboring DNA sequences are known. The mutational response at amber (TAG) codons preceded by a guanine or adenine (where no pyrimidine dimer can be formed) were compared with those preceded by thymine or cytosine (where dimer formation is possible). Equivalent levels of UV-induced mutagenesis were observed at both kinds of sites. This observation demonstrates that there is no requirement for a pyrimidine dimer directly at the site of UV-induced mutation in this single-stranded DNA phage. UV irradiation of the phage was also performed in the presence of Ag+ ions, which specifically sensitize the DNA to dimer formation. The two methods of irradiation, when compared at equal survival levels (and presumably equal dimer frequencies), produced equivalent frequencies of reversion of the amber phage. We believe these results indicate that while the presence of pyrimidine dimers may be a prerequisite for UV mutagenesis, the actual mutagenic event can occur at a site some distance removed from a dimer.  相似文献   

2.
3.
4.
D G Stump  R S Lloyd 《Biochemistry》1988,27(6):1839-1843
T4 endonuclease V incises DNA at the sites of pyrimidine dimers through a two-step mechanism. These breakage reactions are preceded by the scanning of nontarget DNA and binding to pyrimidine dimers. In analogy to the synthetic tripeptides Lys-Trp-Lys and Lys-Tyr-Lys, which have been shown to be capable of producing single-strand scissions in DNA containing apurinic sites, endonuclease V has the amino acid sequence Trp-Tyr-Lys-Tyr-Tyr (128-132). Site-directed mutagenesis of the endonuclease V gene, denV, was performed at the Tyr-129 and at the Tyr-129 and Tyr-131 positions in order to convert the Tyr residues to nonaromatic amino acids to test their role in dimer-specific binding. The UV survival of repair-deficient (uvrA recA) Escherichia coli cells harboring the denV N-129 construction was dramatically reduced relative to wild-type denV+ cells. The survival of denV N-129,131 cells was indistinguishable from that of the parental strain lacking the denV gene. The mutant endonuclease V proteins were then characterized with regard to (1) dimer-specific nicking activity, (2) apurinic nicking activity, and (3) binding affinity to UV-irradiated DNA. Dimer-specific nicking activity and dimer-specific binding for both denV N-129 and N-129,131 were abolished, while apurinic-specific nicking was substantially retained in denV N-129,131 but was abolished in denV N-129. These results indicate that Tyr-129 and Tyr-131 positions of endonuclease V are at least important in pyrimidine dimer-specific binding and possibly nicking activity.  相似文献   

5.
The repair of cis-syn cyclobutane pyrimidine dimers (CPDs) can be initiated via the base excision repair (BER) pathway, utilizing pyrimidine dimer-specific DNA glycosylase/lyase enzymes (pdgs). However, prior to incision at lesion sites, these enzymes bind to non-damaged DNAs through charge-charge interactions. Following initial binding to DNA containing multiple lesions, the enzyme incises at most of these sites prior to dissociation. If a subset of these lesions are in close proximity, clustered breaks may be produced that could lead to decreased cell viability or increased mutagenesis. Based on the co-crystal structures of bacteriophage T4-pdg and homology modeling of a related enzyme from Paramecium bursaria Chlorella virus-1, the structure-function basis for the processive incision activity for both enzymes was investigated using site-directed mutagenesis. An assay was developed that quantitatively measured the rates of incision by these enzymes at clustered apurinic/apyrimidinic (AP) sites. Mathematical modeling of random (distributive) versus processive incisions predicted major differences in the rate and extent of the accumulation of singly nicked DNAs between these two mechanisms. Comparisons of these models with biochemical nicking data revealed significant changes in the damage search mechanisms between wild-type pdgs and most of the mutant enzymes. Several conserved arginine residues were shown to be critical for the processivity of the incision activity, without interfering with catalysis at AP sites. Comparable results were measured for incision at clustered CPD sites in plasmid DNAs. These data reveal that pdgs can be rationally engineered to retain full catalytic activity, while dramatically altering mechanisms of target site location.  相似文献   

6.
UV irradiation, a known carcinogen, induces the formation of dipyrimidine dimers with the predominant lesions being cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone adducts (6-4PPs). The relative roles of the yeast translesion synthesis DNA polymerases Pol zeta and Pol eta in UV survival and mutagenesis were examined using strains deficient in one or both polymerases. In addition, photoreactivation was used to specifically remove CPDs, thus allowing an estimate to be made of the relative contributions of CPDs vs. 6-4PPs to overall survival and mutagenesis. In terms of UV-induced mutagenesis, we focused on the +1 frameshift mutations detected by reversion of the lys2deltaA746 allele, as Pol zeta produces a distinct mutational signature in this assay. Results suggest that CPDs are responsible for most of the UV-associated toxicity as well as for the majority of UV-induced frameshift mutations in yeast. Although the presence of Pol eta generally suppresses UV-induced mutagenesis, our data suggest a role for this polymerase in generating some classes of +1 frameshifts. Finally, the examination of frameshift reversion spectra indicates a hierarchy between Pol eta and Pol zeta with respect to the bypass of UV-induced lesions.  相似文献   

7.
Experiments were performed to examine the role of cyclobutyl pyrimidine dimers in the process of mutagenesis by ultraviolet (u.v.) light. Lambda phage DNA was irradiated with u.v. and then incubated with an Escherichia coli photoreactivating enzyme, which monomerizes cyclobutyl pyrimidine dimers upon exposure to visible light. The photoreactivated DNA was packaged into lambda phage particles, which were used to infect E. coli uvr- host cells that had been induced for SOS functions by ultraviolet irradiation. Photoreactivation removed most toxic lesions from irradiated phage, but did not change the frequency of induction of mutations to the clear-plaque phenotype. This implies that cyclobutyl pyrimidine dimers can be lethal, but usually do not serve as sites of mutations in the phage. The DNA sequences of mutants derived from photoreactivated DNA showed that almost two-thirds (16/28) were transitions, the same fraction found for u.v. mutagenesis without photoreactivation. These results show that in this system, the lesion inducing transitions (the major type of u.v.-induced mutation) is not the cyclobutyl pyrimidine dimer; a strong candidate for a mutagenic lesion is the Pyr(6-4)Pyo photoproduct. On the other hand, photoreactivation of SOS-induced host cells before infection with u.v.-irradiated phage reduced mutagenesis substantially. In this case, photoreversal of cyclobutyl dimers serves to reduce expression of the SOS functions that are required in the process of targeted u.v. mutagenesis.  相似文献   

8.
Recently, we reported that the distribution of ultraviolet light (u.v.) induced pyrimidine dimers in nucleosome core DNA has a striking 10.3(+/- 0.1) base periodicity and the regions of enhanced quantum yield map to positions where DNA strands are farthest from the core histone surface. Improvement of the mapping procedure has allowed us to analyze this distribution in more detail, and compare the distribution pattern for nucleosome cores from intact chromatin having different higher-order structures (from the 10 nm filament to the 30 nm fiber). At all levels of chromatin compaction, we observed the following. (1) The average periodicity in pyrimidine dimer yield is 10.3 bases. (2) The peak-to-peak spacing in this distribution is significantly different from 10.3 bases in the region covering three helix turns immediately 5' of the dyad axis. (3) There is a suppression of photoproduct formation in the region of the dyad axis, especially at position 84 from the 5' end. (4) The approximately 10 base ensembles have alternating peak intensities throughout core DNA. Furthermore, peak deconvolution analysis of the pyrimidine dimer pattern yielded a striking similarity in photoproduct yield for the different levels of chromatin compaction. Irradiation of isolated core DNA yields a much more random distribution of photoproducts, although a weak modulation pattern is observed (indicating that there is a non-random alignment of adjacent pyrimidines in our core DNA preparations). This pattern includes a depression in photoproduct yield near position 95, suggesting that the sequence in this region plays a role in nucleosome positioning. These results show that the u.v. photofootprint is a sensitive, diagnostic probe of core histone-DNA interactions in intact chromatin, and these interactions are not significantly altered by changes in the structural state of the chromatin fiber.  相似文献   

9.
Summary The centromere is the region within a chromosome that is required for proper segregation during mitosis and meiosis. Lesions in this sequence represent a unique type of damage, as loss of function could result in catastrophic loss of the genetic material of an entire chromosome. We have measured the induction by ultraviolet (UV) light of pyrimidine dimers in a 2550-bp restriction fragment that includes the centromere region of chromosome III in Saccharomyces cerevisiae. Yeast cells were exposed to ultraviolet light, cellular DNA was gently extracted, and subsequently treated with a UV-specific endonuclease to cleave all pyrimidine dimers. The sites of UV-specific nuclease scission within the centromere were determined by separating the DNA according to molecular weight, transferring the fragments to nitrocellulose, and hybridizing to a radiolabeled 624-bp fragment homologous to the centromere DNA from chromosome III. Several hotspots were identified in chromatin DNA from cells, as well as in irradiated deproteinized DNA. Double strand damage due to closely opposed pyrimidine dimers was also observed. At biological doses (35% survival) there are approximately 0.1 to 0.2 pyrimidine dimers per centromere. These dimers are efficiently repaired in the centromere and surrounding region.  相似文献   

10.
《Gene》1997,192(1):179-190
In natural transformation, DNA in the form of macromolecular fragments can be translocated across the cell envelope of prokaryotic microorganisms. During the past two decades, several, largely mutually contradictory, hypotheses have been forwarded to explain the molecular mechanism and bioenergetics of this translocation process. Other biomacromolecules are translocated across the bacterial cell envelope as well, such as polysaccharides and proteins, the latter for instance in the process of the assembly of type-IV pili. This brings up the question whether or not common components are involved.Here, we review analyses of DNA translocation in Acinetobacter calcoaceticus, a Gram-negative eubacterium that is able to migrate through twitching motility, and also shows a high frequency of natural transformation. DNA uptake in this organism is an energy-dependent process. Upon entry into the cells, the DNA fragments are integrated into the resident chromosome when a sufficiently large region of mutual homology is available (200 to 400 bp). However, this process is rather inefficient, and on the average 500 bp of each incoming fragment is degraded through exonuclease activity. Upon covalent attachment of a bulky protein molecule to the transforming DNA, the DNA-translocation machinery becomes blocked in further translocation activity.Since A. calcoaceticus is not well suited for transposon mutagenesis, a random mutagenesis procedure has been developed, based on the ligation of an antibiotic-resistance marker to random fragments of chromosomal DNA. This method was used to generate several mutants impaired in the natural transformation process. Three of these have been characterized in detail. No components, common to the translocation of macromolecules through the cell envelope of Acinetobacter, have been detected in this screen.  相似文献   

11.
Analysis of mutations in mitochondrial DNA is an important issue in population and evolutionary genetics. To study spontaneous base substitutions in human mitochondrial DNA we reconstructed the mutational spectra of the hypervariable segments I and II (HVS I and II) using published data on polymorphisms from various human populations. An excess of pyrimidine transitions was found both in HVS I and II regions. By means of classification analysis numerous mutational hotspots were revealed in these spectra. Context analysis of hotspots revealed a complex influence of neighboring bases on mutagenesis in the HVS I region. Further statistical analysis suggested that a transient misalignment dislocation mutagenesis operating in monotonous runs of nucleotides play an important role for generating base substitutions in mitochondrial DNA and define context properties of mtDNA. Our results suggest that dislocation mutagenesis in HVS I and II is a fingerprint of errors produced by DNA polymerase gamma in the course of human mitochondrial DNA replication  相似文献   

12.
Random mutagenesis is a powerful tool for studying the effects of a large number of permutations of a particular DNA sequence and its encoded products. Here we describe a new strategy of conducting in vitro random mutagenesis using ethyl methane sulfonate (EMS). The Bacillus aprN18 gene, coding for a serine protease with fibrinolytic activity, was used as a target gene. To study the mutations of the coding region, rather than the whole plasmid, the 1.4 kb gene fragment was cut out from an expression plasmid and treated with 10 mM EMS at 37 degrees C for 1 h. The treated fragment was then ligated back into the original expression vector and a library of random mutants was constructed in a protease-deficient Bacillus subtilis strain. A plate assay-based screening method was used to select for mutant clones with altered enzyme activity, and the change of activity was then confirmed by a semi-quantitative enzyme assay using liquid culture supernatant. The inserts of five clones with altered enzyme activity were randomly chosen for sequencing analysis. Among the point mutations detected, GC --> AT transition accounts for 42.1%, AT --> GC transition 34.2% and GC/CG transversion 23.7%, respectively. To our knowledge this is the first application of EMS for in vitro mutagenesis of a defined DNA sequence.  相似文献   

13.
A new procedure for the production of a defined library of random mutants is described. Long spiked oligodeoxyribonucleotides (oligos), in which a predetermined level of the three 'wrong' phosphoramidites are used at each position, are made as primers for a standard oligo-directed mutagenesis protocol. Spiked oligo synthesis on a DNA synthesizer is achieved using an in-line mixing procedure that only requires five phosphoramidite reservoirs and which avoids contamination of any of the pure phosphoramidite reagents. Immutable positions (i.e., positions in the oligo for which pure reagents are used) can be specified, and a silent 'marker' base can be included that allows an early estimate of the mutagenesis efficiency. The randomness of the library in respect to the number, type, and position of the altered bases, is easily verified by DNA sequencing. This procedure has been used to generate a random mutant library of the gene encoding a sluggish triosephosphate isomerase. Among the transformants from this library, a number of second-site suppressor mutations have been found that increase the specific catalytic activity of the starting isomerase. This approach provides a more complete library than a method using chemical mutagenic reagents.  相似文献   

14.
T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function by virtue of its ability to function in the presence of metal-chelating agents. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer.  相似文献   

15.
Deinococcus radiodurans and other species of the same genus share extreme resistance to ionizing radiation and many other agents that damage DNA. Two different DNA damage-sensitive strains generated by chemical mutagenesis were found to be defective in a gene that has extended DNA and protein sequence homology with polA of Escherichia coli. Both mutant strains lacked DNA polymerase, as measured in activity gels. Transformation of this gene from wild-type D. radiodurans restored to the mutants both polymerase activity and DNA damage resistance. A technique for targeted insertional mutagenesis in D. radiodurans is presented. This technique was employed to construct a pol mutant isogenic with the wild type (the first example of targeted mutagenesis in this eubacterial family). This insertional mutant lacked DNA polymerase activity and was even more sensitive to DNA damage than the mutants derived by chemical mutagenesis. In the case of ionizing radiation, the survival of the wild type after receiving 1 Mrad was 100% while survival of the insertional mutant extrapolated to 10(-24). These results demonstrate that the gene described here encodes a DNA polymerase and that defects in this pol gene cause a dramatic loss of resistance of D. radiodurans to DNA damage.  相似文献   

16.
J L Cox  G D Small 《Mutation research》1985,146(3):249-255
A mutant deficient in photoreactivation has been isolated following mutagenesis of Chlamydomonas reinhardi with N-methyl-N'-nitro-N'-nitrosoguanidine. The mutant is deficient in the photorepair of pyrimidine dimers from nuclear DNA but appears to be normal in the rate of photorepair of dimers from chloroplast DNA. Cell-free extracts prepared from the photoreactivation-deficient mutant have about 17% of the DNA photolyase activity of wild-type cells. These results are consistent with the hypothesis that nuclear and chloroplast DNA photolyases are controlled by two separate genes.  相似文献   

17.
Exposure to solar radiation can cause mortality in natural communities of pico‐phytoplankton, both at the surface and to a depth of at least 30 m. DNA damage is a significant cause of death, mainly due to cyclobutane pyrimidine dimer formation, which can be lethal if not repaired. While developing a UV mutagenesis protocol for the marine cyanobacterium Prochlorococcus, we isolated a UV‐hyper‐resistant variant of high light‐adapted strain MED4. The hyper‐resistant strain was constitutively upregulated for expression of the mutTphrB operon, encoding nudix hydrolase and photolyase, both of which are involved in repair of DNA damage that can be caused by UV light. Photolyase (PhrB) breaks pyrimidine dimers typically caused by UV exposure, using energy from visible light in the process known as photoreactivation. Nudix hydrolase (MutT) hydrolyses 8‐oxo‐dGTP, an aberrant form of GTP that results from oxidizing conditions, including UV radiation, thus impeding mispairing and mutagenesis by preventing incorporation of the aberrant form into DNA. These processes are error‐free, in contrast to error‐prone SOS dark repair systems that are widespread in bacteria. The UV‐hyper‐resistant strain contained only a single mutation: a 1 bp deletion in the intergenic region directly upstream of the mutTphrB operon. Two subsequent enrichments for MED4 UV‐hyper‐resistant strains from MED4 wild‐type cultures gave rise to strains containing this same 1 bp deletion, affirming its connection to the hyper‐resistant phenotype. These results have implications for Prochlorococcus DNA repair mechanisms, genome stability and possibly lysogeny.  相似文献   

18.
In order to analyze the role of the pro-sequence in folding of the alkaline serine protease subtilisin, localized random mutagenesis using the polymerase chain reaction with Taq DNA polymerase was employed to obtain mutations in the pro-sequence which prevent production of active protease. The unique aspect of this procedure is that random mutations can be easily generated in vitro over large but defined regions of a specific gene. The method was applied to a 458-base pair fragment encompassing the coding region of the pro-sequence of subtilisin, a region of the protein which has been shown to be required for proper folding. Protease-deficient mutants containing a variety of amino acid substitutions were isolated with a frequency of 4.3%. From analysis of these mutants, four independent amino acid substitution mutations in the pro-sequence were identified. The present results demonstrate that polymerase chain reaction is an efficient and simple method for obtaining random mutations within a localized region of a given gene.  相似文献   

19.
Prototrophic mutants produced by UV light in Escherichia coli K-12 strains with argE3(Oc) and hisG4(Oc) defects are distinguished as backmutations and specific nonsense suppressor mutations. In strains carrying a umuC defect, mutants are not produced unless irradiated cells are incubated and then exposed to photoreversing light (delayed photoreversal mutagenesis). The mutants thus produced are found to be specifically suppressor mutations and not backmutations. The suppressor mutations are primarily glutamine tRNA ochre suppressor mutations, which have been attributed previously to mutation targeted at T = C pyrimidine dimers. In a lexA51 recA441 strain, where the SOS mutagenesis functions are constitutive, targeting at dimers is confirmed by demonstrating that the induction of glutamine tRNA suppressor mutations is susceptible to photoreversal. In the same strain induction of backmutations is not susceptible to photoreversal. Thus delayed photoreversal mutagenesis produces suppressor mutations that can be targeted at pyrimidine dimers and does not produce backmutations that are not targeted at pyrimidine dimers. This correlation supports the idea that delayed photoreversal mutagenesis in umuC defective cells reflects a mutation process arrested at a targeting pyrimidine dimer photoproduct, which is the immediate cause of both the alteration in DNA sequence and the obstruction (unless repaired) to mutation fixation and ultimate expression.  相似文献   

20.
Using a modified Burton procedure, twelve pyrimidine nucleotide isopliths of DNA from five mammalian species (human, rabbit, guinea pig, rat and cattle) were determined. A method is proposed for mathematical estimation of DNA block analysis data, revealing a correlation between the specific DNA primary structure, the systemic status of the organism under investigation and the organism's radiosensitivity. In some cases DNA structural differences as determined by pyrimidine isoplith ratios help to distinguish between families of the same mammalian order. Quantitative isoplith ratios demonstrate that ionizing radiation treatment brings about certain changes in DNA primary structure. Their direction is quite the opposite to the main trend in the changes of DNA structure in the course of biological evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号