首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The waste biomass of Aspergillus niger, following citric acid production, was used as a source for fungal chitosan extraction. The produced chitosan was characterized with deacetylation degree of 89.6%, a molecular weight of 25,000 dalton, 97% solubility in 1% acetic acid solution and comparable FT-IR spectra to standard shrimp chitosan. Fungal chitosan was applied as a cotton fabric finishing agent using pad-dry-cure method. The topographical structure of chitosan-treated fabrics (CTF) was much improved compared with control fabrics. CTF, after durability tests, exhibited a powerful antimicrobial activity against both E. coli and Candida albicans, the captured micrographs for E. coli cells contacted with CTF showed a complete lysis of cell walls with the prolonging contact time. The produced antimicrobial CTF could be proposed as a suitable material for many medical and hygienic applications.  相似文献   

2.
A total of 38 lactic acid bacteria, belonging to Lactobacillus, isolated from 24 samples of traditional Egyptian dairy products, were screened for antimicrobial activity against different Gram-positive and Gram-negative bacteria. A strain of Lactobacillus brevis showed the best inhibitory activity when tested by well diffusion assay. The antibacterial activity was pronounced between early logarithmic and early stationary phases. The strain produced a heat-stable antimicrobial compound showing no reduction in activity after heat treatment from 60 to 100°C for 15 and 30 min. Since it was inactivated by proteolytic enzymes, it is considered to be proteinaceous in nature and, therefore, referred to as a bacteriocin-like substance. This compound was also active over a wide pH range (pH 2–6). The antimicrobial compound was partially purified by 40% ammonium sulfate precipitation. Lactobacillus brevis was tested for its in vitro antibiotics susceptibility, tolerance to bile salts, resistance to low pH values, acidifying activity, proteolytic activity, and haemolytic activity. The results showed the potential of L. brevis strain as a probiotic culture, and hence it can be utilized in the manufacturing of pharmaceuticals and dietary supplements.  相似文献   

3.
During a search for nonpolyenic antifungal antibiotics, an actinomycete designated AC104 was isolated from a Saharan soil sample by a dilution agar plating method using a chitin - vitamins B medium supplemented with rifampicin. Isolate AC104 presented the morphological and the chemical characteristics of the genus Actinomadura. On the basis of 76 physiological tests and 16S rDNA analysis, this isolate was determined to be quite different from the known species of Actinomadura. It is active against filamentous fungi and both Gram-positive and Gram-negative bacteria. The production of antibiotic substances was investigated using several culture media. The highest antimicrobial activities were obtained on ISP2 medium. The benzenic extract contained five bioactive spots detected on thin layer chromatography plates. Among these antibiotics, a complex called 104A, which showed the more interesting antifungal activity, was selected and purified by reverse-phase high-pressure liquid chromatography. This complex is composed of four compounds. Ultraviolet-visible, infrared, mass, and 1H nuclear magnetic resonance spectroscopy studies showed that these molecules contain an aromatic ring substituted by aliphatic chains. These compounds differ from the known antibiotics produced by Actinomadura species.  相似文献   

4.
Blends of chitosan and cellulose were successfully produced using 1-butyl-3-methylimidazolium acetate (BMIMAc) as solvent media. Films were prepared from the blends by manually spreading the solution on a flat surface and precipitating the polymers in a mixture of methanol and water. To prevent the shrinkage of films, most of the absorbed water was removed by freeze drying under vacuum. Films prepared from the polymeric solutions were investigated by means of FT-IR, TGA, X-ray diffraction and SEM measurements. The shifting of the bands corresponding to -NH and CO groups of chitosan (FT-IR), the absence of the diffraction peaks at 2θ = 10.7 and 14.9° (XRD), the increased Ea for thermal decomposition for all the polymeric blends (MTGA), and the presence of an apparent homogeneous structure with no phase separation of the two polymers (SEM) provide evidence for the miscibility between chitosan and cellulose in the solid state.  相似文献   

5.
6.
Among 46 isolates of Staphylococcus aureus obtained from cattle in the State of Paraíba, Brazil, four were shown to produce antimicrobial substances (AMS). The two best AMS producers carried single plasmids of about 8·0 kbp and 50 kbp, respectively, which were designated pRJ34 and pRJ35. Curing experiments and molecular analysis associated the AMS production with the presence of these plasmids in the cells. The biochemical properties exhibited by the AMS suggested that they might be bacteriocins (Bac). The bacteriocin encoded by pRJ34 showed properties identical to those of the bacteriocins encoded by other small staphylococcal Bac plasmids. However, the bacteriocin encoded by the large plasmid pRJ35 has shown some properties which distinguish it from the other bacteriocins of Staph. aureus described so far, suggesting it may be a new member of the staphylococcal bacteriocin family.  相似文献   

7.
Chitosan is a biocompatible and biodegradable natural polymer with established antimicrobial properties against specific microorganisms. The present study demonstrates its antibacterial activity against 48 isolates of Vibrio species from prawn larval rearing systems. The antibacterial activity had a positive correlation with the concentration of chitosan. This work opens up avenues for using chitosan as a prophylactic biopolymer for protecting prawn larvae from vibriosis.  相似文献   

8.
Nanoparticle complexes were prepared from chitosans of various molecular weights (MW) and degrees of deacetylation (DD). The antimicrobial effect was assessed by the Live/Dead BacLight technique in conjunction with confocal scanning laser microscopy (CSLM) and image analysis. Nanocomplexes prepared from chitosans with high MW showed a low antimicrobial effect (20 to 25% of cells damaged), whereas those prepared from low-MW chitosans showed high antimicrobial effect (>95% of cells damaged).  相似文献   

9.

Background  

Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated.  相似文献   

10.
Chitosan fibres were grafted with flavonoids using tyrosinase to produce reactive o-quinones which subsequently react with primary amino groups of the chitosan. The reaction mechanism using chemically different flavonoids (flavanols, flavonols, flavone, flavanone, isoflavone) was followed by UV/vis spectroscopy and the successful grafting was demonstrated by ATR-IR spectroscopy, pH potentiometric titration and reflectance measurements. An increase of antioxidant activity of functionalized chitosan fibres using well established methods was found depending on the type of the flavonoid used. In addition, some flavonoids increased antimicrobial activity of chitosan against Bacillus subtillis and Pseudomonas aeruginosa.  相似文献   

11.
The surface of chitosan films was modified using acid chloride and acid anhydrides. Chemical composition at the film surface was analyzed by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). ATR-FTIR data verified that the substitution took place at the amino groups of chitosan, thus forming amide linkages, and the modification proceeded to the depth at least 1 microm. Choices of molecules substituted at the amino groups of the glucosamine units did affect the hydrophobicity of the film surface, as indicated by air-water contact angle analysis. The surface became more hydrophobic than that of non-modified film when a stearoyl group (C(17)H(35)CO-) was attached to the films. The reaction of chitosan films with succinic anhydride or phthalic anhydride, however, produced more hydrophilic films. Selected modified films were subjected to protein adsorption study. The amount of protein adsorbed, determined by bicinchoninic acid (BCA) assay, related to the types of attached molecules. The improved surface hydrophobicity affected by the stearoyl groups promoted protein adsorption. In contrast, selective adsorption behavior was observed in the case of the chitosan films modified with anhydride derivatives. Lysozyme adsorption was enhanced by H-bonding and charge attraction with the hydrophilic surface. While the amount of albumin adsorbed was decreased possibly due to negative charges that gave rise to repulsion between the modified surface and albumin. This study has demonstrated that it is conceivable to fine-tune surface properties which influence its response to bio-macromolecules by heterogeneous chemical modification.  相似文献   

12.
In a screening for antimicrobial metabolites, amides of D-allo- and L-isoleucine derivatives were isolated from the culture of a marine strain of Acremonium furcatum. Structural elucidation of these compounds was performed by analysis of spectroscopic data and confirmed by synthesis. All of the compounds, natural and synthetic intermediates, were bioassayed against bacteria and phytopathogenic fungi, with many showing remarkable antifungal activities.  相似文献   

13.
Five strains of rumen coagulase-negative adherent and ureolytic staphylococci were obtained as bacteria producting bacteriocin-like substances or, lantibiotics. All examined staphylococci produced inhibitory agents which showed a wide range of inhibition against Gram-positive and Gram-negative indicator organisms from different sources. Clear zones of inhibition (diameter 1–6 mm) dominated. Most bacteriocin-like substances produced by the strains were stable and sensitive to trypsin, susceptible to chloroform vapours and heat-sensitive.  相似文献   

14.
The in vitro antimicrobial activity of iremycin (10-(alpha-L-rhodosaminyl)-gamma-rhodomycinone) was determined in comparison to that of doxorubicin, a 14-hydroxy-derivative of daunorubicin, which exhibited a strong antitumor activity and is useful in chemotherapy of human tumors. The MIC values determined by means of a standardized agar diffusion plate test indicated a lower antimicrobial activity of iremycin in vitro in comparison to that of doxorubicin. In contrast to doxorubicin, iremycin was highly active against Mycobacterium smegmatis, but five-fold less active than doxorubicin against Staphylococcus aureus, seven-fold less active against Bacillus subtilis, and twenty five-fold less active against Commamonas terrigena. Furthermore, iremycin was hundred-fold less active against a highly sensitive permeation mutant of Pseudomonas aeruginosa. No inducing activity on prophages in lysogenic E. coli cells was demonstrable for iremycin and no growth inhibition in the repair test was observable. In contrast, iremycin inhibited the multiplication of gamma-phages in the BIP test, but the MIC values of violamycin BI, doxorubicin and iremycin in this test system indicated that iremycin is two hundred fifty-fold less active than violamycin BI and ten-fold less active than doxorubicin. No serum binding was demonstrable for iremycin.  相似文献   

15.
Cellulose and chitosan were mixed in N-methylmorpholine-N-oxide (NMMO) and heated to 100 °C, and then were processed under a pressure of 70 kg/cm2 exerted by a compression molding machine at 100 °C for 8 min. As a result, transparent orange viscose films were obtained. After rinsing with deionized water and drying transparent yellowish blend films were obtained. Scanning electron microscope (SEM) indicated that when the chitosan content in the blend increased up to 3% the surface structure became smoother, but the film containing 5% (w/w) chitosan, became coarse again probably due to phase separation. Tensile strength test results were consistant with this. Antibacterial assessment proved that addition of chitosan to the films results in slight antibacterial properties. The halo zone test confirmed that the blend films made in this research have non-diffusible antibacterial properties.  相似文献   

16.
Hemoglobin (Hb) was immobilized on the chitosan films using glutaraldehyde as a bifunctional agent. Atomic force microscopy (AFM) was used to examine the film surface in order to image the presence of Hb and Fourier transform infrared spectroscopy (FT-IR) was detected to elucidate the structural change of the immobilized Hb. The influences of several immobilization parameters were investigated, the optimum concentration of glutaraldehyde, pH and binding time were determined as 0.7%, 4.5 and 6 h, respectively. The enzymatic assay indicates that the immobilized Hb showed a higher thermal stability than that of free Hb, and the catalytic activity in organic solvents was also enhanced.  相似文献   

17.
Chitosan/poly(vinyl alcohol)/gelatin (CS/PVA/GA) ternary blend films were prepared by solution blending method in this study. The thermal properties of the CS/PVA/GA ternary blend films were examined by differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The melting point of the CS/PVA/GA ternary blend film was increased when the amount of GA in the blend film was increased based upon the DSC thermal analysis. Results of X-ray diffraction (XRD) analyses indicated that the intensity of diffraction peak at 19 degrees of PVA became lower and broader with increasing the amount of GA in the CS/PVA/GA ternary blend film. Although CS, PVA, and GA are hydrophilic biodegradable polymers, the results of water contact angle measurements are still as high as 83 degrees, 68 degrees, and 66 degrees, respectively. A minimum water contact angle (56 degrees) was observed when the ternary blend film contains 50 wt.% GA (i.e. GA5). This behavior is primarily due to the reorientation of polar functional groups toward to the top surface of CS/PVA/GA ternary blend films.  相似文献   

18.
Bacteriocins produced by lactic acid bacteria are gaining increased importance due to their activity against undesirable microorganisms in foods. In this study, a concentrated acid extract of a culture of Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian pork product, was purified by cation exchange and reversed-phase chromatographic methods. The amino acid sequences of the active antimicrobial compounds determined by Edman degradation were compared to known protein sequences using the BLAST-P software. Three different antimicrobial compounds were obtained, P1, P2 and P3, and mass spectrometry indicated molecular masses of 4.4, 6.8 and 9.5 kDa, respectively. P1 corresponds to classical sakacin P, P2 is identical to the 30S ribosomal protein S21 of L. sakei subsp. sakei 23 K, and P3 is identical to a histone-like DNA-binding protein HV produced by L. sakei subsp. sakei 23 K. Total genomic DNA was extracted and used as target DNA for PCR amplification of the genes sak, lis and his involved in the synthesis of P1, P2 and P3. The fragments were cloned in pET28b expression vector and the resulting plasmids transformed in E. coli KRX competent cells. The transformants were active against Listeria monocytogenes, indicating that the activity of the classical sakacin P produced by L. sakei 2a can be complemented by other antimicrobial proteins.  相似文献   

19.
20.
Protein-chitosan (CS) films were made by casting a solution of proteins and CS on pyrolytic graphite electrodes. Myoglobin (Mb), hemoglobin (Hb), and horseradish peroxidase (HRP) incorporated in CS films gave a pair of stable, well-defined, and quasi-reversible cyclic voltammetric peaks at about -0.33V vs saturated calomel electrode in pH 7 buffers, respectively, while catalase (Ct) in CS films showed a peak pair at about -0.46V which was not stable. All these peaks are located at the potentials characteristic of heme Fe(III)/Fe(II) redox couples of the proteins. The electrochemical parameters such as formal potentials (E degrees (')) and apparent heterogeneous electron-transfer rate constants (k(s)) were estimated by square-wave voltammetry with nonlinear regression analysis. Chitosan films contained considerable water and formed hydrogel in aqueous solution. Positions of the Soret absorbance band suggest that Mb and Hb in CS films keep their secondary structure similar to the native states in the medium pH range, while HRP and Ct retain their native conformation at least in the dry CS films. Scanning electron microscopy of the films demonstrated that interaction between the proteins and CS would make the morphology of dry protein-CS films very different from the CS films alone. Oxygen, trichloroacetic acid, nitrite, and hydrogen peroxide were catalytically reduced by all four proteins in CS films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号