首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Abelson murine leukemia virus transforming gene product is a phosphorylated protein encoded by both viral and cellular sequences. This gene product has an amino-terminal region derived from the gag gene of its parent virus and a carboxyl-terminal region of (abl) derived from a normal murine cellular gene. Using a combination of partial proteolytic cleavage techniques and antisera specific for gag and abl sequences, we mapped in vivo phosphorylation sites to different regions of the protein. Phosphoproteins encoded by strain variants and transformation-defective mutants of Abelson murine leukemia virus with defined deletions in the primary sequence of the abl region were compared by two dimensional limit digest peptide mapping. Specific phosphorylation pattern differences for wild-type and mutant proteins probably represented deletions of specific phosphate acceptor sites in the abl region. An in vitro autophosphorylation activity copurified with the Abelson murine leukemia virus protein from transformation-competent strains. A peptide analysis of such in vitro reactions demonstrated that these phosphorylation sites were restricted to the amino-terminal region, and the specific sites appeared to be unrelated to the sites found on proteins phosphorylated in vivo. Thus, the autophosphorylation reaction probably correlates with an activity important in transformation, but the specific end product in vitro bears little resemblance to its function in vivo.  相似文献   

2.
The human cytomegalovirus major immediate-early (alpha) protein IE1(491aa) plays an important role in controlling viral gene expression at low multiplicities of infection. With a transient complementation assay, full-length IE1(491aa) enhanced the growth of ie1 mutant virus CR208 20-fold better than a deletion mutant lacking 71 carboxyl-terminal amino acids (IE1(1-420aa)). A 16-amino-acid domain between amino acids 476 and 491 was both necessary and sufficient for chromatin-tethering activity; however, this domain was completely dispensable for complementation of CR208 replication. The proximal 55-amino-acid acidic domain (amino acids 421 to 475) was found to be most important for function. A deletion mutant lacking only this domain retained chromatin-tethering activity but failed to complement mutant virus. Interestingly, serine phosphorylation (at amino acids 399, 402, 406, 423, 428, 431, 448, 451, and 455) was not required for complementation. These results show that IE1(491aa) is composed of at least two domains that support replication, a region located between amino acids 1 and 399 that complements ie1 mutant virus replication to low levels and an acidic domain between amino acids 421 and 479 that dramatically enhances complementation.  相似文献   

3.
4.
The integrase (IN) protein of the human immunodeficiency virus (HIV) is required for specific cleavage of the viral DNA termini, and subsequent integration of the viral DNA into target DNA. To identify the various domains of the IN protein we generated a series of IN deletion mutants as fusions to maltose-binding protein (MBP). The deletion mutants were tested for their ability to bind DNA, to mediate site-specific cleavage of the viral DNA ends, and to carry out integration and disintegration reactions. We found that the DNA-binding region resides between amino acids 200 and 270 of the 288-residues HIV-1 IN protein. The catalytic domain of the protein was mapped between amino acids 50 and 194. For the specific activities of IN, cleavage of the viral DNA and integration, both the DNA-binding domain and the conserved amino-terminal region of IN are required. These regions are dispensable however, for disintegration activity.  相似文献   

5.
Abelson murine leukemia virus transforms both lymphoid cells and fibroblasts in vitro and induces a unique type of thymus-dependent lymphoma in vivo. Four fibroblast-transforming strains of Abelson murine leukemia virus were identified, based on the sizes of the Abelson murine leukemia virus-specific phosphoproteins produced by these isolates. Two of these strains, the standard P120- and the P160-producing viruses, transformed lymphoid cells efficiently in vitro and induced Abelson disease in vivo. Two other strains, which synthesized small Abelson murine leukemia virus-specific proteins with molecular weights of 90,000 (P90) and 100,000 (P100), transformed lymphoid cells very poorly both in vitro and in vivo. The reduced oncogenic potentials of these isolates were correlated with a high level of synthesis of fairly unstable P90 and P100. In addition, neither P90 nor P100 functional efficiently in protein kinase assays. The correlation of abnormal metabolism and deficient protein kinase activity with the reduced oncogenic potentials of these virus strains supported a direct role for these proteins and the kinase activity in transformation. Furthermore, these results suggested that the requirements for lymphoid cell transformation and fibroblast transformation are different.  相似文献   

6.
A number of strains of Abelson murine leukemia virus (A-MuLV) with various abilities to transform cells have been identified. Among these is the A-MuLV-P90 strain, a mutant derived from A-MuLV-P120 that encodes an A-MuLV protein missing sequences that are normally present at the extreme carboxy terminus of P120 (N. Rosenberg and O. N. Witte, J. Virol. 33:340-348, 1980). This virus transforms NIH 3T3 cells efficiently but does not transform a high frequency of lymphoid cells in vitro or in vivo. In this communication, we show that of the relatively few tumors induced by A-MuLV-P90 nearly all contained new variant viruses that stably expressed either larger or smaller A-MuLV proteins. Strains that expressed larger A-MuLV proteins behaved like A-MuLV-P120 in transformation assays, whereas those expressing smaller A-MuLV proteins induced a high frequency of tumors after a short latent period in vivo but failed to transform large numbers of lymphoid cells in vitro. Thus, these latter viruses separated the requirements for in vitro transformation of lymphoid cells from those for tumor induction. All of the variants differed from A-MuLV-P90 in the carboxy-terminal region of the A-MuLV protein, suggesting that sequences in this region play a key role in the ability of the virus to interact with hematopoietic cells in vivo and in vitro.  相似文献   

7.
Mitochondrial DNA helicase, also called Twinkle, is essential for mtDNA maintenance. Its helicase domain shares high homology with helicases from superfamily 4. Structural analyses of helicases from this family indicate that carboxyl-terminal residues contribute to NTP hydrolysis required for translocation and DNA unwinding, yet genetic and biochemical information is very limited. Here, we evaluate the effects of overexpression in Drosophila cell culture of variants carrying a series of deletion and alanine substitution mutations in the carboxyl terminus and identify critical residues between amino acids 572 and 596 of the 613 amino acid polypeptide that are essential for mitochondrial DNA helicase function in vivo. Likewise, amino acid substitution mutants K574A, R576A, Y577A, F588A, and F595A show dose-dependent dominant-negative phenotypes. Arg-576 and Phe-588 are analogous to the arginine finger and base stack of other helicases, including the bacteriophage T7 gene 4 protein and bacterial DnaB helicase, respectively. We show here that representative human recombinant proteins that are analogous to the alanine substitution mutants exhibit defects in nucleotide hydrolysis. Our findings may be applicable to understand the role of the carboxyl-terminal region in superfamily 4 DNA helicases in general.  相似文献   

8.
Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.  相似文献   

9.
Analysis of the biological and biochemical activities of pp60recombinant-src proteins encoded by 12 carboxyl-terminal mutants showed that a wide family of alternate src carboxyl termini permit complete transforming and kinase activities. src proteins having carboxyl termini which are up to 10 amino acids longer than that of pp60c-src (17 amino acids longer than that of pp60v-src) still permit transformation. Transformation-positive mutations preserve leucine-516, a residue which is highly conserved in protein-tyrosine kinase sequences; removal causes in vivo protein instability. Successive deletion mutants show that this residue is at the boundary of a region required for kinase activity. pp60src which is truncated just outside this point still transforms cells and binds both pp50 and pp90 cellular proteins.  相似文献   

10.
A collection of influenza virus PB2 mutant genes was prepared, including N-terminal deletions, C-terminal deletions, and single-amino-acid insertions. These mutant genes, driven by a T7 promoter, were expressed by transfection into COS-1 cells infected with a vaccinia virus encoding T7 RNA polymerase. Mutant proteins accumulated to levels similar to that of wild-type PB2. Immunofluorescence analyses showed that the C-terminal region of the protein is essential for nuclear transport and that internal sequences affect nuclear localization, confirming previous results (J. Mukaijawa and D. P. Nayak, J. Virol. 65:245-253, 1991). The biological activity of these mutants was tested by determining their capacity to (i) reconstitute RNA polymerase activity in vivo by cotransfection with proteins NP, PB1, and PA and a virion-like RNA encoding the cat gene into vaccinia virus T7-infected COS-1 cells and (ii) complete with the wild-type PB2 activity. In addition, when tested at different temperatures in vivo, two mutant PB2 proteins showed a temperature-sensitive phenotype. The lack of interference shown by some N-terminal deletion mutants and the complete interference obtained with a C-terminal deletion mutant encoding only 124 amino acids indicated that this protein domain is responsible for interaction with another component of the polymerase, probably PB1. To further characterize the mutants, their ability to induce in vitro synthesis of viral cRNA or mRNA was tested by using ApG or beta-globin mRNA as a primer. One of the mutants, 1299, containing an isoleucine insertion at position 299, was able to induce cRNA and mRNA synthesis in ApG-primed reactions but required a higher beta-globin mRNA concentration than wild-type PB2 for detection of in vitro synthesis. This result suggested that mutant I299 has diminished cap-binding activity.  相似文献   

11.
Previously we found that the amino-terminal region of the NS1 protein of influenza A virus plays a key role in preventing the induction of beta interferon (IFN-beta) in virus-infected cells. This region is characterized by its ability to bind to different RNA species, including double-stranded RNA (dsRNA), a known potent inducer of IFNs. In order to investigate whether the NS1 RNA-binding activity is required for its IFN antagonist properties, we have generated a recombinant influenza A virus which expresses a mutant NS1 protein defective in dsRNA binding. For this purpose, we substituted alanines for two basic amino acids within NS1 (R38 and K41) that were previously found to be required for RNA binding. Cells infected with the resulting recombinant virus showed increased IFN-beta production, demonstrating that these two amino acids play a critical role in the inhibition of IFN production by the NS1 protein during viral infection. In addition, this virus grew to lower titers than wild-type virus in MDCK cells, and it was attenuated in mice. Interestingly, passaging in MDCK cells resulted in the selection of a mutant virus containing a third mutation at amino acid residue 42 of the NS1 protein (S42G). This mutation did not result in a gain in dsRNA-binding activity by the NS1 protein, as measured by an in vitro assay. Nevertheless, the NS1 R38AK41AS42G mutant virus was able to replicate in MDCK cells to titers close to those of wild-type virus. This mutant virus had intermediate virulence in mice, between those of the wild-type and parental NS1 R38AK41A viruses. These results suggest not only that the IFN antagonist properties of the NS1 protein depend on its ability to bind dsRNA but also that they can be modulated by amino acid residues not involved in RNA binding.  相似文献   

12.
A collection of C-terminal deletion mutants of the influenza A virus NS1 gene has been used to define the regions of the NS1 protein involved in its functionality. Immunofluorescence analyses showed that the NS1 protein sequences downstream from position 81 are not required for nuclear transport. The capacity of these mutants to bind RNA was studied by in vitro binding tests using a model vRNA probe. These experiments showed that the N-terminal 81 amino acids of NS1 protein are sufficient for RNA binding activity. The collection of mutants also served to map the NS1 sequences required for nuclear retention of mRNA and for stimulation of viral mRNA translation, using the NP gene as reporter. The results obtained indicated that the N-terminal 113 amino acids of NS1 protein are sufficient for nuclear retention of mRNA and stimulation of viral mRNA translation. The possibility that this region of the protein may be sufficient for virus viability is discussed in relation to the sequences of NS1 genes of field isolates and to the phenotype of known viral mutants affected in the NS1 gene.  相似文献   

13.
Attenuated viral vaccines can be generated by targeting essential pathogenicity factors. We report here the rational design of an attenuated recombinant coronavirus vaccine based on a deletion in the coding sequence of the non-structural protein 1 (nsp1). In cell culture, nsp1 of mouse hepatitis virus (MHV), like its SARS-coronavirus homolog, strongly reduced cellular gene expression. The effect of nsp1 on MHV replication in vitro and in vivo was analyzed using a recombinant MHV encoding a deletion in the nsp1-coding sequence. The recombinant MHV nsp1 mutant grew normally in tissue culture, but was severely attenuated in vivo. Replication and spread of the nsp1 mutant virus was restored almost to wild-type levels in type I interferon (IFN) receptor-deficient mice, indicating that nsp1 interferes efficiently with the type I IFN system. Importantly, replication of nsp1 mutant virus in professional antigen-presenting cells such as conventional dendritic cells and macrophages, and induction of type I IFN in plasmacytoid dendritic cells, was not impaired. Furthermore, even low doses of nsp1 mutant MHV elicited potent cytotoxic T cell responses and protected mice against homologous and heterologous virus challenge. Taken together, the presented attenuation strategy provides a paradigm for the development of highly efficient coronavirus vaccines.  相似文献   

14.
Herpesvirus DNA is packaged into capsids in the nuclei of infected cells in a process requiring at least six viral proteins. Of the proteins required for encapsidation of viral DNA, UL15 and UL28 are the most conserved among herpes simplex virus type 1 (HSV), varicella-zoster virus, and equine herpesvirus 1. The subcellular distribution of the pseudorabies virus (PRV) UL28 protein was examined by in situ immunofluorescence. UL28 was present in the nuclei of infected cells; however, UL28 was limited to the cytoplasm in the absence of other viral proteins. When cells expressing variant forms of UL28 were infected with a PRV UL28-null mutant, UL28 entered the nucleus, provided the carboxyl-terminal 155 amino acids were present. Additionally, PRV UL28 entered the nucleus in cells infected with HSV. Two HSV packaging proteins were tested for the ability to affect the subcellular distribution of UL28. Coexpression of HSV UL15 enabled PRV UL28 to enter the nucleus in a manner that required the carboxyl-terminal 155 amino acids of UL28. Coexpression of HSV UL25 did not affect the distribution of UL28. We propose that an interaction between UL15 and UL28 facilitates the transport of a UL15-UL28 complex to the infected-cell nucleus.  相似文献   

15.
16.
17.
J Jung  HY Kim  T Kim  BH Shin  GS Park  S Park  YJ Chwae  HJ Shin  K Kim 《PloS one》2012,7(7):e41087
To investigate the contributions of carboxyl-terminal nucleic acid binding domain of HBV core (C) protein for hepatitis B virus (HBV) replication, chimeric HBV C proteins were generated by substituting varying lengths of the carboxyl-terminus of duck hepatitis B virus (DHBV) C protein for the corresponding regions of HBV C protein. All chimeric C proteins formed core particles. A chimeric C protein with 221-262 amino acids of DHBV C protein, in place of 146-185 amino acids of the HBV C protein, supported HBV pregenomic RNA (pgRNA) encapsidation and DNA synthesis: 40% amino acid sequence identity or 45% homology in the nucleic-acid binding domain of HBV C protein was sufficient for pgRNA encapsidation and DNA synthesis, although we predominantly detected spliced DNA. A chimeric C protein with 221-241 and 251-262 amino acids of DHBV C, in place of HBV C 146-166 and 176-185 amino acids, respectively, could rescue full-length DNA synthesis. However, a reciprocal C chimera with 242-250 of DHBV C ((242)RAGSPLPRS(250)) introduced in place of 167-175 of HBV C ((167)RRRSQSPRR(175)) significantly decreased pgRNA encapsidation and DNA synthesis, and full-length DNA was not detected, demonstrating that the arginine-rich (167)RRRSQSPRR(175) domain may be critical for efficient viral replication. Five amino acids differing between viral species (underlined above) were tested for replication rescue; R169 and R175 were found to be important.  相似文献   

18.
The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis.  相似文献   

19.
20.
Cheng G  Yang K  He B 《Journal of virology》2003,77(18):10154-10161
The gamma(1)34.5 protein of herpes simplex virus type 1 (HSV-1) functions to block the shutoff of protein synthesis involving double-stranded RNA-dependent protein kinase (PKR). In this process, the gamma(1)34.5 protein recruits cellular protein phosphatase 1 (PP1) to form a high-molecular-weight complex that dephosphorylates eIF-2alpha. Here we show that the gamma(1)34.5 protein is capable of mediating eIF-2alpha dephosphorylation without any other viral proteins. While deletion of amino acids 1 to 52 from the gamma(1)34.5 protein has no effect on eIF-2alpha dephosphorylation, further truncations up to amino acid 146 dramatically reduce the activity of the gamma(1)34.5 protein. An additional truncation up to amino acid 188 is deleterious, indicating that the carboxyl-terminal domain alone is not functional. Like wild-type HSV-1, the gamma(1)34.5 mutant with a truncation of amino acids 1 to 52 is resistant to interferon, and resistance to interferon is coupled to eIF-2alpha dephosphorylation. Intriguingly, this mutant exhibits a similar growth defect seen for the gamma(1)34.5 null mutant in infected cells. Restoration of the wild-type gamma(1)34.5 gene in the recombinant completely reverses the phenotype. These results indicate that eIF-2alpha dephosphorylation mediated by the gamma(1)34.5 protein is required for HSV response to interferon but is not sufficient for viral replication. Additional functions or activities of the gamma(1)34.5 protein contribute to efficient viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号