首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In vitro auxin binding to cellular membranes of cucumber fruits   总被引:2,自引:2,他引:0       下载免费PDF全文
Specific binding of 1-naphthaleneacetic acid (NAA) to crude membrane preparations from cucumber (Cucumis sativus L.) was demonstrated. This in vitro binding had a pH optimum of 3.75 and an equilibrium dissociation constant of 10 to 20 micromolar with 1250 picomoles binding sites per gram fresh weight. The NAA-binding sites were pronase sensitive. The supernatant from the fruit partially inhibited the in vitro NAA binding to fruit membranes. NAA, 2-naphthoxyacetic acid, 3-indoleacetic acid, 2-4-dichlorophenoxyacetic acid, and 2,3,5-triiodobenzoic acid, which are reported to be very good inducers of parthenocarpy in cucumber, showed a high degree of specific binding to cucumber fruit membranes. In comparison, 2-naphthaleneacetic acid and indolepropionic acid, which are reported to be very weak auxins in corn coleoptile, pea stem, and strawberry fruit growth bioassays, did not bind efficiently to cucumber fruit membranes. In vitro binding studies with fruit membranes suggest that auxin stimulated fruit growth may be mediated by membrane-associated, auxin-binding protein(s).  相似文献   

2.
Unlike ovary-derived botanical fruits, strawberry (Fragaria x ananassa) is an accessory fruit derived from the receptacle, the stem tip subtending floral organs. Although both botanical and accessory fruits initiate development in response to auxin and gibberellic acid (GA) released from seeds, the downstream auxin and GA signaling mechanisms underlying accessory fruit development are presently unknown. We characterized GA and auxin signaling mutants in wild strawberry (Fragaria vesca) during early stage fruit development. While mutations in FveRGA1 and FveARF8 both led to the development of larger fruit, only mutations in FveRGA1 caused parthenocarpic fruit formation, suggesting FveRGA1 is a key regulator of fruit set. FveRGA1 mediated fertilization-induced GA signaling during accessory fruit initiation by repressing the expression of cell division and expansion genes and showed direct protein–protein interaction with FveARF8. Further, fvearf8 mutant fruits exhibited an enhanced response to auxin or GA application, and the increased response to GA was due to increased expression of FveGID1c coding for a putative GA receptor. The work reveals a crosstalk mechanism between FveARF8 in auxin signaling and FveGID1c in GA signaling. Together, our work provides functional insights into hormone signaling in an accessory fruit, broadens our understanding of fruit initiation in different fruit types, and lays the groundwork for future improvement of strawberry fruit productivity and quality.

An investigation of the mechanism of accessory fruit initiation in diploid strawberry, identifying the function of two hormone signaling genes in fruit initiation.  相似文献   

3.
The pattern of polypeptides at different stages of strawberry (Fragaria ananassa Duch. cv Ozark Beauty) fruit development was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An 81,000-dalton polypeptide appeared between 5 and 10 days after pollination. Polypeptides with molecular weights of 76,000 and 37,000 daltons were formed after 10 days. The control exerted by auxin in the stage-specific formation of polypeptides was investigated by stopping fruit growth after removing the achenes and reinitiating fruit growth by the application of a synthetic auxin, α-naphthaleneacetic acid (NAA). When the achenes were removed from the 5- and 10-day-old fruits, the fruits failed to grow, the 81,000 dalton polypeptide was not formed between 5 and 10 days, and the 76,000- and 37,000-dalton polypeptides were not formed between 10 and 20 days. Application of NAA to fruits deprived of auxin by removal of achenes resulted in the resumption of growth and also in the appearance of these polypeptides. Removal of achenes of the 5- or 10-day-old fruits and growing them without auxin resulted in the formation of 52,000- and 57,000-dalton polypeptides. These two polypeptides were not formed when NAA was applied to fruits after removal of achenes. Supply of NAA to auxin-deprived fruits 5 days after removal of achenes resulted in resumption of growth and also in the disappearance of these two polypeptides, pointing out their possible relation to the inhibition of fruit growth.  相似文献   

4.
To study the detachment stress on the ripeness of strawberry fruit, physiological characteristics of strawberry fruit on and off plant during ripeness and senescence processes were investigated. The results indicated that the ripeness of strawberry fruit upon detachment was accelerated, in terms of firmness, soluble solid content and especially color development. The color of fruit off plant changed rapidly from white to full red in 1–2 days. The respiratory rate in fruit off plant was strengthened, higher than that on plant. Abscisic acid level and ethylene production in fruit off plant were also higher than those on plant and auxin degradation was exacerbated by detachment. Expression levels of FaMYB1, FabHLH3 and FaTTG1 were generally reduced with phenotypes of redder color and more anthocyanin accumulation in fruit off plant. Results also suggested that the detachment initially stimulated ethylene and abscisic acid production and auxin degradation, which modulated ripening-related gene expression and at last enhanced fruit pigmentation.  相似文献   

5.
The binding constants of three auxin analogs, 4-, 5-, and 6-azidoindole-3-acetic acid (4-, 5-, and 6-N3IAA), and of the photoproducts of 5-N3IAA to the naphthalene-1-acetic acid (NAA) binding sites of Zea mays L. WF9 × BR38 were determined to evaluate the potential of these analogs as photoaffinity labeling agents. We have found that 4- and 5-N3IAA bind to these sites with affinities similar to that of IAA, while 6-N3IAA and the photoproducts of 5-N3IAA bind less tightly. This binding is fully reversible in the dark. Binding of 5-N3IAA becomes covalent and irreversible upon UV irradiation, as evidenced by a 30% loss in NAA binding at sites pretreated with 5-N3IAA and UV irradiation, then washed extensively. IAA or NAA, included with this 5-N3IAA pretreatment, can protect the sites from blockage, whereas benzoic acid and tryptophan are unable to protect the site, indicating that 5-N3IAA specifically labels the auxin sites.  相似文献   

6.
Certain herbicidal aminooxyisovalerate analogs were noted in whole plant phytotoxicity bioassays to cause disoriented roots. Since this symptom is often characteristic of interference with the transport of the plant hormone auxin, the ability of several of these compounds to compete for the N-1-naphthylphthalamic acid (NPA) binding site in corn (Zea mays L.) coleoptile membranes was measured. Significant NPA binding activity was found, expecially for the 2,4-dichlorophenyl analog. Application of structure-activity principles from traditional auxin transport inhibitors to this new class of molecules led to the synthesis of the naphthyl analogue. This molecule was extremely active in competing for NPA binding and in eliciting whole plant growth regulator effects. Possible relationships between these molecules and the mode of auxin transport are discussed.  相似文献   

7.
8.
Ray PM 《Plant physiology》1977,59(4):594-599
Sites in maize (Zea mays L.) coleoptile homogenates that reversibly bind naphthalene-1-acetic acid with high affinity and may represent receptor sites for auxins are located primarily on cellular membranes that show the enzymic and buoyant density characteristics of membranes of the rough endoplasmic reticulum. The sites remain attached to the endoplasmic reticulum (ER) membranes after the ribosomes have been stripped off them. Binding sites for naphthylphthalamic acid, an inhibitor of auxin transport, are located on membranes different from those that carry the naphthalene-1-acetic-acid (NAA)-binding sites, and which are probably plasma membrane. The two kinds of binding sites can be largely separated by appropriate density gradient centrifugation. The results raise the possibility that primary auxin action occurs at ER membranes and could represent facilitation of the transfer of hydrogen ions and nascent secretory protein into the ER lumen followed by secretory transport of these products to the cell exterior via the Golgi system.  相似文献   

9.
Receptacle growth in strawberry (Fragaria ananassa Duch. cv.Ozark Beauty) occurred after either pollination or auxin treatment.In a strawberry variant genotype (Washington State UniversitySelection No. 12/13), pollination did not lead to receptaclegrowth but application of -naphthaleneacetic acid (NAA) at anthesisresulted in normal receptacle growth. The receptacles of OzarkBeauty retained their ability to respond to auxin at least upto 36 days after anthesis. However, delay of auxin applicationto the receptacles of the variant genotype resulted in decreasedauxin-responsive growth and auxin application after the 10thday of anthesis led to very little growth. The loss of auxin-responsivegrowth of the receptacle of the variant genotype was not associatedwith any loss of auxin binding activity of receptacle membranes.If auxin was not supplied to the receptacles of the variantgenotype at anthesis, the receptacles did not grow and a polypeptideof 52,000 Mr accumulated. Application of NAA to the receptaclesof the variant genotype at anthesis or on the fifth day afteranthesis resulted in the growth of the receptacle and the 52,000Mr polypeptide did not accumulate. Application of NAA to thereceptacles of the variant genotype on the 10th or the 15thday after anthesis led to very little growth of the receptacleand the 52,000 Mr polypeptide accumulated to high levels. Theseresults suggested a correlation between the lack of receptaclegrowth in response to auxin and accumulation of the 52,000 Mrpolypeptide. 1 Current adress: The Institute of Applied Research, Ben GurionUniversity of the Negev, Beer-Sheva, Israel. (Received August 6, 1984; Accepted December 11, 1984)  相似文献   

10.
Affinity labels for auxin binding sites in corn coleoptile membranes   总被引:1,自引:1,他引:0  
M. A. Venis 《Planta》1977,134(2):145-149
Two auxin analogues have been tested as affinity labels for auxin binding sites in coleoptile membranes of Zea mays L. Reacting the membranes at pH 8–9 with the diazonium salt of CAPA (2-chloro-4-aminophenoxyacetic acid) reduces their subsequent ability to bind NAA(1-naphthylacetic acid). Diazo-Chloramben (2,5-dichloro-3-aminobenzoic acid) is also effective in inhibiting NAA binding capacity and this inhibition is largely independent of reaction pH over the range pH 6–9. Similar experiments with sulphydryl reagents have shown that reaction of the membranes with p-mercuribenzoate (PMB) strongly inhibits subsequent auxin binding activity. Prior addition of NAA protects the binding sites against the action of diazo-Chloramben or PMB when the reactions are carried out at pH 6. From these results and from other considerations, several of the amino acid residues in the binding site environment have been tentatively assigned.Abbreviations CAPA 2-chloro-4-aminophenoxyacetic acid - DTNB 5,5-dithiobis (2-nitrobenzoic acid) - DTT dithiothreitol - GSH reduced from of glutathione - NAA 1-naphthylacetic acid - PMB p-mercurbenzoate  相似文献   

11.
Sorption characteristics of 2-(1-naphthyl)acetic acid (NAA), 2-(1-naphthyl)acetamide (NAAm), and 2,4-dichlorophenoxyacetic acid (2,4-D) were determined for cuticles enzymically isolated from mature tomato (Lycopersicon esculentum Mill. cv Sprinter) and pepper (Capsicum annuum L.) fruit. Sorption equilibrium for NAA and 2,4-D by tomato cuticular membranes (CM) and dewaxed cuticular membranes (DCM) was achieved within 24 hours at 25°C. The average K (partition coefficient) values for NAA in tomato CM and DCM were 166 and 204, respectively, whereas the corresponding K values for 2,4-D were 292 and 383, respectively. Sorption equilibrium for 2,4-D and NAA in pepper cuticles was not achieved after 18 and 63 days, respectively. Sorption equilibrium for NAAm in tomato and pepper CM and DCM was attained within 48 hours. Acid pretreatment (2.0 n HCl, 10 minutes) had no effect on NAA, 2,4-D, or NAAm sorption by tomato CM and DCM, or on NAAm sorption by pepper CM and DCM. Acid pretreatment of pepper CM and DCM led to slightly lower KpH (apparent partition coefficient) values for both NAA and 2,4-D. More significantly, sorption equilibrium for NAA and 2,4-D in pepper CM and DCM was achieved within 24 hours after acid treatment.  相似文献   

12.
Modern corn (Zea mays L.) varieties have been selected for their ability to maintain productivity in dense plantings. We have tested the possibility that the physiological consequence of the selection involves changes in responsiveness to light and auxin.Etiolated seedlings of two older corn hybrids 307 and 3306 elongated significantly more than seedlings of a modern corn hybrid 3394. The level of endogenous auxin and activity of PAT in 307 and 3394 were similar. Hybrid 3394 shows resistance to auxin- and light-induced responses at the seedling, cell and molecular levels. Intact 3394 plants exhibited less responsiveness to the inhibitory effect of R, FR and W, auxin, anti-auxin and inhibitors of PAT. In excised mesocotyl tissue 3394 seedlings also showed essentially low responsiveness to NAA. Cells of 3394 were insensitive to auxin- and light-induced hyperpolarization of the plasma membrane. Expression of ABP4 was much less in 3394 than in 307, and in contrast to 307, it was not upregulated by NAA, R and FR. Preliminary analysis of abp mutants suggests that ABPs may be involved in development of leaf angle in corn.Our results confirm the understanding that auxin interacts with light in the regulation of growth and development of young seedlings and suggest that in corn ABPs may be involved in growth of maize seedlings and development of leaf angle. We hypothesize that ABP4 plays an important role in the auxin- and/or light-induced growth responses. We also hypothesize that in the modern corn hybrid 3394, ABP4 is “mutated,” which may result in the observed 3394 phenotypes, including upright leaves.Key Words: auxin, auxin-binding protein, growth, leaf angle, light, maize  相似文献   

13.
Summary Inversion of corn coleoptile sections resulted in a 10–20% inhibition of basipetal transport of 3-indoleacetic acid (IAA) and a more pronounced inhibition (20–50%) of the transport of 1-naphthaleneacetic acid (NAA).The effect of inversion on basipetal NAA transport was compared in wild-type corn and in the amylomaize mutant which contains smaller and slower sedimenting amyloplasts: the gravity induced inhibition was higher in the wild type coleoptiles (27% versus 9%).In wild type the inhibitory effect on basipetal NAA transport appeared within less than 30 min after inversion; then the effect remained relatively constant over at least 2 hr of transport. When the sections were returned to the upright position the transport rate increased, reaching the level of upright controls within 30 min.An effect of gravity on lateral transport of NAA was also demonstrated and shown to be expressed within 10 min after placing the tissue horizontally.When basipetal transport was tested in the direction of gravity and/or centrifugal acceleration, auxin movement incrased with increasing acceleration. Transport against centrifugal acceleration (10 x g) was less than transport of control sections (inverted at 1 x g).The results agree with the hypothesis that starch statoliths act by a pressure mechanism on the membrane transport system of auxin.  相似文献   

14.
125I-CCK was crosslinked with ultraviolet light to its receptor on pancreatic plasma membranes. The predominant labeled species following polyacrylamide gel electrophoresis had a molecular weight of 120,000 in the absence, and 80,000 in the presence of the reducing agent dithiothreitol. The Mr = 120,000 labeled band could be extracted, reduced and converted to Mr = 80,000. Moreover, peptide mapping with Staph aureus V8 protease showed a similar pattern for the 120,000 and 80,000 dalton bands. The crosslinked receptor could be solubilized with Triton X-100, absorbed to wheat germ agglutinin and eluted with N-acetylglucosamine. The results indicate, therefore, that the CCK receptor is a glycoprotein with subunits coupled by disulfide bonds.  相似文献   

15.
Hormonal regulation of ripening in the strawberry,a non-climacteric fruit   总被引:1,自引:0,他引:1  
N. K. Given  M. A. Venis  D. Gierson 《Planta》1988,174(3):402-406
Anthocyanin accumulation is one measure of ripening in the strawberry (Fragaria ananassa Duch.), a non-climacteric fruit. Neither aminoethoxyvinylglycine, an inhibitor of 1-aminocyclopropane carboxylic acid synthase, nor inhibitors of ethylene action (silver, norbornadiene) affected anthocyanin accumulation in ripening fruit. When the achenes were removed from one half of an unripe fruit there was an accelerated accumulation of anthocyanin and induction of phenylalanine ammonia lyase on the de-achened portion of the ripening fruit. These effects of achene removal could be prevented by the application of the synthetic auxins 1-naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid to the de-achened surface. The introduction of 1-naphthalene acetic acid into intact unripe strawberry fruit through the peduncle delayed their subsequent ripening, as measured by the accumulation of anthocyanin, loss of chlorophyll and decrease in firmness. These findings suggest that the decline in the concentration of auxin in the achenes as strawberry fruit mature modulates the rate of fruit ripening.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - NAA 1-naphthaleneacetic acid - PA1 phenylalanine ammonia-lyase - POA phenoxyacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

16.
17.
Whereas the important plant growth regulator auxin has multiple effects in flowering plants, it induces a specific cell differentiation step in the filamentous moss protonema. Here, we analyse the presence of classical auxin-binding protein (ABP1) homologues in the moss Funaria hygrometrica. Microsomal membranes isolated from protonemata of F. hygrometrica have specific indole acetic acid-binding sites, estimated to be about 3–5 pmol/mg protein with an apparent dissociation constant (K d) between 3 and 5 μM. Western analyses with anti-ABP1 antiserum detected the canonical endoplasmic reticulum (ER)-localised 22–24 kDa ABP1 in Zea mays, but not in F. hygrometrica. Instead, polypeptides of 31–33 and 46 kDa were labelled in the moss as well as in maize. In F. hygrometrica these proteins were found exclusively in microsomal membrane fractions and were confirmed as ABPs by photo-affinity labelling with 5-azido-[7-3H]-indole-3-acetic acid. Unlike the classical corn ABP1, these moss ABPs did not contain the KDEL ER retention sequence. Consistently, the fully sequenced genome of the moss Physcomitrella patens, a close relative of F. hygrometrica, encodes an ABP1-homologue without KDEL sequence. Our study suggests the presence of putative ABPs in F. hygrometrica that share immunological epitopes with ABP1 and bind auxin but are different from the classical corn ABP1.  相似文献   

18.
An auxin-binding protein can be solubilized from microsomal membranes of Zea mays using either Triton X-100 extraction of the membranes or buffer extraction of the acetone-precipitated membranes. This paper describes the properties of the binding protein solubilized by these two methods. The binding is assayed by gel filtration chromatography in the presence of naphthalene [2-14C]acetic acid. Binding is rapid and reversible with an optimum at pH 5. Both preparations show similar molecular weights by gel filtration (80,000 daltons) at pH 7.6 and 0.1 molar NaCl, and both aggregate at low ionic strength. They appear to be the same active molecular species. The binding activity is destroyed by trypsin, pronase or para-chloromercuribenzoic acid, but not significantly reduced by phospholipase C, DNase, RNase, or dithioerythritol. Since saturating amounts of naphthalene acetic acid protect the molecule from inhibition by para-chloromercuribenzoic acid, it is concluded that the binding protein has a sulfhydryl group at the binding site, or protects such a group in its binding conformation. The dissociation constant of the protein for naphthalene acetic acid is 4.6 × 10−8 molar with 30 picomoles of sites per gram of tissue fresh weight. Binding constants were estimated for 13 other natural and synthetic auxins by competition with naphthalene[2-14C]acetic acid. Their dissociation constants are in general agreement with published values for their binding to intact membranes and their biological activity, although several exceptions were noted. A supernatant factor from the same tissue changes the apparent affinity of the protein for naphthalene acetic acid. This factor may be the same one as has been previously reported to alter the affinity of intact microsomes for auxin.  相似文献   

19.
A cDNA (Cel1) encoding an endo-1,4-β-glucanase (EGase) was isolated from ripe fruit of strawberry (Fragaria × ananassa). The deduced protein of 496 amino acids contains a presumptive signal sequence, a common feature of cell wall-localized EGases, and one potential N-glycosylation site. Southern- blot analysis of genomic DNA from F. × ananassa, an octoploid species, and that from the diploid species Fragaria vesca indicated that the Cel1 gene is a member of a divergent multigene family. In fruit, Cel1 mRNA was first detected at the white stage of development, and at the onset of ripening, coincident with anthocyanin accumulation, Cel1 mRNA abundance increased dramatically and remained high throughout ripening and subsequent fruit deterioration. In all other tissues examined, Cel1 expression was invariably absent. Antibodies raised to Cel1 protein detected a protein of 62 kD only in ripening fruit. Upon deachenation of young white fruit to remove the source of endogenous auxins, ripening, as visualized by anthocyanin accumulation, and Cel1 mRNA accumulation were both accelerated. Conversely, auxin treatment of white fruit repressed accumulation of both Cel1 mRNA and ripening. These results indicate that strawberry Cel1 is a ripening-specific and auxin-repressed EGase, which is regulated during ripening by a decline in auxin levels originating from the achenes.  相似文献   

20.
This paper shows that the level of 2,4-dichlorophenoxyacetic acid (2,4-D) in the medium determines the level of auxin-binding proteins in the membranes of carrot, Daucus carota, cells grown in suspension. This induction takes slightly more than 2 hours to complete and can be elicited by natural as well as synthetic auxins. The auxin binding sites thus generated, which are pronase-sensitive, bind 2,4-D, indoleacetic acid, and naphthalene-acetic acid (NAA) equally well. However both α- and β-NAA bind, whereas only α-NAA is effective in the inductive process. Cells committed to embryogeny (proembryogenic masses) do not respond to auxin, i.e. their level of auxin-binding proteins remains very low, and they do not seem to synthesize the hormone, as indicated by inhibitor studies. Sensitivity to, and production of, auxin, begins when the embryo becomes polarized, i.e. at postglobular stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号