首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Richard L. Van Metter   《BBA》1977,462(3):642-658
The “light-harvesting chlorophyll a/b · protein” described by Thornber has been prepared electrophoretically from spinach chloroplasts. The optical properties relevant to energy transfer have been measured in the red region (i.e. 600–700 nm). Measurements of the absorption spectrum, fluorescence excitation spectrum and excitation dependence of the fluorescence emission spectrum of this protein confirm that energy transfer from chlorophyll b to chlorophyll a is highly efficient, as is the case in concentrated chlorophyll solutions and in vivo. The excitation dependence of the fluorescence polarization shows a minimum polarization of 1.9 % at 650 nm which is the absorption maximum of chlorophyll b in the protein and rises steadily to a maximum value of 13.8 % at 695 nm, the red edge of the chlorophyll a absorption band. Analysis of these measurements shows that at least two unresolved components must be responsible for the chlorophyll a absorption maximum. Comparison of polarization measurements with those observed in vivo shows that most of the depolarization observed in vivo can take place within a single protein. Circular dichroism measurements show a doublet structure in the chlorophyll b absorption band which suggests an exciton splitting not resolved in absorption. Analysis of these data yields information about the relative orientation of the S0→S1 transition moments of the chlorophyll molecules within the protein.  相似文献   

2.
Reaction center particles isolated from carotenoidless mutant Rhodopseudomonas spheroides were studied with the aim of determining the pigment composition and the molar extinction coefficients.

Two independent sets of measurements using a variety of methods show that a sample with A800 nm = 1.00 contains 20.8 ± 0.8 μM tetrapyrrole and that the ratio of bacteriochlorophyll to bacteriopheophytin is 2:1.

Measurements were made of the absorption changes attending the oxidation of cytochrome c coupled to reduction of the photooxidized primary electron donor in reaction centers, using laser flash excitation. The ratio of the absorption change at 865 nm (due to the bleaching of P870) to that at 550 nm (oxidation of cytochrome) was found to be 5.77.

These results, combined with other data, yield a pigment composition of 4 bacteriochlorophyll and 2 bacteriopheophytin molecules in a reaction center. Based on this choice, extinction coefficients are determined for the 802- and 865-nm bands: 802 nm = 288 (± 14) mM−1 · cm−1 and 865 nm = 128 (± 6) mM−1 · cm−1. For reversible bleaching of the 865-nm band, Δred - ox865nm = 112 (± 6) mM−1 · cm−1 (referred to the molarity of reaction centers). Earlier reported values of photochemical quantum efficiency are recomputed, and the revised values are shown to be compatible with those obtained from measurements of fluorescence transients.  相似文献   


3.
Pierre Setif  Guy Hervo  Paul Mathis 《BBA》1981,638(2):257-267
Absorption changes induced in chlorophyll protein (CP 1) particles by short laser flashes have been analyzed in order to decide whether a state lasting for a few microseconds at 21°C or 800 μs at 10 K corresponds to the biradical P-700+ ... A1 (A1 being a chlorophyll a) or to a triplet state produced in a submicrosecond recombination of the preceding state. At 21°C the spectrum of the flash-induced ΔA (720–870 nm) presents a flat-topped band from 740 to 820 nm, clearly different from that of P-700+. A saturation curve (ΔA vs. laser energy), obtained with a 2 or 10 ns laser pulse, indicates that ΔA saturates at a value 2- or 3-times smaller than that expected on the basis of the chemical oxidation of P-700. At 21°C the size of flash-induced ΔA is slightly decreased (5–15%) when the sample is subjected to a 400 G magnetic field. The kinetics of decay are not affected; they are not affected either by the oxygen concentration. At 10 K the spectrum of the flash-induced ΔA has been measured between 650 and 1700 nm. Between 650 and 720 nm, the spectrum presents only one major negative peak at 702 nm; it is quite different from that due to the chemical oxidation of P-700 (which has additional peaks at 688 and 677 nm). Between 720 and 870 nm, the spectrum is identical to that obtained at 21°C. Above 870 nm, the spectrum includes a broad band around 1250 nm, which is absent in P-700+. A saturation curve leads to a maximum ΔA greater than that at 21°C and which is also greater with a 1 μs dye laser flash than with a 10 ns ruby laser flash. An analysis of the spectral data indicates that these do not fit correctly with the hypothesis of a contribution of P-700+ and of a chlorophyll a anion radical. They fit more closely with the hypothesis of a triplet state of P-700, a hypothesis which is discussed in relation to other experimental data.  相似文献   

4.
G.D. Case  W.W. Parson 《BBA》1973,325(3):441-453
Shifts in the absorption bands of bacteriochlorophyll and carotenoids in Chromatium vinosum chromatophores were measured after short actinic flashes, under various conditions. The amplitude of the bacteriochlorophyll band shift correlated well with the amount of cytochrome c-555 that was oxidized by P870+ after a flash. No bacteriochlorophyll band shift appeared to accompany the photooxidation of P870 itself, nor the oxidation of cytochrome c-552 by P870+. The carotenoid band shift also correlated with cytochrome c-555 photooxidation, although a comparatively small carotenoid shift did occur at high redox potentials that permitted only P870 oxidation.

The results explain earlier observations on infrared absorbance changes that had suggested the existence of two different photochemical systems in Chromatium. A single photochemical system accounts for all of the absorbance changes.

Previous work has shown that the photooxidations of P870 and cytochrome c-555 cause similar changes in the electrical charge on the chromatophore membrane. The specific association of the band shifts with cytochrome c-555 photooxidation therefore argues against interpretations of the band shifts based on a light-induced membrane potential.  相似文献   


5.
Absorption and fluorescence emission spectra of Rhodopseudomonas capsulata, strains 37b4 (wild type), A1a+ (blue-green mutant strain), Y5 (phototroph negative, having only B-800–850 bacteriochlorophyll-carotenoid-protein complex) at 4 K, 77 K and 300 K were measured. The fluorescence emission at 890 nm of the B-870 bacteriochlorophyll band dominates the emission of other spectral forms of the strains 37b4 and A1a+, while in strain Y5 a fluorescence emission band at 865 nm of the B-850 bacteriochlorophyll dominates. Very little fluorescence was observed at 805 nm. A linear relation between relative fluorescence intensity and the exciting light intensity was observed. The integrated fluorescence yield increased as the temperature was lowered from 300 K to 4 K. The results are discussed in the light of the arrangement of pigment molecules in the membrane and the process of energy migration within the photosynthetic apparatus.  相似文献   

6.
Herman Kramer  Paul Mathis   《BBA》1980,593(2):319-329
The formation of the triplet state of carotenoids (detected by an absorption peak at 515 nm) and the photo-oxidation of the primary donor of Photosystem II, P-680 (detected by an absorption increase at 820 nm) have been measured by flash absorption spectroscopy in chloroplasts in which the oxygen evolution was inhibited by treatment with Tris. The amount of each transient form has been followed versus excitation flash intensity (at 590 or 694 nm). At low excitation energy the quantum yield of triplet formation (with the Photosystem II reaction center in the state Q) is about 30% that of P-680 photo-oxidation. The yield of carotenoid triplet formation is higher in the state Q than in the state Q, in nearly the same proportion as chlorophyll a fluorescence. It is concluded that, for excited chlorophyll a, the relative rates of intersystem crossing to the triplet state and of fluorescence emission are the same in vivo as in organic solvent. At high flash intensity the signal of P-680+ completely saturates, whereas that of carotenoid triplet continues to increase.

The rate of triplet-triplet energy transfer from chlorophyll a to carotenoids has been derived from the rise time of the absorption change at 515 nm, in chloroplasts and in several light-harvesting pigment-protein complexes. In all cases the rate is very high, around 8 · 107 s−1 at 294 K. It is about 2–3 times slower at 5 K. The transitory formation of chlorophyll triplet has been verified in two pigment-protein complexes, at 5 K.  相似文献   


7.
1. Fluoride is a mixed-type inhibitor of the cytochrome c oxidase activity with a Ki for the free enzyme of 10 mM and a Ki for the cytochrome c-complexed enzyme of 35 mM.

2. Fluoride shifts the γ-band of the enzyme from 423 to 421 nm and the -band from 597 to 598 nm. The difference spectrum (oxidized enzyme in the presence of fluoride minus oxidized enzyme) has peaks at 400, 453, 482, 605 and 638 nm and troughs at 430, 520, 552 and 674 nm. The changes in absorbance are small (about 3% at absorbance maxima) with respect to those of other hemoproteins.

3. On addition of fluoride to isolated cytochrome c oxidase 3 reactions can be distinguished: (I) a bimolecular binding reaction (Kon = 4 M−1 · s−1 and koff = 2.9 · 10−2s−1 at 25 °C, pH 7.4) contributing at 638 nm and 430 nm; (II) a first-order reaction (k = 2.4 · 10−2) s−1 at 22 °C, pH 7.2) visible mainly at 430 nm and (III) a very slow reaction with a half-time in the order of 10 min.

4. The spectroscopic dissociation constants for the fluoride binding, determined from Hill plots using the absorbance changes at 638 and 430 nm, are similar (7 and 10 mM, respectively, at 22 °C, pH 7.2).

5. A mechanism for the reaction is discussed in which the bimolecular binding reaction is followed by a conformational change of the enzyme-fluoride complex.  相似文献   


8.
《BBA》1986,850(1):156-161
The orientation of the various absorbing and fluorescing dipoles in Photosystem II have been investigated by linearly polarized light spectroscopy at 5 K, performed on macroscopically oriented PS II complexes derived from Chlamydomonas reinhardtii. Linear dichroism and absorption spectra show that the QY transitions of the chlorophyll molecules are mostly tilted at less than 35° from the plane of largest cross-section of the particle (which in vivo coincides with the plane of the thylakoid membrane). The chlorophyll forms absorbing at 676 and 683 nm are oriented closer to the membrane than the forms absorbing at 665 and 670 nm which are tilted at approximately 35° from the plane. A dip observed around 680 nm in the LD/absorption spectra indicates a component tilted at a larger angle away from the membrane plane than the 676 nm- and 683 nm-absorbing species. A component weakly absorbing around 693 nm and exhibiting a negative LD (tilt larger than 35°) is clearly resolved. The amplitude of the LD at 693 nm relative to that observed at the maximum (676 nm) varies from sample to sample. In the blue spectral region, two populations of carotenoids are observed; one absorbs around 460 and 490 nm, while the other absorbs around 510 nm. They are oriented out of and near to the thylakoid plane, respectively. Comparison of polarized absorption and fluorescence spectra from the same oriented samples allows the assignment of the 695 nm fluorescence emission to the dipoles responsible for the LD signal at 693 nm.  相似文献   

9.
J.Peter Kusel  Bayard T. Storey 《BBA》1973,305(3):570-580
Highly purified mitochondrial preparations from the trypanosomatid hemoflagellate, Crithidia fasciculata (A.T.C.C. No.11745), were examined by low-temperature difference spectroscopy. The cytochrome a+a3 maximum of hypotonically-treated mitochondria reduced with succinate, was shifted from 605 nm at room temperature to 601 nm at 77 °K. The Soret maximum, found at 445 nm at 23 °C, was split at 77 °K into two approximately equally absorbing species with maxima at 438 and 444 nm. A prominent shoulder observed at 590 nm with hypotonically-treated mitochondria was not present in spectra of isotonic controls.

The cytochrome b maxima observed in the presence of succinate plus antimycin A were shifted from the 431 and 561 nm positions observed at 23 °C to 427 and 557 nm at 77 °K. Multiple b cytochromes were not apparent.

Unlike other soluble c-type cytochromes, the maximum of cytochrome c555 was not shifted at 77 °K although it was split to give a 551 nm shoulder adjacent to the 555 nm maximum. This lack of a low-temperature blue shift was true for partially purified hemoprotein preparations as well as in situ in the mitochondrial membrane.

Using cytochrome c555-depleted mitochondria, a cytochrome c1 pigment was observed with a maximum at 420 nm and multiple maxima at 551, 556, and 560 nm. After extraction of non-covalently bound heme, the pyridine hemochromogen difference spectrum of cytochrome c555-depleted preparations exhibited an maximum at 553 nm at room temperature.

The reduced rate of succinate oxidation by cytochrome c555-depleted mitochondria and the ferricyanide requirement for the reoxidation of cytochrome c1, even in the presence of antimycin, indicated that cytochrome c555-mediated electron transfer between cytochromes c1 and a+a3 in a manner analagous to that of cytochrome c in mammalian mitochondria.  相似文献   


10.
J. Amesz  M.P.J. Pulles  B.R. Velthuys 《BBA》1973,325(3):472-482

1. 1. Spinach chloroplasts were stored in the dark for at least 1 h, rapidly cooled to −40 °C, and illuminated with continuous light or short saturating flashes. In agreement with the measurements of Joliot and Joliot, chloroplasts that had been preilluminated with one or two flashes just before cooling showed a less efficient increase in the yield of chlorophyll a fluorescence upon illumination at −40 °C than dark-adapted chloroplasts. The effect disappeared below −150 °C, but reappeared again upon warming to −40 °C. Little effect was seen at room temperature in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), added after the preillumination.

2. 2. Light-induced absorbance difference spectra at −40 °C in the region 500–560 nm indicated the participation of two components, the socalled 518-nm change (P518) and C-550. After preillumination with two flashes the absorbance change at 518 nm was smaller, and almost no C-550 was observed. After four flashes, the bands of C-550 were clearly visible again.

3. 3. The fluorescence increase and the absorbance change at 518 nm showed the same type of flash pattern with a minimum after the second and a maximum at the fourth flash. In the presence of 100 μM hydroxylamine, the fluorescence response was low after the fourth and high again after the sixth flash, which confirmed the hypothesis that the flash effect was related to the so-called S-state of the electron transport pathway from water to Photosystem 2.

4. 4. The kinetics of the light-induced absorbance changes were the same at each wavelength, and, apart from the size of the deflection, they were independent of preillumination. Flash experiments indicated that the absorbance changes were a one-quantum reaction. This was also true for the fluorescence increase in dark-adapted chloroplasts, but with preilluminated chloroplasts several flashes were needed to approximately saturate the fluorescence yield.

5. 5. The results are discussed in terms of a mechanism involving two electron donors and two electron acceptors for System 2 of photosynthesis.

Abbreviations: DCMU, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea  相似文献   


11.
J. B. Thomas  F. Bretschneider 《BBA》1970,205(3):390-400
1. The absorption spectrum of chlorophyll b in vivo at 77°K is presented as the difference spectrum between preparations of spinach and chlorophyll b-free Vischeria stellata chloroplasts.

2. A shoulder on this spectrum around 662 nm is due to a component different from chlorophyll b. This component may well be identical with the chlorophyll a form, chlorophyll a (665).

3. The 77°K chlorophyll b absorption spectra in the nonfractionated photosyn-thetic pigment apparatus and in fractions mainly representing Photosystems 1 or 2 are not significantly different.

4. The aerobic irreversible photobleaching of chlorophyll b was studied in the intact pigment complex as well as in fractions mainly consisting of Photosystem 1 or 2. A two-step photobleaching was observed in all cases. The time-course of this bleaching was not significantly different for chlorophyll b in both fractions.

5. These results do not indicate that more than a single chlorophyll b complex occurs in vivo.  相似文献   


12.
M. Das  Govindjee 《BBA》1967,143(3):570-576
When Chlorella cells are ruptured at pH 4.6 by sonication in air, its absorption spectrum can be best explained if one assumes that a long-wave chlorophyll a form (Chl a 693) is preferentially destroyed. Using these preparations, and comparing them with the algal suspension and the sonicates prepared at pH 7.8 under argon, we make the following conclusions: (a) The red drop beginning at about 675–680 nm in the action spectrum* of fluorescence at 298 °K must be due to the presence of a non-(or weakly) fluorescent form of chlorophyll a. We suggest that this form is Chl a 693. The red drop is absent in the aerobic sonicates. (b) The red drop in fluorescence in whole algal cells is not due to any errors in absorption measurements; this drop is clearly present in the anaerobic sonicates. (c) The emission band at 723 nm, discovered by in whole Chlorella cells at 77 °K, may be due to increased fluorescence efficiency of Chl a 693 at low temperature; the F723 band is absent in aerobic sonicates.  相似文献   

13.
The degree of fluoresence polarization, P, of unoriented and magnetically oriented spinach chloroplasts as a function of excitation (400–680 nm) and emission wavelengths (675–750 nm) is reported. For unoriented chloroplasts P can be divided into two contributions, PIN and PAN. The latter arises from the optical anisotropy of the membranes which is due to the orientation with respect to the membrane plane of pigment molecules in vivo. The intrinsic polarization PIN, which reflects the energy transfer between different pigment molecules and their degree of mutual orientation, can be measured unambiguously only if (1) oriented membranes are used and the fluorescence is viewed along a direction normal to the membrane planes, and (2) the excitation is confined to the Qy (≈ 660−680 nm) absorption band of chlorophyll in vivo. With 670–680 nm excitation, values of P using unoriented chloroplasts can be as high as +14%, mostly reflecting the orientational anisotropy of the pigments. Using oriented chloroplasts, PIN is shown to be +5±1%. The excitation wavelength dependence studies of PIN indicate that the carotenoid and chlorophyll Qy transition moments tend to be partially oriented with respect to each other on a local level (within a given photosynthetic unit or its immediate neighbors).  相似文献   

14.
Norio Murata 《BBA》1970,205(3):379-389
The kinetics of chlorophyll a fluorescence were measured at 685 nm in intact cells of Porphyra yezoensis during alternate illumination of the organism with two colors of light, one absorbed by phycoerythrin and the other by chlorophyll a. Two components of fluorescence change overlapping each other in time were separated; the fast component may be controlled by the rate of Photoreaction II which competes with the fluorescence emission process, and the slow component by the light-induced change in excitation transfer between two pigment systems as suggested in our previous study6. The kinetics of the slow change in fluorescence yield were extensively investigated.

Terms, “State I” and “State II” are used to describe the state of excitation transfer. In the State I a lesser amount of excitation energy is delivered in Pigment System I and greater to Pigment System II than in the State II. The conversion of the states is achieved by the selective illumination of pigment systems.

The conversion from the State I toward the State II occurred under Light II (light absorbed by Pigment System II) with a half time of about 10 sec, and it saturated at a light intensity of less than 1000 ergs×cm−2×sec−1. The reverse conversion occurred under Light I (light absorbed by Pigment System I) with a half time of about 5 sec, and it saturated at about 10 000 ergs×cm−2×sec−1.

Light I and Light II competed with each other in the interconversion of the states.  相似文献   


15.
We have used picosecond absorption spectroscopy with low intensity (5 · 1011–5 · 1012 photons · pulse−1 · cm−2) continuously tunable infrared (800–900 nm) pulses to study the energy transfer dynamics in the isolated B800–850 pigment-protein complex of Rhodobacter sphaeroides. Our results suggest the following picture of the energy transfer dynamics: (i) a fast transfer, within approx. 1 ps, from BChl 800 to BChl 850; (ii) transfer among different BChl 800's with a rate which is at the most of the same order of magnitude as that of BChl 800 → BChl 850 transfer; (iii) very fast transfer (k > 1 · 1012 s−1) between BChl 850 molecules. Assuming Förster type of energy transfer maximum distances of about 22 and 15 Å are obtained for the BChl 800–BChl 850 and BChl 850–BChl 850 separations, respectively.  相似文献   

16.
Bacon Ke  Thomas H. Chaney  Dan W. Reed 《BBA》1970,216(2):373-383
1. By means of Q-switched ruby-laser flash excitation, the photooxidation of P870 in the reaction-center complex isolated from Rhodopseudomonas spheroides takes place within 1 μsec. The reduction of photooxidized P870 in the dark follows a first-order kinetics, with a pseudo first-order rate constant of 1.85×108 l×mole-1×sec-1 and an activation energy of 6 kcal/mole.

2. Through an electrostatic interaction of the bacteriochlorophyll reaction-center complex and mammalian cytochrome c, an intimate contact between the two components resulted, and a collision-independent electron-transfer with a halftime of 25 μsec can be attained by laser-flash excitation. The absorbance changes at 870 and 550 nm indicated a good stoichiometry of the reaction. The oxidation of the c-type cytochrome in cells of Rps. spheroides (R-26 mutant) has a halftime of 12 μsec.

3. The portion of P870 which recovered rapidly was closely related to the mole ratio of cytochrome/P870. Complete recovery with a halftime of 25 μsec occurred when the cytochrome/P870 ratio was above approx. 10. At cytochrome/P870 ratios lower than 10, only the fraction of the reaction-center complex which have cytochromes bound at the active site can recover with the rapid decay time. Ultrafiltration measurements showed that each particle of the reaction-center complex can bind approx. 24 cytochrome molecules.

4. An electro static interaction is expected simply from the large difference between the isoelectric points of cytochrome c ( 10) and that of the reaction-center complex (4.1 measured by electro-focusing). The electro static interaction was further evidenced by the effects of pH, ionic strength, and by polylysine displacement of binding sites on the coupled oxidation of ferrocytochrome c by P870. From the limiting polylysine concentration giving complete blocking of cytochrome coupling, it was calculated that each reaction-center complex with a particle weight of 6.5×105 contained approx. 500 negative charges.

5. Arrhenius plot of the first-order rate constants vs. the reciprocal absolute temperature yielded an activation energy of 12 kcal/mole for the cytochrome/P870 reaction, which is presumably the energy needed for cytochrome to achieve the most favorable orientation for the rapid electron transfer. Below the freezing temperature of the sample, the cytochrome reaction appeared to be uncoupled. The temperature dependence is consistent with the effect of viscosity on the reaction rate.

6. Double flash excitations spaced 200 μsec apart showed that at a cytochrome/P870 ratio of 24, the first flash caused maximum oxidation, indicating that all the reaction-center particles have at least one cytochrome attached to the active site. However, only 60% of the particles have a second cytochrome closely attached and capable of undergoing the rapid electron transport.  相似文献   


17.
Chromatophores from Rhodopseudomonas sphaeroides were oriented by allowing aqueous suspensions to dry on glass plates. Orientation of reaction center pigments was investigated by studying the linear dichroism of chromatophores in which the absorption by antenna bacteriochlorophyll had been attenuated through selective oxidation. Alternatively the light-induced absorbance changes, in the ranges 550–650 and 700–950 nm, were studied in untreated chromatophores. The long wave transition moment of reaction center bacteriochlorophyll (P-870) was found to be nearly parallel to the plane of the membrane, whereas the long wave transition moments of bacteriopheophytin are polarized out of this plane. For light-induced changes the linear dichroic ratios, defined as Δavah, are nearly the same for untreated and for oxidized chromatophores. Typical values are 1.60 at 870 nm, 0.80 at 810 nm, 1.20 at 790 nm, 0.70 at 765 nm, 0.30 at 745 nm, and 0.50 at 600 nm. The different values for the absorbance decrease at 810 nm (0.80) and the increase at 790 nm (1.20) are incompatible with the hypothesis that these changes are due to the blue-shift of a single band. We propose that the decreases at 870 and 810 nm reflect bleaching of the two components of a bacteriochlorophyll dimer, the “special pair” that shares in the photochemical donation of a single electron. The increase at 790 nm then represents the appearance of a monomer band in place of the dimer spectrum, as a result of electron donation. This hypothesis is consistent with available data on circular dichroism. It is confirmed by the presence of a shoulder at 810 nm in the absorption spectrum of reaction centers at low temperature; this band disappears upon photooxidation of the reaction centers. For the changes near 760 nm, associated with bacteriopheophytin, the polarization and the shape of the “light-dark” difference spectrum (identical to the first derivative of the absorption spectrum) show that the 760 nm band undergoes a light-induced shift to greater wavelengths.  相似文献   

18.
ESR studies at approximately 10 °K on the reaction centre complex of the photosynthetic bacterium Rhodopseudomonas spheroides (strain R26), have revealed bacteriochlorophyll triplet states and a component which has an ESR absorption centred at g = 1.82. The triplet-state bacteriochlorophyll is induced only in the light and is only detectable when the reaction-centre bacteriochlorophyll and its primary electron acceptor are reduced; the ESR triplet state signals are composed of both ESR absorption and ESR emission bands. The oxidation-reduction properties of the g = 1.82 component and its flash-induced kinetic behavior in relation to that of P870 are those expected for the primary electron acceptor in bacterial photosynthesis.  相似文献   

19.
M. Kitajima  W.L. Butler 《BBA》1975,408(3):297-305
The parameters listed in the title were determined within the context of a model for the photochemical apparatus of photosynthesis.

The fluorescence of variable yield at 750 nm at −196 °C is due to energy transfer from Photosystem II to Photosystem I. Fluorescence excitation spectra were measured at −196 °C at the minimum, FO, level and the maximum, FM, level of the emission at 750 nm. The difference spectrum, FMFO, which represents the excitation spectrum for FV is presented as a pure Photosystem II excitation spectrum. This spectrum shows a maximum at 677 nm, attributable to the antenna chlorophyll a of Photosystem II units, with a shoulder at 670 nm and a smaller maximum at 650 nm, presumably due to chlorophyll a and chlorophyll b of the light-harvesting chlorophyll complex.

Fluorescence at the FO level at 750 nm can be considered in two parts; one part due to the fraction of absorbed quanta, , which excites Photosystem I more-or-less directly and another part due to energy transfer from Photosystem II to Photosystem I. The latter contribution can be estimated from the ratio of FO/FV measured at 692 nm and the extent of FV at 750 nm. According to this procedure the excitation spectrum of Photosystem I at −196 °C was determined by subtracting 1/3 of the excitation spectrum of FV at 750 nm from the excitation spectrum of FO at 750 nm. The spectrum shows a relatively sharp maximum at 681 nm due to the antenna chlorophyll a of Photosystem I units with probably some energy transfer from the light-harvesting chlorophyll complex.

The wavelength dependence of was determined from fluorescence measurements at 692 and 750 nm at −196 °C. is constant to within a few percent from 400 to 680 nm, the maximum deviation being at 515 nm where shows a broad maximum increasing from 0.30 to 0.34. At wavelengths between 680 and 700 nm, increases to unity as Photosystem I becomes the dominant absorber in the photochemical apparatus.  相似文献   


20.
Fluorescence and energy transfer properties of bean leaves greened by brief, repetitive xenon flashes were studied at −196 °C. The bleaching of P-700 has no influence on the yield of fluorescence at any wavelength of emission. The light-induced fluorescence yield changes which are observed in both the 690 and 730 nm emission bands in the low temperature fluorescence spectra are due to changes in the state of the Photosystem II reaction centers. The fluorescence yield changes in the 730 nm band are attributed to energy transfer from Photosystem II to Photosystem I. Such energy transfer was also confirmed by measurements of the rate of photooxidation of P-700 at −196 °C in leaves in which the Photosystem II reaction centers were either all open or all closed. It is concluded that energy transfer from Photosystem II to Photosystem I occurs in the flashed bean leaves which lack the light-harvesting chlorophyll a/b protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号