首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
J Knudtzon 《Life sciences》1984,34(6):547-554
Intravenous injections of 25 and 2.5 micrograms alpha-melanocyte stimulating hormone (alpha-MSH) increased plasma levels of glucagon, insulin and free fatty acids in fasted and fed rabbits. 45 micrograms beta-melanocyte stimulating hormone (beta-MSH) had similar effects, whereas 22 micrograms gamma-2-melanocyte stimulating hormone (gamma-MSH) was inactive. The alpha-MSH-induced increases in the plasma levels of glucagon, insulin and free fatty acids were not inhibited by alpha- or beta-adrenergic blocking drugs. The alpha-MSH-induced increases in the plasma levels of insulin were, however, augmented by phentolamine (an alpha-adrenergic receptor blocking drug). The plasma levels of glucose were increased by 25 micrograms alpha-MSH in fed rabbits, only, and were decreased by alpha-MSH during alpha-receptor blockade. The acute in vivo effects of alpha-MSH and beta-MSH on the plasma levels of glucagon, insulin and free fatty acids were rather similar to those previously reported for corticotropin (ACTH). It is possible that the 4-10 ACTH sequence, present in alpha-MSH, beta-MSH and ACTH, but not in gamma-MSH, is a message sequence for the observed effects. However, ORG 2766, a 4-9 ACTH analogue, was inactive. The mechanism by which alpha-MSH increased the plasma levels of glucagon and insulin in rabbits remains to be determined. It is possible, that the effects were mediated by both a central nervous action and a direct action on the endocrine pancreas.  相似文献   

2.
The present study was designed to investigate the in vivo effects of beta-endorphin on plasma levels of glucagon, insulin and glucose in rabbits, and to elucidate some of the mechanisms involved. beta-Endorphin (50 micrograms) injected intravenously into fasted rabbits, decreased plasma levels of insulin (-4.5 +/- 1.3 microU/ml, P less than 0.05) and increased plasma levels of glucose (+2.7 +/- 0.4 mmol/l, P less than 0.05). Similar hypoinsulinemic and hyperglycemic effects were observed for 25 and 2.5 micrograms beta-endorphin in fasted and 50 and 0.5 micrograms beta-endorphin in fed rabbits. beta-Endorphin produced slight and transient increases in plasma levels of glucagon at the highest dose in fed rabbits, only (+80 +/- 9 pg/ml, P less than 0.05). The beta-endorphin-induced hypoinsulinemia was not inhibited by phentolamine, yohimbine, propranolol or atropine, which is in consistency with a direct inhibitory effect of beta-endorphin on the beta-cell in rabbits. The beta-endorphin-induced hyperglycemia was reduced by naloxone (+0.8 +/- 0.1 mmol/l) but not by N-methyl-naloxone (ORG 10908) a peripheral opiate receptor blocking drug (+2.2 +/- 0.2 mmol/l), suggesting a central nervous action on opiate receptors. This central action of beta-endorphin was probably not mediated by catecholamine release or other stimulation of adrenergic or muscarinic receptors, since the beta-endorphin-induced hyperglycemia was not inhibited by phentolamine, yohimbine, propranolol or atropine. These results suggest that the beta-endorphin-induced hyperglycemia was caused, at least in part, by a peripheral inhibition of insulin release and a central stimulation on glucoregulation.  相似文献   

3.
Pro-opiomelanocortin (POMC) is a prohormone for several peptides including corticotropin, melanocyte stimulating hormones and beta-endorphin. POMC-derived peptides have been demonstrated in many tissues, including the hypothalamus and the endocrine pancreas, which play important roles in the control of plasma levels of glucagon, insulin and glucose. This article reviews the present knowledge concerning in vitro and in vivo effects of POMC-derived peptides on glucagon, insulin and glucose levels involving several possible mechanisms: direct effects on the endocrine pancreas (including endocrine, paracrine and peptidergic regulation) and glucose production, and indirect effects involving the hypothalamus, the autonomic nervous system and the adrenal gland.  相似文献   

4.
Role of endocrine pancreas in temperature acclimation in rats was investigated. Plasma glucagon level increased and insulin level decreased in cold-acclimated rats (CA). The reverse was observed in heat-acclimated rats (HA). In the pancreas there were no changes in glucagon and insulin in CA, but a decrease in glucagon and an increase in insulin were found in HA. Plasma insulin/glucagon molar ratio (I/G) declined in CA and rose in HA. Pancreatic I/G rose in HA. Acute cold exposure elevated plasma glucagon, but did not affect plasma insulin. Pancreatic glucagon, insulin and I/G were not influenced by acute cold exposure, while plasma I/G decreased. Plasma I/G was inversely correlated with both blood free fatty acids and glucose levels. These results suggest that endocrine pancreas is closely associated with metabolic acclimation to cold and heat through its regulation of the metabolic direction to catabolic phase in cold acclimation and to anabolic phase in heat acclimation.  相似文献   

5.
Adrenergic effects on plasma levels of glucagon, insulin, glucose and free fatty acids were studied in fasted rabbits by infusing epinephrine, norepinephrine, isoproterenol, phentolamine (an adrenergic alpha-receptor blocking drug) and propranolol (an adrenergic beta-receptor blocking drug). The adrenergic effects on the plasma levels of insulin, glucose and free fatty acids were similar to those found in other species. The plasma levels of insulin were increased by beta-receptor stimulation (isoproterenol, phentolamine + epinephrine) and decreased by alpha-receptor stimulation (epinephrine, norepinephrine, propranolol + epinephrine). The plasma levels of glucose were increased by both alpha- and beta-receptor stimulation, and the epinephrine-induced hyperglycaemia was only blocked by combined infusions with phentolamine and propranolol. The plasma levels of free fatty acids were increased by saline and further increased by beta-receptor stimulation (isoproterenol), while epinephrine and norepinephrine gave variable results. Alpha-receptor stimulation (propranolol + epinephrine) slightly decreased the plasma levels of free fatty acids. The plasma levels of glucagon, however, were mainly increased by alpha-receptor stimulation (epinephrine, norepinephrine, propranolol + epinephrine) and increased only to a minor extent by beta-receptor stimulation (isoproterenol, phentolamine + epinephrine) in rabbits. This is in contrast to results reported for humans, where beta-receptor stimulation seems to be most important in stimulating glucagon release.  相似文献   

6.
Glucose homeostasis is maintained by complex neuroendocrine control mechanisms, involving three peripheral organs: the liver, pancreas, and adrenal gland, all of which are under control of the autonomic nervous system. During the past decade, abundant results from various studies on neuroendocrine control of glucose have been accumulated. The principal objective of this review is to provide overviews of basic adrenergic mechanisms closely related to glucose control in the three peripheral organs, and then to discuss the integrated glucoregulatory mechanisms in hemorrhage-induced hypotension and insulin-induced hypoglycemia with special reference to sympathoadrenal control mechanisms. The liver is richly innervated by sympathetic and parasympathetic nerves. The functional implication in glucoregulation of sympathetic nerves has been well-documented, while that of parasympathetic nerves remains less understood. More recently, hepatic glucoreceptors have been postulated to be coupled with capsaicin-sensitive afferent nerves, conveying sensory signals of blood glucose concentration to the central nervous system. The pancreas is also richly supplied by the autonomic nervous system. Besides the well documented adrenergic and cholinergic mechanisms, the potential implication of peptidergic neurotransmission by neuropeptide Y and neuromodulation by galanin has recently been postulated in the endocrine secretory function. Presynaptic interactions of these putative peptidergic neurotransmitters with the classic transmitters, noradrenaline and acetylcholine, in the pancreas remain to be clarified. It may be of particular interest that it was vagus nerve stimulation that caused a dominant release of neuropeptide Y over that caused by sympathetic nerve stimulation in the pig pancreas. The adrenal medulla receives its main nerve supply from the greater and lesser splanchnic nerves. Adrenal medullary catecholamine secretion appears to be regulated by three distinct local mechanisms: adrenoceptor-mediated, dihydropyridine-sensitive Ca2+ channel-mediated, and capsaicin-sensitive sensory nerve-mediated mechanisms. In response to hemorrhagic hypotension and insulin-induced hypoglycemia, the sympathoadrenal system is activated resulting in increases of adrenal catecholamine and pancreatic glucagon secretions, both of which are significantly implicated in glucoregulatory mechanisms. An increase in sympathetic nerve activity occurs in the liver during hemorrhagic hypotension and is also likely to occur in the pancreas in response to insulin-induced hypoglycemia. The functional implication of hepatic and central glucoreceptors has been suggested in the increased secretion of glucose counterregulatory hormones, particularly catecholamines and glucagon.  相似文献   

7.
Based on the fact that human pancreas has thyrotropin-releasing hormone (TRH) immunoreactivity and bioactivity, we studied the effect of TRH on peripheral plasma levels of pancreatic glucagon (IRG) and insulin (IRI) in healthy subjects. During the infusion of 400 micrograms TRH for 120 min basal plasma IRI and IRG levels did not change significantly. In addition, intravenous infusion of 400 micrograms TRH did not affect the increments in the plasma IRG levels and the decrements in the blood glucose during insulin hypoglycemia.  相似文献   

8.
Oxytocin (OT) infusion in normal dogs increases plasma insulin and glucagon levels and increases rates of glucose production and uptake. The purpose of this study was to determine whether the effects of OT on glucose metabolism were direct or indirect. The studies were carried out in normal, unanesthetized dogs in which OT infusion was superimposed on infusion of either somatostatin, which suppresses insulin and glucagon secretion, or clonidine, which suppresses insulin secretion only. Infusion of 0.2 microgram/kg/min of somatostatin suppressed basal levels of plasma insulin and glucagon and inhibited the OT-induced rise of these hormones by about 60-80% of that seen with OT alone. The rates of glucose production and uptake by tissues, measured with [6-3H] glucose, were significantly lower than those seen with OT alone, and the rise in glucose clearance was completely inhibited. Clonidine (30 micrograms/kg, sc), given along with an insulin infusion to replace basal levels of insulin, completely prevented the OT-induced rise in plasma insulin and markedly reduced the glucose uptake seen with OT alone, but did not reduce the usual increase in plasma glucose and glucagon levels or glucose production. To determine whether the OT-induced rise in plasma insulin was in response to the concomitant increase in plasma glucose, similar plasma glucose levels were established in normal dogs by a continuous infusion of glucose and an OT infusion was superimposed. OT did not raise plasma glucose levels further, but plasma insulin levels were increased, indicating that OT can stimulate insulin secretion independently of the plasma glucose changes. Studies by others have shown that the addition of OT to pancreatic islets or intact pancreas can stimulate insulin and glucagon secretion, indicating a direct effect. Our studies agree with that and suggest that in vivo, OT raises plasma insulin levels, at least in part, through a direct action on the pancreas. These studies also show that OT increases glucose production by increasing glucagon secretion and, in addition, a direct effect of OT on glucose production is likely. The OT-induced increase in glucose uptake is mediated largely by increased insulin secretion.  相似文献   

9.
The effect of infused acetylcholine and (2-acetyllactoyloxyethyl)-trimethylammonium hemi-1,5-naphthalenedisulfonate (aclatonium napadisilate), a new cholinergic drug . On endocrine and exocrine secretory responses was simultaneously investigated during the perfusion of isolated rat pancreases. Acetylcholine (1.1 microM) stimulated the output of pancreatic juice and amylase, and significantly elicited the production of both insulin and glucagon. Its effect on somatostatin secretion, however, was minimal. Both pancreatic juice flow and amylase output were also significantly stimulated by aclatonium napadisilate (12 microM). These stimulatory effects of aclatonium napadisilate on the exocrine pancreas were blocked by atropine (25 microM). Aclatonium napadisilate could stimulate glucagon, but could not influence insulin and somatostatin secretion. The addition of atropine had no effect on the release of insulin, glucagon, and somatostatin. These results indicate that the effects of aclatonium napadisilate is cholinergic, and that the action is muscarinic. In addition, it can be concluded that pancreatic somatostatin secretion, as well as other hormones from islet cells, is controlled by the parasympathetic nervous system.  相似文献   

10.
The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, thus impacting glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are unknown, particularly in human. Here we demonstrate that the innervation of human islets is different from that of mouse islets and does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, unlike mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet, and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream.  相似文献   

11.
Pharmacological doses of oxytocin administered in basal conditions evoked a rapid surge in plasma glucose and glucagon levels followed by a later increase in plasma insulin and adrenaline levels. The effects of oxytocin on plasma glucagon and adrenaline levels were potentiated by hypoglycemia. When the endogenous pancreas secretion was suppressed by cyclic somatostatin (150 micrograms/h) and exogenous glucagon (3.5 micrograms/h) and insulin (0.2 mU/kg.min) were both replaced, oxytocin (0.2 U/min) evoked a transient but significant increase in plasma glucose levels suppressing the glucose infusion rate (GIR) in the first 60 min. On the contrary at higher insulin infusion rate (0.6 mU/kg.min) plasma glucose levels and GIR remained unaffected throughout the study. Oxytocin seems also to potentiate glucose-induced insulin secretion as evidenced by hyperglycemic glucose clamp. In conclusion, pharmacological doses of oxytocin seem to exert a prevalent hyperglycemic effect by a combined action at the liver site (as glycogenolytic agent) and at the endocrine pancreas (as a stimulatory agent of A cell secretion).  相似文献   

12.
The aim of the present study was to characterize the effects of pituitary adenylate cyclase activating polypeptide (PACAP) on the endocrine pancreas in anesthetized dogs. PACAP(1-27) and a PACAP receptor (PAC(1)) blocker, PACAP(6-27), were locally administered to the pancreas. PACAP(1-27) (0.005-5 microg) increased basal insulin and glucagon secretion in a dose-dependent manner. PACAP(6-27) (200 microg) blocked the glucagon response to PACAP(1-27) (0.5 microg) by about 80%, while the insulin response remained unchanged. With a higher dose of PACAP(6-27) (500 microg), both responses to PACAP(1-27) were inhibited by more than 80%. In the presence of atropine with an equivalent dose (128.2 microg) of PACAP(6-27) (500 microg) on a molar basis, the insulin response to PACAP(1-27) was diminished by about 20%, while the glucagon response was enhanced by about 80%. The PACAP(1-27)-induced increase in pancreatic venous blood flow was blocked by PACAP(6-27) but not by atropine. The study suggests that the endocrine secretagogue effect of PACAP(1-27) is primarily mediated by the PAC(1) receptor, and that PACAP(1-27) may interact with muscarinic receptor function in PACAP-induced insulin and glucagon secretion in the canine pancreas in vivo.  相似文献   

13.
Xenin is a 25-amino acid peptide of the neurotensin/xenopsin family identified in gastric mucosa as well as in a number of tissues, including the pancreas of various mammals. In healthy subjects, plasma xenin immunoreactivity increases after meals. Infusion of the synthetic peptide in dogs evokes a rise in plasma insulin and glucagon levels and stimulates exocrine pancreatic secretion. The latter effect has also been demonstrated for xenin-8, the C-terminal octapeptide of xenin. We have investigated the effect of xenin-8 on insulin, glucagon and somatostatin secretion in the perfused rat pancreas. Xenin-8 stimulated basal insulin secretion and potentiated the insulin response to glucose in a dose-dependent manner (EC(50)=0.16 nM; R(2)=0.9955). Arginine-induced insulin release was also augmented by xenin-8 (by 40%; p<0.05). Xenin-8 potentiated the glucagon responses to both arginine (by 60%; p<0.05) and carbachol (by 50%; p<0.05) and counteracted the inhibition of glucagon release induced by increasing the glucose concentration. No effect of xenin-8 on somatostatin output was observed. Our observations indicate that the reported increases in plasma insulin and glucagon levels induced by xenin represent a direct influence of this peptide on the pancreatic B and A cells.  相似文献   

14.
Leucine-enkephalin (Leu-Enk) has been shown to be present in endocrine cells of the rat pancreas and may play a role in the modulation of hormone secretion from the islets of Langerhans. Since little is known about the effect of Leu-Enk on insulin and glucagon secretion, it was the aim of this study to determine the role of Leu-Enk on insulin and glucagon secretion from the isolated pancreatic tissue fragments of normal and diabetic rats. Pancreatic tissue fragments of normal and streptozotocin-induced diabetic rats were incubated for 1 h with different concentrations of Leu-Enk (10(-12)-10(-6)M) alone or in combination with either atropine or yohimbine or naloxone. After the incubation period the supernatant was assayed for insulin and glucagon using radioimmunoassay techniques. Leu-Enk (10(-12 )-10(-6)M) evoked large and significant increases in insulin secretion from the pancreas of normal rats. This Leu-Enk-evoked insulin release was significantly (p < 0.05) blocked by atropine, naloxone and yohimbine (all at 10(-6)M). In the same way, Leu-Enk at concentrations of 10(-12)M and 10(-9)M induced significant (p < 0.05) increases in glucagon release from the pancreas of normal rats. Atropine, yohimbine but not naloxone significantly (p < 0.05) inhibited Leu-Enk-evoked glucagon release from normal rat pancreas. In contrast, Leu-Enk failed to significantly stimulate insulin and glucagon secretion from the pancreas of diabetic rats. In conclusion, Leu-Enk stimulates insulin and glucagon secretion from the pancreas of normal rat through the cholinergic, alpha-2 adrenergic and opioid receptor pathways.  相似文献   

15.
We investigated the relationship between autonomic activity to the pancreas and insulin secretion in chronically catheterized dogs when food was shown, during eating, and during the early absorptive period. Pancreatic polypeptide (PP) output, pancreatic norepinephrine spillover (PNESO), and arterial epinephrine (Epi) were measured as indexes for parasympathetic and sympathetic nervous activity to the pancreas and for adrenal medullary activity, respectively. The relation between autonomic activity and insulin secretion was confirmed by autonomic blockade. Showing food to dogs initiated a transient increase in insulin secretion without changing PP output or PNESO. Epi did increase, suggesting beta(2)-adrenergic mediation, which was confirmed by beta-adrenoceptor blockade. Eating initiated a second transient insulin response, which was only totally abolished by combined muscarinic and beta-adrenoceptor blockade. During absorption, insulin increased to a plateau. PP output showed the same pattern, suggesting parasympathetic mediation. PNESO decreased by 50%, suggesting withdrawal of inhibitory sympathetic neural tone. We conclude that 1) the insulin response to showing food is mediated by the beta(2)-adrenergic effect of Epi, 2) the insulin response to eating is mediated both by parasympathetic muscarinic stimulation and by the beta(2)-adrenergic effect of Epi, and 3) the insulin response during early absorption is mediated by parasympathetic activation, with possible contribution of withdrawal of sympathetic neural tone.  相似文献   

16.
A comparative study of the endocrine pancreas was carried out in genetically diabetic (db) mice and in mice with streptozotocin-induced (Sz) diabetes over a 12-week period of pronounced diabetes. Mice were examined at 9, 12 and 21 weeks of age. Plasma and pancreatic levels of immunoreactive insulin and immunoreactive glucagon were measured in both experimental animal models, and the biochemical data obtained were correlated with ultrastructural observations on the endocrine pancreas. Both pancreatic and plasma immunoreactive insulin levels were severely depressed in all Sz mice. Although pancreatic immunoreactive insulin concentrations in db mice were consistently lower than control values, these animals displayed a hyperinsulinemia which gradually dropped to control levels by 21 weeks. Pancreatic immunoreactive glucagon levels in 12- and 21-week-old db mice were markedly lower than those found in either control or in Sz mice. However, both db and Sz mice in all age groups exhibited a marked and persistent hyperglucagonemia. Pancreatic islet tissue was examined concurrently in control and experimental animals. The ultrastructural changes occurring in the endocrine cells are reported and discussed with regard to the pancreatic and plasma levels of the hormones presently monitored and in light of other recent studies on these animal models.  相似文献   

17.
The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock.  相似文献   

18.
Electrical stimulation of the nerve bundles around the hepatic artery and the portal vein activates both the sympathetic and parasympathetic liver nerves; the sympathetic effects clearly predominate. Parasympathetic effects were therefore studied in the rat liver perfused in situ by perivascular nerve stimulation in the presence of both an alpha- and a beta-blocker. In the presence of the alpha-blocker phentolamine and the beta-blocker propranolol all sympathetic nerve effects were prevented; the remaining parasympathetic stimulation had no influence on the basal glucose and lactate metabolism nor on the hemodynamics. Insulin alone, with both alpha- and beta-blockade, provoked a small, parasympathetic nerve stimulation in the presence of insulin a more pronounced enhancement of glucose utilization. In the presence of an alpha- and beta-blocker perivascular nerve stimulation antagonized the glucagon stimulated glucose release, but did not affect lactate exchange. The nerve effect was abolished by the parasympathetic antagonist atropine. Acetylcholine or insulin, with both an alpha- and beta-blocker present, mimicked the effects of nerve stimulation antagonizing the glucagon-stimulated glucose release. Nerve stimulation in the presence of insulin was more effective than either stimulus alone. The present results show that in rat liver stimulation of the parasympathetic hepatic nerves has direct effects on glucose metabolism synergistic with insulin and antagonistic to glucagon.  相似文献   

19.
Summary Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that occurs in several tissues, e.g., in the gut. We have studied PACAP-like immunoreactivity in the pancreas of rat and mouse, and the effects of PACAP-38 on basal and stimulated insulin and glucagon secretion in the mouse. Immunofluorescence staining demonstrated the presence of PACAP-like immunoreactivity in nerve fibers in both the rat and mouse pancreas. The nerve fibers were seen in the exocrine pancreas and surrounding the islets. Occasionally, the nerve fibers occurred within the islets. Most PACAP-positive nerve fibers innervated the intrapancreatic ganglia, although no nerve cell bodies contained PACAP-like immunoreactivity. In-vivo experiments in mice revealed that basal plasma glucagon levels were increased by PACAP-39 injected intravenously at dose levels exceeding 1.8 nmol/kg. Furthermore, PACAP-38 (7 nmol/kg) potentiated the plasma glucagon response to the cholinergic agonist carbachol (0.16 mol/kg). This potentiation was reduced to simple addition by pretreatment with a combined - and -adrenergic blockade by phentolamine (35 mol/kg) and propranolol (8.5 mol/kg). Moreover, PACAP-38 inhibited a carbachol-induced increase in the level of plasma insulin in the absence but not in the presence of adrenergic blockade. PACAP-38 increased basal plasma insulin levels and increased basal plasma glucose levels 6 min and 10 min, respectively, after injection of the peptide. We conclude that PACAP-like immunoreactivity exists in nerve fibers innervating the mouse and rat pancreas, particularly the intrapancreatic ganglia, and that PACAP-38 augments both basal and carbachol-stimulated glucagon secretion in the mouse.  相似文献   

20.
The avian endocrine pancreas is comprised of A-islets containingA1- and A2- cell types, and B-islets containing A1- and B-celltypes. The function of the A2- and B-cells is the secretionof glucagon and insulin, respectively, while that of the A2-cellsis uncertain. The avian pancreas contains small amounts of insulin, has poorinsulinogenic potential, and releases the hormone "sluggishly"in response to high glucose load. Fasting, hormones, and/orvagal stimulation do not alter insulin release. Avian insulinis not anti-lipolytic and is poorly lipogenic in in vitro aviansystems. Both avian pancreas and plasma contain 5-10 times more glucagonthan observed in mammals; however, no studies have been reportedemploying the avian hormone. Birds are extremely sensitive tomammalian glucagon, exhibiting a rapid and marked hyperglycemia,hepatic glycogenolysis, hyperglycerolemia, and hypertriglyceridemia.The lipolytic effects of glucagon are intensified in ‘vitro’by insulin. A pancreatic polypeptide (APP) containing 36 amino acid residueshas been isolated from the avian pancreas, but not from gut,liver, proventriculus, or gizzard. APP circulates normally,fluctuates with nutritional manipulation, and is found in allavian species investigated. At high levels APP induces hepaticglycogenolysis and hypoglycerolemia. At low levels APP is apowerful "gastric" secretogogue, encouraging rapid proventricularvolume, acid, pepsin, and protein release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号