首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An assay capable of detecting tens-of-picomole quantities of choline and acetylcholine in milliliter volumes of a physiological salt solution has been developed. Silica column chromatography was used to bind and separate 10–3000 pmol [14C]choline and [14C]acetylcholine standards made up in 3 ml of a bicarbonate-buffered Krebs-Ringer solution. The silica columns bound 95–98% of both choline and acetylcholine. Of the bound choline 84–87% was eluted in 1.5 ml of 0.075 n HCl, whereas 95–98% of the bound acetylcholine was eluted in a subsequent wash with 1.5 ml of 0.030 n HCl in 10% 2-butanone. Vacuum centrifugation of the eluants yielded small white pellets with losses of choline and acetylcholine of only 1%. Dried pellets of unlabeled choline and acetylcholine standards were assayed radioenzymatically using [γ-32P]ATP, choline kinase, and acetylcholinesterase. The net disintegrations per minute of choline[32P]phosphate product was proportional to both the acetylcholine (10–3000 pmol) and choline (30–3000 pmol) standards. The “limit sensitivity” was 8.5 pmol for acetylcholine and 11.4 pmol for choline. Cross-contamination of the choline assay by acetylcholine averaged 1.3%, whereas contamination of the acetylcholine assay by choline averaged 3.1%.  相似文献   

2.
A kinetic analysis of cyclic 3',5'-adenosine monophosphate (cAMP) synthesis in an adenine auxotroph of Escherichia coli 3000 was made by assaying the incorporation of [3H]adenine into cAMP during exponential growth. The rate of increase in intracellular [3H]cAMP was very slow (0.1-0.2 pmol/min/DU660). The steady state level was attained at about 40-min incubation after the addition of [3H]adenine, and was estimated to be 5 to 7 pmol/DU660. The rate and level of intracellular cAMP were scarcely affected by growth conditions, such as change of carbon source, whereas the excretion of cAMP into the medium began immediately after the addition of [3H]adenine, and continued at a rate of 5 to 7 pmol/min/DU660 in the glycerol medium. The excretion rate decreased to 1.4 pmol/min/DU660 in the presence of glucose. These results are inconsistent with the view that the excretion rate is dependent on the intracellular concentration of cAMP. Although the decreased rate of cAMP synthesis in the presence of glucose accounts for the permanent catabolite repression of inducible enzyme systems, no immediate depression in cAMP synthesis, which might account for the transient repression, was found after the addition of glucose.  相似文献   

3.
Female rats were injected i.v. with comparable trace amounts of [U-14C] glycerol, [2-3H] glycerol, [U-14C] glucose, or [1-14C] palmitate, and killed 30 min afterwards. The radioactivity remaining in plasma at that time was maximal in animals receiving [U-14C] glucose while the appearance of radioactive lipids was higher in the [U-14C] glycerol animals than in other groups receiving hydrosoluble substrates. The carcass, more than the liver, was the tissue where the greatest proportion of radioactivity was recovered, while the greatest percentage of radioactivity appeared in the liver in the form of lipids. The values of total radioactivity found in different tissues were very similar when using either labelled glucose or glycerol but the amount recovered as lipids was much greater in the latter. The maximal proportion of radioactive lipids appeared in the fatty-acid form in the liver, carcass, and lumbar fat pads when using [U-14C] glycerol as a hydrosoluble substrate, and the highest lipidic fraction appeared in adipose tissue as labelled, esterified fatty acids. In the spleen, heart, and kidney, most of the lipidic radioactivity from any of the hydrosoluble substrates appeared as glyceride glycerol. The highest proportion of radioactivity from [1-14C] palmitate appeared in the esterified fatty acid in adipose tissue, being followed in decreasing proportion by the heart, carcass, liver, kidney, and spleen. Thus at least in part, both labelled glucose and glycerol are used throughout different routes for their conversion in vivo to lipids. A certain proportion of glycerol is directly utilized by adipose tissue. The fatty acids esterification ability differs among the tissues and does not correspond directly with the reported activities of glycerokinase, suggesting that the alpha-glycerophosphate for esterification comes mainly from glucose and not from glycerol.  相似文献   

4.
A radiometric method has been devised for the determination of small quantities of NADH formed in preceding dehydrogenase reactions. In a coupled enzymatic reaction, phosphoglycerate kinase (PGK) catalyzes the transfer of [32P]orthophosphate from [gamma-32P]ATP to 3-phosphoglycerate; the intermediate, 1,3-[1-32P]diphosphoglycerate, is dephosphorylated by glyceraldehyde-3-phosphate dehydrogenase (GAP-DH). [32P]Orthophosphate is released proportionally to NADH and can be measured after adsorption of [gamma-32P]ATP to activated charcoal. With this method, 0.2 pmol of NADH are detectable in the presence of a 10(4)-fold excess of NAD over NADH.  相似文献   

5.
1. The concentration of carbamylcholine, bombesin, pancreozymin, pentagastrin and secretin evoking a similar 4--5-fold maximal increase in amylase secretion from rat pancreatic fragments were 3.10(-6), 10(-7), 10(-8), 3.10(-6), and 3.10(-6) M, respectively. The maximal concentration of vasoactive intestinal peptide tested (3.10(-6) M) increased amylase secretion by 250%. The six secretagogues could be separated into two groups according to their effects on lipid metabolism and ATP levels. 2. When used at their optimal concentrations, carbamylcholine, bombesin, pancreozymin, and pentagastrin lowered pancreatic ATP levels by 18-26% and increased net release of free fatty acids by 68-105%. 3. The effects of 3.10(-6) M carbamylcholine and 10(-8) M pancreozymin on the metabolism of 3H2O, D-[U-14C]glucose and [1-14C]acetate were similar; the incorporation of radioactivity in the fatty acid moiety of glycerolipids decreased by 20--50% whereas the incorporation of 3H from 3H2O and of 14C from [U-14C]glucose increased by 20--35% in the glycerol moiety. In addition, the oxidation of [U-14C]glucose, [1-14C]acetate and [1-14C]palmitate to 14CO2 increased by 15--32% while the esterification of [1-14C]palmitate, [1-14C]-linoleate, and [1-14C]arachidonate was inhibited by 14--23%. The spectrum of fatty acids labeled with [1-14C]acetate indicated an inhibition of the malonic acid pathway whereas the elongation of polyenoic fatty acids was unaltered.  相似文献   

6.
In order to meet a need for a cAMP assay which is not subject to interference by compounds in plant extracts, and which is suitable for use on occasions separated by many 32P half-lives, an assay based on cAMP-dependent protein kinase has been developed which does not require the use of [γ-32P]ATP. Instead of measuring the cAMP-stimulated increase in the rate of transfer of [γ-32P] phosphate from [γ-32P]ATP to protein, the rate of loss of ATP from the reaction mixture is determined. The ATP remaining after the protein kinase reaction is assayed by ATP-dependent chemiluminescence of the firefly luciferin-luciferase system. Under conditions of the protein kinase reaction in which a readily measurable decrease in ATP concentration occurs, the logarithm of the concentration of ATP decreases in proportion to the cAMP concentration, i.e., the reaction can be described by the equation: [ATP] = [ATP]0 e?[cAMP]kt. The assay based on this relationship can detect less than 1 pmol of cAMP. The levels of cAMP found with this assay after partial purification of the cAMP from rat tissue, algal cells, and the media in which the cells were grown agreed with measurements made by the cAMP binding-competition assay of Gilman, and the protein kinase stimulation assay based on transfer of [32P] phosphate from [γ-32P]ATP to protein. All of the enzymes and chemicals required for the assay of cAMP by protein kinase catalyzed loss of ATP can be stored frozen for months, making the assay suitable for occasional use.  相似文献   

7.
The pathways of glycerol-3-phosphate (G3P) generation for glyceride synthesis were examined in precision-cut liver slices of fasted and diabetic rats. The incorporation of 5 mM [U-(14)C]glucose into glyceride-glycerol, used to evaluate G3P generation via glycolysis, was reduced by approximately 26-36% in liver slices of fasted and diabetic rats. The glycolytic flux was reduced by approximately 60% in both groups. The incorporation of 1.0 mM [2-(14)C]pyruvate into glyceride-glycerol (glyceroneogenesis) increased approximately 50% and approximately 36% in slices of fasted and diabetic rats, respectively, which also showed a two-fold increase in the activity phosphoenolpyruvate carboxykinase. The increased incorporation of 1.0 mM [2-(14)C]pyruvate into glyceride-glycerol by slices of fasted rats was not affected by the addition of 5 mM glucose to the incubation medium. The activity of glycerokinase and the incorporation of 1 mM [U-(14)C]glycerol into glyceride-glycerol, evaluators of G3P formation by direct glycerol phosphorylation, did not differ significantly from controls in slices of the two experimental groups. Rates of incorporation of 1 mM [2-(14)C]pyruvate and [U-(14)C]glycerol into glucose of incubation medium (gluconeogenesis) were approximately 140 and approximately 20% higher in fasted and diabetic slices than in control slices. It could be estimated that glyceroneogenesis by liver slices of fasted rats contributed with approximately 20% of G3P generated for glyceride-glycerol synthesis, the glycolytic pathway with approximately 5%, and direct phosphorylation of glycerol by glycerokinase with approximately 75%. Pyruvate contributed with 54% and glycerol with 46% of gluconeogenesis. The present data indicate that glyceroneogenesis has a significant participation in the generation of G3P needed for the increased glyceride-glycerol synthesis in liver during fasting and diabetes.  相似文献   

8.
When [6-3H,6-14C]glucose was given in glucose loads to fasted rats, the average 3H/14C ratios in the glycogens deposited in their livers, relative to that in the glucoses administered, were 0.85 and 0.88. When [3-3H,3-14C]lactate was given in trace quantity along with unlabeled glucose loads, the average 3H/14C ratio in the glycogens deposited was 0.08. This indicates that a major fraction of the carbons of the glucose loads was converted to liver glycogen without first being converted to lactate. When [3-3H,6-14C]glucose was given in glucose loads, the 3H/14C ratios in the glycogens deposited averaged 0.44. This indicates that a significant amount of H bound to carbon 3, but not carbon 6, of glucose is removed within liver in the conversion of the carbons of the glucose to glycogen. This can occur in the pentose cycle and by cycling of glucose-6-P via triose phosphates: glucose----glucose-6-P----triose phosphates----glucose-6-P----glycogen. The contributions of these pathways were estimated by giving glucose loads labeled with [1-14C]glucose, [2-14C]glucose, [5-14C]glucose, and [6-14C]glucose and degrading the glucoses obtained by hydrolyzing the glycogens that deposited. Only a few per cent of the glucose carbons deposited in glycogen were deposited in liver via glucose-6-P conversion to triose phosphates. Between 4 and 9% of the glucose utilized by the liver was utilized in the pentose cycle. While these are relatively small percentages, since three NADP3H molecules are formed from each molecule of [3-3H]glucose-6-P utilized in the cycle, a major portion of the difference between the ratios obtained with [3-3H]glucose and with [6-3H]glucose is attributable to metabolism in the pentose cycle. Because 3H of [3-3H]glucose is extensively removed during the conversion of the glucose to glycogen within liver the extent of incorporation of the 3H into liver glycogen is not the measure of glucose's metabolism in other tissues before its carbons are deposited in liver glycogen. The distributions of 14C from the 14C-labeled glucoses into the carbons of the liver glycogens mean that at a minimum about 30% of the carbons of the glucose deposited in the glycogen were first converted to lactate or its metabolic equivalent.  相似文献   

9.
It is well known that platelets readily incorporate radioactive glycerol, but not radioactive phosphate into phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in vitro, thus not in accordance with de novo synthesis according to the Kennedy pathway. In attempts to understand the reason for the discrepancy, gel-filtered platelets were incubated simultaneously with [32P]Pi and [3H]glycerol, and the specific and relative radioactivities of products and intermediates were determined. Both precursors were incorporated into phosphatidylinositol (PI) with a 32P/3H ratio similar to that in glycerol 3-phosphate (in accordance with the Kennedy pathway). However, PC and PE obtained a much lower ratio. The specific 32P radioactivity in phosphorylcholine was similar to that of the gamma-phosphoryl of ATP and 650-times higher than that of PC. The specific 32P radioactivity of phosphorylethanolamine was 20-times less than that of phosphorylcholine. Both mass and 32P labelling of CDP-choline were below the detection limits. It is concluded that the incorporation of [32P]Pi into PC via phosphorylcholine is insignificant while the preferential incorporation of [3H]glycerol could be explained by exchange of diacyl[3H]glycerol in the reversible choline phosphotransferase (CDP-choline: 1,2-diacylglycerol cholinephosphotransferase) reaction. The same mechanism would explain the preferential incorporation of 3H over 32P into PE, although dilution of 32P at the phosphorylethanolamine stage would account for part of the feeble 32P incorporation. Although other mechanisms are also possible, our results clearly show that the appearance of [3H]glycerol in PC and PE is not a reliable method of monitoring de novo synthesis of these phospholipids.  相似文献   

10.
The appearance of plasma [14C]glucose in the inferior cava vein after a pulse of 0.2 mmol of [U-14C]L-alanine or [U-14C]glycerol/200 g body wt given through the portal vein was studied in fed 21 day pregnant rats and virgin controls under pentobarbital anesthesia. In both groups values were much higher when [U-14C]glycerol was the administered tracer than when [U-14C]L-alanine, and they were augmented in pregnant versus virgin animals at 1 min when receiving [U-14C]glycerol and at 2 min when receiving [U-14C]L-alanine. 20 min after the tracers rats receiving [U-14C]glycerol showed much higher liver [14C]glycogen and [14C]glyceride glycerol than those receiving [U-14C]L-alanine. Radioactivity present in liver as [14C]glyceride glycerol was greater in pregnant than in virgin rats receiving [U-14C]glycerol whereas radioactivity corresponding to [14C]fatty acids was lower in the former group receiving either tracer. At 20 min after maternal treatments fetuses showed lower plasma [14C]glycerol than [14C]alanine values but plasma [14C]glucose and liver [14C]glycogen values were much greater in fetuses from mothers receiving [U-14C]glycerol than [U-14C]L-amine. Besides showing the higher gluconeogenic efficiency in pregnant than in virgin rats, results indicate that at late gestation glycerol is used as a preferential substrate for both glucose and glyceride glycerol synthesis in liver.  相似文献   

11.
Lactate metabolism in the perfused rat hindlimb.   总被引:2,自引:0,他引:2       下载免费PDF全文
M Shiota  S Golden    J Katz 《The Biochemical journal》1984,222(2):281-292
A preparation of isolated rat hindleg was perfused with a medium consisting of bicarbonate buffer containing Ficoll and fluorocarbon, containing glucose and/or lactate. The leg was electrically prestimulated to deplete partially muscle glycogen. The glucose was labelled uniformly with 14C and with 3H in positions 2, 5 or 6, and lactate uniformly with 14C and with 3H in positions 2 or 3. Glucose carbon was predominantly recovered in glycogen, and to a lesser extent in lactate. The 3H/14C ration in glycogen from [5-3H,U-14C]- and [6-3H,U-14C]-glucose was the same as in glucose. Nearly all the utilized 3H from [2-3H]glucose was recovered as water. Insulin increased glucose uptake and glycogen synthesis 3-fold. When the muscle was perfused with a medium containing 10 mM-glucose and 2 mM-lactate, there was little change in lactate concentration. 14C from lactate was incorporated into glycogen. There was a marked exponential decrease in lactate specific radioactivity, much greater with [3H]- than with [14C]-lactate. The 'apparent turnover' of [U-14C]lactate was 0.28 mumol/min per g of muscle, and those of [2-3H]- and [3-3H]-lactate were both about 0.7 mumol/min per g. With 10 mM-lactate as sole substrate, there was a net uptake of lactate, at a rate of about 0.15 mumol/min per g, and the apparent turnover of [U-14C]lactate was 0.3 mumol/min per g. The apparent turnover of [3H]lactate was 3-5 times greater. When glycogen synthesis was low (no prestimulation, no insulin), the incorporation of lactate carbon into glycogen exceeded that from glucose, but at high rates of glycogen deposition the incorporation of lactate carbon was much less than that of glucose. Lactate incorporation into glycogen was similar in fast-twitch white and fast-twitch red muscle, but was very low in slow-twitch red fibres. We find that (a) pyruvate in muscle is incorporated into glycogen without randomization of carbon, and synthesis is not inhibited by mercaptopicolinate or cycloserine; (b) there is extensive lactate turnover in the absence of net lactate uptake, and there is a large dilution of 14C-labelled lactate from endogenous supply; (c) there is extensive detritiation of [2-3H]- and [3-3H]-lactate in excess of 14C utilization.  相似文献   

12.
When the purified plant glucosidase II was incubated with [3H]Glc2Man9GlcNAc in the presence of glycerol and the products were analyzed by gel filtration, a large peak of radioactivity emerged just before the glucose standard. The formation of this peak was dependent on both the presence of Glc2Man9GlcNAc and the presence of glycerol, and the amount of this product increased with time of incubation and amount of glucosidase II in the incubation. When the incubation was performed with [3H]Glc2Man9GlcNAc plus [14C]glycerol, the product contained both 14C and 3H. Strong acid hydrolysis of the purified product gave rise to [14C]glycerol and [3H]glucose. Various other chemical treatments and chromatographic techniques showed that the product was glucosyl----glycerol. Since the glucose was released by alpha-glucosidase, the product must be glucosyl-alpha-glycerol. This study demonstrates that the processing glucosidase II catalyzes a trans-glycosylation reaction in the presence of acceptors like glycerol. Since this transglycosylation reaction may give rise to unexpected products, investigators should be aware of its possible occurrence.  相似文献   

13.
This paper reports the determination of the ability of rat heart cells in culture to release [14C]palmitate from its triglyceride and to oxidize this fatty acid and free [14C]palmitate to 14CO2 when the cells are actively beating and when they stop beating after aging in culture. In addition, the levels of glucose, glycogen, and ATP were determined to relate the concentration of these metabolites with beating and with cessation of beating. When young rat heart cells in culture are actively beating, they oxidize free fatty acids at a rate parallel with cellular ATP production. Both fatty acid oxidation and ATP production remain constant while the cells continue to beat. Furthermore, glucose is removed from the growth medium by the cells and stored as glycogen. When cultured cells stop beating, a decrease is seen in their ability to oxidize free fatty acids and to release them from their corresponding triglycerides. Concomitant with decreased fatty acid oxidation is a decrease in cellular levels of ATP until beating ceases. Midway between initiation of cultures and cessation of beating the cells begin to mobilize the stored glycogen. When the growth medium is supplemented with cortisol acetate and given to cultures which have ceased to beat, reinitiation of beating occurs. Furthermore, all decreases previously observed in ATP levels, fatty acid oxidation, and esterase activity are restored.  相似文献   

14.
ATP can be assayed by transferring its terminal phosphate group to tritium-labeled glycerol with glycerokinase and measuring the radioactivity of the resultant glycerophosphate. The observed tritium activity is proportional to the ATP content of the sample. If the terminal P of ATP is radioactive, the 32P3H ratio of the glycerophosphate is a selective measure of the specific activity of that P atom. The assay is useful over a range of 0.01–10 nmoles of ATP and is suitable for the assay of small volumes of tissue extracts. The assay is not specific for ATP and can be used to determine the other nucleoside triphosphates. However, the method can be modified with some loss of convenience to be specific for ATP.  相似文献   

15.
The metabolic effects of human placental lactogen (HPL) on rat and human white fat were tested in vitro. When tested against rat tissue, HPL resembled insulin in stimulating uptake of glucose and incorporation of [14C] glucose into CO2, triglyceride and glycogen, but differed from insulin in stimulating glycerol release and in failing to stimulate the incorporation of [14C] The stimulation of [14C] glucose incorporation and the inhibition of glycerol release by insulin were antagonized by HPL. The effects of HPL on human white fat resembled those on rat white fat,except that glycerol release was not stimulated in human tissue. The possible role of HPL in causing the diabetogenic stress of pregnancy is discussed in the light of these findings.  相似文献   

16.
Glycolysis from [6-(3)H]glucose and gluconeogenesis from [U-(14)C]glycerol were examined in isolated hepatocytes from fasted rats. A 5 mm bolus of glycerol inhibited phosphorylation of 40 mm glucose by 50% and glycolysis by more than 60%, and caused cellular ATP depletion and glycerol 3-phosphate accumulation. Gluconeogenesis from 5 mm glycerol was unaffected by the presence of 40 mm glucose. When nonsaturating concentrations of glycerol (< 200 microm) were maintained in the medium by infusion of glycerol, cellular ATP concentrations remained normal. The rate of uptake of infused glycerol was unaffected by 40 mm glucose, but carbohydrate synthesis from glycerol was inhibited 25%, a corresponding amount of glycerol being diverted to glycolytic products, whereas 10 mm glucose had no inhibitory effect on conversion of infused glycerol into carbohydrate. Glycerol infusion depressed glycolysis from 10 mm and 40 mm glucose by 15 and 25%, respectively; however, the overall rates of glycolysis were unchanged because of a concomitant increase in glycolysis from the infused glycerol. These studies show that exposure of hepatocytes to glucose and low quasi-steady-state concentrations of glycerol result in the simultaneous occurrence, at substantial rates, of glycolysis from glucose and gluconeogenesis from the added glycerol. We interpret our results as demonstrating that, in hepatocytes from normal rats, segments of the pathways of glycolysis from glucose and gluconeogenesis from glycerol are compartmentalized and that this segregation prevents substantial cross-over of phosphorylated intermediates from one pathway to the other. The competition between glucose and glycerol implies that glycolysis and phosphorylation of glycerol take place in the same cells, and that the occurrence of simultaneous glycolysis and gluconeogenesis may indicate channelling within the cytoplasm of individual hepatocytes.  相似文献   

17.
Dark-adapted pure bovine rod outer segments (ROS) (A280/A500--2.1) can be phosphorylated in the presence of [gamma-32P]ATP and [gamma-32P]GTP. The constant levels of phosphorylation, reached within 10--15 min, are 100 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP and 2--4 pmol 32P/nmol of rhodopsin for [gamma-32P]GTP. These processes are not controlled by 10(-4)--10(-8) cAMP, cGMP or Ca2+, but are inhibited at higher concentrations of these agents. In the presence of histone the constant level of phosphorylation is increased up to 200 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP, but is not changed when [gamma-32P]GTP is used. 10(-5) M cAMP is found to activate the phosphorylation in the presence of histone and [gamma-32P]ATP by 5--6 times. All this evidences that ROS contains cAMP-dependent protein kinase, which utilizes ATP, but not GTP. Moreover, ROS contains cyclic nucleotides- and Ca2+-independent protein kinase. These protein kinases are the ROS endogenous enzymes. This is shown in experiments on separation of pure ROS in a sucrose density gradient.  相似文献   

18.
After a pulse of [3-14C]pyruvate, 24 hr starved rats were infused through the portal vein with two different doses of glucose (7.8 or 20.8 mg/min) or the medium, and blood was collected from the inferior cava vein at the level of the suprahepatic veins. The highest dose of glucose enhanced the appearance of [14C]glucose in blood from the 2nd to the 20th min after tracer delivery. It also enhanced production of [14C]glycogen and concentration of glycogen in the liver after 5 and 20 min. At 20 min of glucose infusion the appearance of [14C]glyceride glycerol in liver as well as liver lactate concentration and lactate/pyruvate ratio were increased. The low dose of glucose used enhanced liver values of [14C]glycogen, [14C]glycogen specific activity and glycogen concentration. Our results support the hypothesis that in the starved rat glucose is converted into C3 units prior to being deposited as liver glycogen and based on the liver zonation model (Jungermann et al., 1983) it is proposed that glucose stimulated gluconeogenesis by shifting the liver to the cytosolic redox state as a secondary consequence of increased glycolytic activity.  相似文献   

19.
When mouse pancreatic "minilobules" prelabeled with either [14C]arachidonic acid (AA), [14C]stearic acid (SA), or [3H]glycerol were stimulated with the secretogogue, caerulein, there was a 60-70% loss in radioactivity in phosphatidylinositol (PI) at 30 min. This loss was accompanied by the formation of [14C] phosphatidic acid (PA), [14C]diacylglycerol (DG), [14C] triacylglycerol (TG), and free [14C]AA, [14C]SA, and [3H]glycerol. The loss in radioactive PI was the same as the loss in chemically measured PI-phosphorus. Thirty to fifty per cent of the caerulein-induced loss of prelabeled PI could be accounted for as free [14C]AA, [14C]SA, or [3H]glycerol. Increased incorporation of fatty acid or glycerol residues into DG, PA, and TG accounted for the balance of the loss in PI. The specific DG-lipase inhibitor, RHC 80267, markedly inhibited the caerulein-stimulated release of [14C]AA, [14C]SA, and [3H]glycerol and roughly doubled the caerulein-induced increment in [14C]AA-, [14C]SA-, or [3H]glycerol-labeled DG, showing that the source of the caerulein-induced increment in fatty acids and glycerol was DG. When the PI was prelabeled with either [32P] orthophosphate, [3H]myoinositol, or [3H]glycerol, only 1% or less of the radioactivity in PI was in lysophosphatidylinositol (LPI), and there was no increase in radioactivity in LPI on stimulation with caerulein. These observations, taken together, argue strongly for a phospholipase C-catalyzed breakdown of PI followed by DG-lipase and argue against any significant involvement of phospholipase A2 in PI degradation in mouse pancreas. The formation of substantial amounts of free [14C]AA on stimulation supports the view that, among other things, the phosphoinositide effect in the exocrine pancreas serves to generate arachidonate (and its metabolites). The release of appreciable amounts of free fatty acids and glycerol shows that a significant portion of the DG formed as a result of caerulein-stimulated PI breakdown is not conserved in the phosphoinositide cycle.  相似文献   

20.
A triple-tracer method was developed to provide absolute fluxes contributing to endogenous glucose production and hepatic tricarboxylic acid (TCA) cycle fluxes in 24-h-fasted rats by (2)H and (13)C nuclear magnetic resonance (NMR) analysis of a single glucose derivative. A primed, intravenous [3,4-(13)C(2)]glucose infusion was used to measure endogenous glucose production; intraperitoneal (2)H(2)O (to enrich total body water) was used to quantify sources of glucose (TCA cycle, glycerol, and glycogen), and intraperitoneal [U-(13)C(3)] propionate was used to quantify hepatic anaplerosis, pyruvate cycling, and TCA cycle flux. Plasma glucose was converted to monoacetone glucose (MAG), and a single (2)H and (13)C NMR spectrum of MAG provided the following metabolic data (all in units of micromol/kg/min; n = 6): endogenous glucose production (40.4+/-2.9), gluconeogenesis from glycerol (11.5+/-3.5), gluconeogenesis from the TCA cycle (67.3+/-5.6), glycogenolysis (1.0+/-0.8), pyruvate cycling (154.4+/-43.4), PEPCK flux (221.7+/-47.6), and TCA cycle flux (49.1+/-16.8). In a separate group of rats, glucose production was not different in the absence of (2)H(2)O and [U-(13)C]propionate, demonstrating that these tracers do not alter the measurement of glucose turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号