首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of dietary zinc (Zn) supplementation on copper (Cu)-induced liver damage was investigated in Long-Evans Cinnamon rats (LEC), a model for Wilson's disease (WD). Four-week-old LEC (N=64) and control Long-Evans (LE) (N=32) female rats were divided into two groups; one group was fed with a Zn-supplemented diet (group I) and the other was given a normal rodent diet (group II). LEC rats were killed at 6, 8, 10, 12, 18, and 20 wk of age; the LE control rats were killed at 6, 12, 18, and 20 wk of age. Cu concentration in the liver was reduced in LEC rats fed the Zn-supplemented diet compared with LEC rats on the normal diet between 6 and 18 wk of age. Metallothionein (MT) concentration in the livers of LEC rats in group I increased between 12 and 20 wk of age, whereas hepatic MT concentration in LEC rats from group II decreased after 12 wk. Hepatocyte apoptosis, as determined by TUNEL, was reduced in Zn-supplemented LEC rats at all ages. Cholangiocellular carcinoma was observed only in LEC rats in group II at wk 20. These results suggest that Zn supplementation can reduce hepatic Cu concentration and delay the onset of clinical and pathological changes of Cu toxicity in LEC rats. Although the actual mechanism of protection is unknown, it could be explained by sequestration of dietary Cu by intestinal MT, induced by high dietary Zn content.  相似文献   

2.
Recently, copper (Cu) was found to be unusually accumulated, suggesting the induction of metallothionein (MT) in the liver of LEC rats (Long-Evans rats with a cinnamon-like coat color), which develop spontaneous jaundice with hereditary hepatitis. Thus, the direct relationship between the unusual Cu accumulation and the induction of Cu-MT was investigated by giving LEC rats Cu-overloaded or Cu-deficient diets. Results based on the determinations of Cu and MT levels in several organs, as well as the gel-filtration profiles of the cytosols of liver homogenates, showed that dietary Cu induced Cu-MT and development of hepatic injury associated with jaundice.  相似文献   

3.
Copper (Cu) accumulating in a form bound to metallothionein (MT) in the liver of Long-Evans rats with a cinnamon-like coat color (LEC rats), an animal model of Wilson disease, can be removed from the MT with tetrathiomolybdate (TTM). However, the insoluble Cu/TTM complex formed with excess TTM is known to be deposited in the liver. The metabolic fate of the insoluble Cu/TTM complex was investigated in the present study. LEC rats were injected with TTM at the dose of 10 mg/kg body weight for 8 consecutive days and were fed with a standard or low Cu diet for 14 days after the last injection. About 95% of the Cu in the liver became insoluble together with Mo. The concentration of Cu in the liver supernatants of rats fed with the standard diet increased significantly compared with that in rats dissected 24 h after the last injection (control rats), while the concentration in rats fed with the low Cu diet remained at a comparable level to that in the controls. The rate of Cu accumulation in the livers of rats fed with the standard diet did not differ before and after the treatment, suggesting that there was no rebound effect by treatment with TTM. These results suggest that the insoluble Cu/TTM complex is resolubilized in the liver, and that the solubilized complex is excreted into the bile and blood, i.e., the insoluble Cu/TTM complex is not the source of Cu re-accumulation in the form bound to MT in the liver after TTM treatment. It was concluded that, once Cu is complexed with TTM, the metal is excreted either immediately in the soluble form or slowly in the insoluble form into the bile and blood.  相似文献   

4.
Copper (Cu) is one of the essential metals and its homeostasis is strictly regulated. Metallothionein (MT) is induced by excess Cu to mask the Cu toxicity. Although the role of MT in Cu toxicity has been explained in terms of Cu sequestration, its role under Cu-deficient conditions is not known. This study was carried out to determine the role of MT in Cu depletion by a Cu(I)-specific chelator, bathocuproine sulfonate (BCS), in cultured cells established from MT-knockout mouse and its wild type. Viability was decreased more severely in MT-null cells than in wild-type cells by BCS treatment. The expression levels of both MT isoforms were increased by BCS treatment in wild-type cells. Thus, MT was shown to be induced under Cu-deficient conditions to maintain the activities of intracellular cuproenzymes such as cytochrome c oxidase and Cu,zinc-superoxide dismutase.  相似文献   

5.
Dietary copper (Cu) deficiency not only causes a hypertrophic cardiomyopathy but also increases cancer risk in rodent models. However, a possible alteration in gene expression has not been fully examined. The present study was undertaken to determine the effect of Cu deficiency on protein profiles in rat heart tissue. Male Sprague-Dawley rats were fed diets that were either a Cu-adequate diet (6.0 microg Cu/g diet, n = 6) or a Cu-deficient diet (0.3 microg Cu/g diet, n = 6) for 5 weeks. The high-salt buffer (HSB) protein extract from heart tissue of Cu-deficient, but not Cu-adequate rats showed a 132 kDa protein band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. This protein band stained pink with Coomassie Blue, suggesting the presence of collagens or other proline-rich proteins. Dot immunoblotting demonstrated that total type I collagen was increased by 110% in HSB protein extract from Cu-deficient, relative to Cu-adequate, rats. Liquid chromatography with mass spectrometry analysis indicated that the 132 kDa protein band contained a collagen alpha (I) chain precursor as well as a leucine-rich protein 130 (LRP130) in HSB protein extract from Cu-deficient but not Cu-adequate rats. A gel shift assay showed that HSB protein extract from Cu-deficient rats bound to a single-stranded cytosine-rich DNA with higher affinity than the extract of Cu-adequate rats, similar to reports of an increase in LRP130 single-stranded DNA binding activity in several types of tumor cells. Collectively, these results not only suggest an additional feature of altered collagen metabolism with Cu deficiency but also demonstrate for the first time an increase in single-stranded cytosine-rich DNA binding in Cu-deficient rat heart.  相似文献   

6.
The aims of the work presented here were to determine the effect of long term treatment with zinc (Zn) on both total metallothionine (MT) and, in particular, oxidized MT (MTox) concentrations in Long-Evans Cinnamon (LEC) rat liver. We also evaluated semi-quantitatively the cell death index using TUNEL assay as it is a useful method to localize the nuclear fragmentation occurring in oxidative stress conditions. The results demonstrate there were no statistically different MT concentrations between Zn-treated and untreated rats, whereas the Zn treatment was very effective in reducing the percentage of oxidized MT (MTox). MTox is not able to bind metals, so it does not perform its "scavenger" action against copper (Cu) accumulation in LEC rats. The intensity and quantity of fluorescent staining observed in untreated rat sections decreased compared to the treated ones. These findings suggest that in LEC rats one of zinc's roles is to protect from oxidative stress, however, its mode of action remains partially unknown: a hypothesis is competition for Cu binding sites. A new insight is that Zn induced MT can protect efficiently against DNA damage by free radicals.  相似文献   

7.
Tetrathiomolybdate (TTM) is a powerful and selective copper (Cu) chelator that is used as a therapeutic agent for Wilson disease. TTM is the sole agent that can remove Cu bound to metallothionein (MT) in the livers of Long-Evans rats with a cinnamon-like coat color (LEC rats). However, the administration of excess TTM causes the deposition of Cu and molybdenum (Mo) in the liver. In the present study, the effect of hepatic glutathione (GSH) depletion on the removal of Cu from the livers of LEC rats was evaluated to establish an effective therapy by TTM. Pretreatment with l-buthionine sulfoximine (BSO), a depletor of GSH in vivo, reduced the amounts of Cu and Mo excreted into both the bile and the bloodstream, and increased the amounts of Cu and Mo deposited in the livers of LEC rats in the form of an insoluble complex 4 h after the TTM injection. The results suggest that GSH depletion creates an oxidative environment in the livers of LEC rats, and the oxidative environment facilitates the insolubilization of Cu and Mo in the livers of LEC rats after the TTM injection. Therefore, the effect of TTM on the removal of Cu from the liver was reduced in the oxidized condition. Wilson disease patients and LEC rats develop liver injury caused by oxidative damage. From a clinical viewpoint, increasing in the GSH concentration is expected to enhance the effect of TTM.  相似文献   

8.
The effect of a high concentration (1%, w/w) of ascorbic acid in a Cu-adequate (150 μmol/kg) purified diet was studied in rats. After 6 wk, ascorbic acid had significantly reduced Cu concentrations in muscle and bone. The estimated whole body content of Cu in rats fed ascorbic acid was reduced by 20%. Within 1 d after oral administration of64Cu, the recovery of the dose in feces was increased in rats fed ascorbic acid, suggesting that the vitamin depresses intestinal absorption of Cu. After intraperitoneal (ip) administration of64Cu, the rate of loss of the dose from the body was decreased in rats fed ascorbic acid. This study suggests that the ascorbic acid induces a decreased efficiency of intestinal Cu absorption, which in turn triggers mechanisms to preserve Cu in the body stores. This is supported by the observation that the feeding of a Cu-deficient diet (5 μmol/kg) had similar effects, although more pronounced.  相似文献   

9.
The aim of our studies was to explain the role of metallothioneins (MTs) in the neutralization of excessive amounts of metals (essential: copper (Cu) and toxic: cadmium (Cd)) and to describe the energy status in metal-exposed spiders Agelena labyrinthica in relation to its developmental stage, gender and origin. Juvenile, female and male spiders were collected from three variously polluted habitats, transferred to the laboratory and exposed to the metals in their diet. Cu and Cd accumulation in the body and exuviae, bioaccumulation factor, percentage of metallothionein positive cells, MT concentration, percentage of cells with depolarized mitochondria, ATP concentration and ADP/ATP ratio were measured and calculated. Cu appeared to be regulated and its excess is eliminated via, among others, the molting process, while Cd was rather accumulated by the spiders. The level of MTs increased significantly mainly in females exposed to both metals, irrespectively of the pollution degree of their site of origin, indicating a defensive role of the proteins. In general, even if both the MT level and the energy status indices were positively correlated with Cd and Cu concentrations in the spider body, the energy status of A. labyrinthica did not seem disturbed.  相似文献   

10.
11.
The Long Evans Cinnamon (LEC) rat, which accumulates excess Cu in the liver as in patients with Wilson's disease, is a mutant strain displaying spontaneous hepatitis. It was reported that Fe, like Cu, increases in the liver and that the severity of hepatitis is modified by Fe in the diet. In this experiment, oxidative stress increased by Fe was investigated before the onset of hepatitis. To examine the effect of Fe on the progress into hepatitis, LEC female rats were fed an Fe-regular (Fe 214 microg/g; Fe(+) group) or an Fe-restricted (Fe 14 microg/g; Fe(-) group) diet from 53 days of age for 35 days. Fischer rats were also fed as control animals. Adenine nucleotide decomposition was determined as an index of oxidative stress based on xanthine oxidase activity. The size of the hepatic pool of adenine nucleotides (ATP+ADP+AMP) was significantly smaller in LEC rats than Fischer rats. The energy charge (ATP+0.5ADP)/(ATP+ADP+AMP) was smaller in Fe(+) groups than in Fe(-) groups. In the LEC rat liver, the Fe concentration in the Fe(+) group was 160% of that in Fe(-) group and the correlation coefficient between the hepatic Fe concentration and the energy charge was significant. In this strain, an increase of xanthine oxidase activity resulted in an increase of xanthine, an oxidized metabolite of hypoxanthine in the liver. The results suggest the involvement of the Fe in the progression into hepatitis in the LEC rat, even if the dietary Fe concentration is similar to that of commercial diet.  相似文献   

12.
The influence of copper deficiency on the binding and uptake of apolipoprotein E-free high density lipoprotein (apo E-free HDL) in cultured rat hepatic parenchymal cells was examined in this study. Male weanling Sprague-Dawley rats were randomly divided into two treatments, a Cu-adequate (7.33 mg Cu/kg diet) or a Cu-deficient (1.04 mg Cu/kg diet) group. After 7 weeks, plasma apo E-free HDL were isolated by a combination of ultracentrifugation, gel filtration, and heparin-Sepharose affinity chromatography. Parenchymal cells were isolated from collagenase perfused liver of Cu-deficient and adequate rats and cultured for 16 hours at 37 degrees C prior to incubation with iodinated apo E-free HDL from the same treatment group. Cells were incubated with 5 microg/ml(125) I-apo E-free HDL for 2, 6, or 12 hours in the presence or absence of 200 microg/ml (40-fold) excess unlabeled apo E-free HDL. Increases in specific binding at 4 degrees C and specific cell-associated uptake at 37 degrees C as a function of time were observed with cells and HDL from Cu-deficient rats. Cells were also incubated for 6 hours with 8 concentrations of (125)I-apo E-free HDL in the presence or absence of excess unlabeled HDL. Although no significant increase in specific binding was detected at 4 degrees C as a function of ligand concentration, the response tended to be higher at 5 to 15 microg HDL/ml for the Cu-deficient treatment. However, at 37 degrees C the specific cell-associated uptake was increased markedly with cells and HDL from Cu-deficient rats. The observed increases in HDL binding and uptake indicate that these processes may be enhanced in Cu-deficient rats. These data are also consistent with recent in vivo results which indicate that plasma clearance and tissue uptake of HDL are increased in Cu-deficient rats.  相似文献   

13.
Copper (Cu) accumulating in a form bound to metallothionein (MT) in the liver of Long-Evans rats with a cinnamon-like coat color (LEC rats), an animal model of Wilson disease, was removed with ammonium tetrathiomolybdate (TTM), and the fate of the Cu complexed with TTM and mobilized from the liver was determined. TTM was injected intravenously as a single dose of 2, 10 or 50 mg TTM/kg body weight into LEC and Wistar (normal Cu metabolism) rats, and then the concentrations of Cu and molybdenum (Mo) in the bile and plasma were monitored with time after the injection. In Wistar rats, most of the Mo was excreted into the urine, only a small quantity being excreted into the bile, while Cu excreted into the urine decreased. However, in LEC rats, Cu and Mo were excreted into the bile and blood, and the bile is recognized for the first time as the major route of excretion. The Cu excreted into both the bile and plasma was accompanied by an equimolar amount of Mo. The relative ratio of the amounts of Cu excreted into the bile and plasma was 40/60 for the low and high dose groups, and 70/30 for the medium dose group. The systemic dispositions of the Cu mobilized from the liver and the Mo complexed with the Cu were also determined for the kidneys, spleen and brain together with their urinal excretion. Although Mo in the three organs and Cu in the kidneys and spleen were increased or showed a tendency to increase, Cu in the brain was not increased at all doses of TTM.  相似文献   

14.
The effectiveness of a cupruretic agent, N,N'-bis-(2 amino ethyl)-1,3-propanediamine HCl or 2,3,2-tetramine HCl (TETA), in the induction of copper (Cu) deficiency and the ability of a Cu-deficient diet in the maintenance of the depressed Cu status 10 wk after TETA treatment were examined in this study. In the first experiment, 42 male New Zealand White rabbits, 35 d of age, were randomly divided into three dietary treatments: a copper (Cu)-deficient (2.3 mg Cu/kg diet), a Cu-adequate (13.5 mg Cu/kg diet), and a commercial ration (21.6 mg Cu/kg diet) group. A single oral dose of 100 mg of 2,3,2-tetramine HCl TETA/kg body wt/d were administered to half of the rabbits from each treatment group for 10 d while the remaining rabbits were untreated. In the second experiment, 10 similar rabbits were assigned to three treatments: Cu-deficient plus TETA (n = 4); Cu-adequate plus TETA (n = 3); and Cu-adequate alone (n = 3). The rabbits were fed a TETA dose of 100 mg/d for three 4-d periods over 3 wk, and thereafter maintained on the diets for another 10 wk. Rabbits from the first experiment fed Cu-deficient diet and treated with TETA demonstrated cardiac hypertrophy and markedly reduced plasma and liver Cu concentrations that indicated that the animals were Cu-deficient. Significant elevations (twofold) in low density lipoprotein (LDL) protein, cholesterol, triglyceride, and apolipoprotein B (apo B) concentrations were observed in TETA treated rabbits fed Cu-deficient diet. In the second experiment, the plasma LDL protein level remained elevated, the plasma Cu level was reduced 45%, and the Cu level of the heart when expressed as microgram/g dry tissue was reduced, 10 wk post TETA treatment in rabbits maintained on Cu-deficient diet. Thus, Cu deficiency and hyperlipoproteinemia was rapidly induced by TETA and was still evident 10 wk posttreatment in rabbits maintained on a Cu-deficient diet.  相似文献   

15.
Zinc (Zn) is an essential nutrient that is required in humans and animals for many physiological functions, including immune and antioxidant function, growth, and reproduction. The present study was performed to investigate the effects of three Zn levels, including Zn adequate (35.94 mg/kg, as a control), Zn deficiency (3.15 mg/kg), and Zn overload (347.50 mg/kg) in growing male rats for 6 wk. This allowed for evaluation of the effects that these Zn levels might have on body weight, organ weight, enzymes activities, and tissues concentrations of Zn and Cu. The results showed that Zn deficiency has negative effects on growth, organ weight, and biological parameters such as alkaline phosphatase (ALP) and Cu−Zn superoxide dismutase (Cu−Zn SOD) activities, whereas Zn overload played an effective role in promoting growth, improving the developments of organs and enhancing immune system. Hepatic metallothionein (MT) concentration showed an identical increase tendency in rats fed both Zn-deficient and Zn-overload diets. The actual mechanism of reduction of Cu concentration of jejunum in rats fed a Zn-overload diet might involve the modulation or inhibition of a Cu transporter protein by Zn and not by the induction of MT.  相似文献   

16.
It has been well documented that dietary copper (Cu) deficiency causes a hypertrophic cardiomyopathy in rodent models. However, a possible alteration in gene expression has not been fully examined. The present study was undertaken to determine the effect of Cu deficiency on protein profiles in rat heart tissue with the combination of the isotope-coded affinity tag (ICAT) method and Western blotting analysis. Male Sprague-Dawley rats were fed diets that were either Cu-adequate (6.0 microg Cu/g diet n=6) or Cu-deficient (0.3 microg Cu/g diet n=6) for 5 week. The ICAT analysis suggested that high-salt buffer (HSB) protein profiles from heart tissue of Cu-deficient rats were different from those of Cu-adequate rats; seven major protein species differed by more than a 100% increase or a 50% decrease. With three available antibodies, our Western blotting analysis confirmed that there was an 85% increase in fibulin-5 (also known DANCE/EVEC) and a 71% decrease in cytochrome C oxidase (CCO) VIb subunit, but no change in succinate dehydrogenase complex (also known complex II) IP subunit in Cu-deficient rat heart. Collectively, these data may be useful in deciphering the molecular basis for the impairments of function related to the hypertrophic-cardiomyopathy of Cu-deficient rats.  相似文献   

17.
Histochemical characterizations of Ag-induced metallothionein (MT) in the kidney of the rat have been reported. Ag, Cu and Zn contents increased in kidney and liver after Ag injection. In particular, the Cu content in kidneys increased dramatically after three injections of Ag. Sephadex G-75 elution profiles of the renal cytosol of rats injected with Ag revealed that the accumulated Cu in the kidney was bound to MT as were Ag and Zn. In addition, localization of Cu- and Ag-MT in the kidney was studied using autofluorescent signals, which are dependent on Cu- or Ag-thiol clusters, and immunohistochemistry. Although the MT induced by Ag was predominantly observed in the cortex of the kidney, some MT signals were also detected in the outer stripe of the outer medulla, as well as in the kidneys of LEC rats, an animal model of Wilson disease (a hereditary disorder of Cu metabolism). In these LEC rats, the Cu-MT also accumulated in the outer stripe of the outer medulla of the kidney. From these results, one possibility could explain that the Cu-MT detected in the outer stripe of the outer medulla in the kidney of Ag-injected rat was associated with the Cu transporter affected by Ag.  相似文献   

18.
Dietary copper (Cu) restriction causes a hypertrophic cardiomyopathy similar to that induced by work overload in rodent models. However, a possible change in the program of hypertrophic gene expression has not been studied in the Cu-deficient heart. This study was undertaken to fill that gap. Dams of mouse pups were fed a Cu-deficient diet (0.35 mg/kg diet) or a Cu-adequate control diet (6.10 mg/kg) on the fourth day after birth, and weanling mice continued on the dams' diet until they were sacrificed. After 5 weeks of feeding, Cu concentrations were dramatically decreased in the heart and the liver of the mice fed the Cu-deficient diet. Corresponding to these changes, serum ceruloplasmin concentrations and hepatic Cu,Zn-superoxide dismutase activities were significantly (P<0.05) depressed. The size of the Cu-deficient hearts was greatly enlarged as estimated from the absolute heart weight and the ratio of heart weight to body weight. The abundances of mRNAs for atrial natriuretic factor, beta-myosin heavy chain, and alpha-skeletal actin in left ventricles were all significantly increased in the Cu- deficient hearts. Furthermore, Cu deficiency activated the expression of the c-myc oncogene in the left ventricle. This study thus demonstrated that a molecular program of alterations in embryonic genes, similar to that shown in the work-overloaded heart, was activated in the hypertrophied heart induced by Cu deficiency.  相似文献   

19.
Perturbations in copper (Cu) metabolism are a characteristic of diabetes, for example, elevated plasma Cu and compromised oxidant defense related to diabetes-induced effects on Cu-containing enzymes. Herein, the redistribution of Cu in selected tissues is described in response to diabetic and nondiabetic states in rats that were fed diets adequate in (12 mg Cu/kg of diet) or deficient in (no added Cu) Cu. Diabetes was induced by intravenous administration of streptozotocin (40 mg/kg body weight). After 5 weeks, rats were gavaged with (67)Cu (0.74 MBq per rat) using the Cu-deficient diet as a vehicle (suspended 1:3 in water) and killed at various time points. The use of (67)Cu allowed for the assessment of short-term Cu distribution and its comparison to the steady-state Cu distribution, as determined by direct Cu analysis. In contrast to control rats, the adaptive mechanisms for Cu homeostasis in diabetic rats were impaired. In general, measures of Cu retention were reduced in diabetic rats compared to corresponding values for control rats. Moreover, diabetic rats had low copper, zinc superoxide dismutase activity that was reduced even further when diabetic rats were fed with low-Cu diets. However, liver and kidney metallothionein and plasma ceruloplasmin levels were elevated in diabetic rats compared to control rats. Such diabetes-related metabolic alterations were taken as measures of increased oxidative stress and inflammation, which may have implications in the progression of diabetes-related pathologies.  相似文献   

20.
Copper (Cu), iron (Fe), zinc (Zn) and manganese (Mn) levels in organs of LEC rats (Long-Evans rats with a cinnamon-like coat color), which develop spontaneous jaundice with hereditary hepatitis, were determined by instrumental neutron activation analysis method. Unusual accumulations of Cu in the liver of LEC rats were found, depending on the age of the animals, the metal concentration being more than approximately 20-40 times those of normal LEA rats (Long-Evans rats with an agouti coat color). Fe and Zn were also accumulated, in addition to Cu, significantly in the LEC rats. The unusual Cu accumulations in the liver of LEC rats were associated with the induction of metallothionein, estimated by radioimmunoassay method, in the liver of LEC rats, rather than that of superoxide dismutase, estimated by electron spin resonance -spin trapping method. These findings suggest that the unusual Cu accumulation in LEC rats is involved in the development of jaundice, hepatic injury and hepatocellular carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号