首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis based on the integration of differential inequalities is employed to derive upper and lower bounds on the total populationN(t) = ∫ R θ(x 1,x 2,t) dx 1 dx 2 of a biological species with an area-density distribution function θ=θ(x 1,x 2,t) (≥0) governed by a reaction-diffusion equation of the form ∂θ/∂t =D2θ +fθ −gθ n+1 whereD (>0),n (>0),f andg are constant parameters, θ=0 at all points on the boundary ∂R of an (arbitrary) two-dimensional regionR, and the initial distribution (θ(x 1,x 2, 0) is such thatN(0) is finite. Forg≥0 withR the entire two-dimensional Euclidean space, a lower bound onN(t) is obtained, showing in particular thatN(∞) is bounded below by a finite positive quantity forf≥0 andn>1. An upper bound onN(t) is obtained for arbitrary bounded or unbounded)R withn=1,f andg negative, and ∫ R θ(x 1,x 2, 0)2 dx 1 dx 2 sufficiently small in magnitude, implying that the population goes to extinction with increasing values of the time,N(∞)=0. Forg≥0 andR of finite area, the analysis yields upper bounds onN(t), predicting eventual extinction of the population if eitherf≤0 or if the area ofR is less than a certain grouping of the parameters in cases for whichf is positive. These results are directly applicable to biological species with distributions satisfying the Fisher equation in two spatial dimensions and to species governed by certain specialized population models.  相似文献   

2.
Ni BR  Bradford KJ 《Plant physiology》1992,98(3):1057-1068
Mathematical models were developed to characterize the physiological bases of the responses of tomato (Lycopersicon esculentum Mill. cv T5) seed germination to water potential (ψ) and abscisic acid (ABA). Using probit analysis, three parameters were derived that can describe the germination time courses of a seed population at different ψ or ABA levels. For the response of seed germination to reduced ψ, these parameters are the mean base water potential (¯ψb, MPa), the standard deviation of the base water potential among seeds in the population (σψb, MPa), and the “hydrotime constant” (θH, MPa·h). For the response to ABA, they are the log of the mean base ABA concentration ([unk]ABAb, m), the standard deviation of the base ABA concentration among seeds in the population (σABAb, log[m]), and the “ABA-time constant” (θABA, log[m]·h). The values of ¯ψb and [unk]ABAb provide quantitative estimates of the mean sensitivity of germination rate to ψ or ABA, whereas σψb and σABAb account for the variation in sensitivity among seeds in the population. The time constants, θH and θABA, indicate the extent to which germination rate will be affected by a given change in ψ or ABA. Using only these parameters, germination time courses can be predicted with reasonable accuracy at any medium ψ according to the equation probit(g) = [ψ - (θH/tg) - ¯ψb]/σψb, or at any ABA concentration according to the equation probit(g) = [log[ABA] - (θABA/tg) - log[[unk]ABAb]]/σABAb, where tg is the time to radicle emergence of percentage g, and ABA is the ABA concentration (m) in the incubation solution. In the presence of both ABA and reduced ψ, the same parameters can be used to predict seed germination time courses based upon strictly additive effects of ψ and ABA in delaying the time of radicle emergence. Further analysis indicates that ABA and ψ can act both independently and interactively to influence physiological processes preparatory for radicle growth, such as the accumulation of osmotic solutes in the embryo. The models provide quantitative values for the sensitivity of germination to ABA or ψ, allow evaluation of independent and interactive effects of the two factors, and have implications for understanding how ABA and ψ may regulate growth and development.  相似文献   

3.
4.
Complex investigations of the influence of environmental factors, viz., the temperature, photosynthetically active radiation (PAR), ambient seawater concentrations of ammonium (NH4), and orthophosphate (PO4), as well as the contents of organic carbon (C), nitrogen, phosphorus, and a-chlorophyll (Ch) on the rate of photosynthesis (Pn) and dark respiration (Rd) in the tissues of the unattached red seaweed Ahnfeltia tobuchiensis (Rhodophyta: Ahnfeltiales) population, were performed in the summers of 2000 and 2008 in Izmeny Bay (Kunashir Island) under in situ conditions. The dependence of photosynthesis on PAR intensity (P-I dependence) is described by the equation of a hyperbolic tangent. The population of A. tobuchiensis forms a layer up to 50 cm thick with an area of 23.3 km2 and a biomass of 125 000 tons. The Pn rate of seaweed population during daylight hours varies within a wide range, with an average of 1.04 mg O2 O2/(g dry weight h) and largely depends on PAR intensity and availability (r = 0.70–0.98). The maximum photosynthesis rate (Pmax) is substantially defined by the ambient concentration of NH4 (r 2 = 0.91, p < 0.01). The rate of Rd during the night is on average 0.1 mg O2/(g dry weight h) and mainly depends on the content of Ch in seaweed tissues (r 2 = 0.83, p < 0.01), which, in its turn, is regulated by the ambient concentration of PO4 (r 2 = 0.86, p < 0.01). With average biomass values of 5.4 kg/m2 or 1.8 kgdry weight/m2, the net primary production (Pn) of seaweed population is estimated to be on average 22.5 g O2/(m2 day) or 8.4 g C/(m2 day). Based on these indices, the investigated population is one of the most productive ecosystems of the World Ocean. It is supposed that such indices of the A. tobuchiensis population are attained due to the highly efficient use of weak light and a low light-saturation level of photosynthesis, compared to other seaweeds.  相似文献   

5.

Background

Accurately assessing the transmissibility and serial interval of a novel human pathogen is public health priority so that the timing and required strength of interventions may be determined. Recent theoretical work has focused on making best use of data from the initial exponential phase of growth of incidence in large populations.

Methods

We measured generational transmissibility by the basic reproductive number R0 and the serial interval by its mean Tg. First, we constructed a simulation algorithm for case data arising from a small population of known size with R0 and Tg also known. We then developed an inferential model for the likelihood of these case data as a function of R0 and Tg. The model was designed to capture a) any signal of the serial interval distribution in the initial stochastic phase b) the growth rate of the exponential phase and c) the unique combination of R0 and Tg that generates a specific shape of peak incidence when the susceptible portion of a small population is depleted.

Findings

Extensive repeat simulation and parameter estimation revealed no bias in univariate estimates of either R0 and Tg. We were also able to simultaneously estimate both R0 and Tg. However, accurate final estimates could be obtained only much later in the outbreak. In particular, estimates of Tg were considerably less accurate in the bivariate case until the peak of incidence had passed.

Conclusions

The basic reproductive number and mean serial interval can be estimated simultaneously in real time during an outbreak of an emerging pathogen. Repeated application of these methods to small scale outbreaks at the start of an epidemic would permit accurate estimates of key parameters.  相似文献   

6.
Bacterial growth at moderately high concentrations of β-lactam antibiotics and within the first few hours of exposure cannot be described by a simple exponential equation. The quadratic function InN t=InN 0+k0t?1/2at2, in whichk 0 is the initial growth rate constant anda a rate inhibition constant, is a better approximation. Whena is used as a single parameter, the effect of a particular antibiotic can be described as a concentration-effect relation. This approach also permits comparison of antibiotics, e.g., nafcillin and cloxacillin. The relation betweenk 0 anda in the interaction between nafcillin and chloramphenicol shows that chloramphenicol antagonizes the effect of nafcillin.  相似文献   

7.
The objective of the study was to describe the biometry of Mediterranean bluefin tuna, Thunnus thynnus, the biology of which is not yet well understood. A total of 504 specimens was collected from 1998 to 2005 in the central part of the Mediterranean basin. They were sexed and measured; fork lengths (FL) ranged from 51.0 to 255.0 cm while body weights (W) ranged from 2.6 to 247.0 kg. The first spiniform ray (spine) of the first dorsal fin was removed and cross‐sectioned near the condyle base in order to count annuli for age estimation. The regression coefficient (b) of the female FL–W relationship was significantly higher than that of the male, and both sexes displayed a negatively allometric growth (b < 3); male regression equation: ln W = ?2.942 + 2.730 ln FL; female regression equation: ln W = ?3.660 + 2.878 ln FL. Based on counts of the translucent zones in the sections of the first ray of the first dorsal fin, estimated ages ranged from 1 to 15 years for males and 1 to 14 years for females. The correlation between the spine ray (R) and FL fit the allometric model best; the R–FL regression equations of the two sexes did not differ significantly and the overall equation was: ln FL = 3.721 + 0.851 ln R. Due to the R–FL allometric correlation, estimates of fork lengths at previous ages, FLi, were back‐calculated with a body proportional hypothesis. Von Bertalanffy growth equations were derived from both observed and back‐calculated FLs‐at‐age, which did not differ significantly. Moreover, no significant difference was found between the growth equations of the two sexes; the overall equation was FLt = 373.08 [1?e?0.07(t + 1.76)]. Weight‐at‐age values were derived from the von Bertalanffy predicted FLs‐at‐age by the FL–W correlation equations for males and females. The paper represents the first comprehensive study on the biometry, including age and growth, of bluefin tuna captured in the Mediterranean Sea.  相似文献   

8.
Realistic values of population growth rates are needed when used in forecasting programmes, e.g., in a programme of integrated control. Therefore, comparisons were made in a chrysanthemum – aphid system between different methods of assessing population growth rates. The reproductive performances of the aphid species Aphis gossypii and Myzus persicae were measured on two chrysanthemum cultivars using three plant growth stages (young vegetative, budding and flowering). In the first set of experiments, development time and reproduction were used to estimate the population growth rate rm. The mean relative growth rates (MRGR) were also assessed. It was shown for the first time that the relationship between rm and MRGR was influenced by aphid species. In a second experiment, the aphid population increase on a whole plant was measured and rm was estimated by calculating the slope of the (ln transformed) population increase. It is shown that population growth rate is affected by the growth stage of the plant, and that cultivar and aphid species interact with plant growth stage in influencing population growth rate. Thus, no single growth stage of chrysanthemum for maximal aphid population growth can be assigned, but the budding and flowering stage are the most suitable in three out of four aphid × cultivar combinations. Comparison between the results from both experiments demonstrates clearly that more realistic values for rm are obtained when measured on whole plants.  相似文献   

9.
A life-table was constructed for a little known aphidiid waspLysiphlebia mirzai, a parasitoid of cereal aphid,Rhopalosiphum maidis. The female parasitoid survived 6.4 ± 1.17 (SD) days and oviposited intensively 4.0 ± 0.47 days. The total fecundity rate, Rt, was 169.2 ± 6.94 mummies/female and net reproductive rate, Ro, was 92.70 female offspring/female. The intrinsic total fecundity rate, rt, and intrinsic rate of natural increase, rm, the finite rate of total fecundity, λt, and finite rate of increase, λm, was 0.27048, 0.24155, 1.31059 and 1.27322 respectively. The mean generation time (18.75 days) and doubling time of the population (2.87 days) was slightly higher than other aphidiids studied so far. The proportion of female progenies decreased significantly on the successive oviposition days.   相似文献   

10.
The maximum specific growth rate (μmax) of an ethanolic D-xylose-fermenting yeast, Pichia stipitis, showing non-linear growth trends in batch culture, was calculated using the rate equation μ2 = (1/Δt) ln(x 2/x 1). The absolute error Δμ, affecting μ2, was derived using an equation given by Borzani (1994). Based on the assumption of linearity of growth curves between two closest time points, the relation between the two rate formulae, μ1 = (1/)dx t /dt and μ2 = (1/Δt) ln(x 2/x 1) was established. In a particular condition, when μ1 = μ2, an equation has been developed, the roots of which are the specific growth rates at different time points. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
12.
After a short time interval of length δt during microbial growth, an individual cell can be found to be divided with probability Pd(tt, dead with probability Pm(tt, or alive but undivided with the probability 1 − [Pd(t) + Pm(t)]δt, where t is time, Pd(t) expresses the probability of division for an individual cell per unit of time, and Pm(t) expresses the probability of mortality per unit of time. These probabilities may change with the state of the population and the habitat''s properties and are therefore functions of time. This scenario translates into a model that is presented in stochastic and deterministic versions. The first, a stochastic process model, monitors the fates of individual cells and determines cell numbers. It is particularly suitable for small populations such as those that may exist in the case of casual contamination of a food by a pathogen. The second, which can be regarded as a large-population limit of the stochastic model, is a continuous mathematical expression that describes the population''s size as a function of time. It is suitable for large microbial populations such as those present in unprocessed foods. Exponential or logistic growth with or without lag, inactivation with or without a “shoulder,” and transitions between growth and inactivation are all manifestations of the underlying probability structure of the model. With temperature-dependent parameters, the model can be used to simulate nonisothermal growth and inactivation patterns. The same concept applies to other factors that promote or inhibit microorganisms, such as pH and the presence of antimicrobials, etc. With Pd(t) and Pm(t) in the form of logistic functions, the model can simulate all commonly observed growth/mortality patterns. Estimates of the changing probability parameters can be obtained with both the stochastic and deterministic versions of the model, as demonstrated with simulated data.  相似文献   

13.
Wang C L  Zhou G Y  Tang X L  Wang X  Zhou C Y  Yu G R  Tang L S  Meng Z 《农业工程》2007,27(7):2659-2668
Accurate estimation of ecosystem respiration (Reco) in forest ecosysteMs is critical for validating terrestrial carbon models. Continuous eddy covariance measuremenTs of Reco were conducted in a coniferous and broad-leaved mixed forest located in Dinghushan Nature Reserve of southern China. Reco was estimated and the controlling environmental factors were analyzed based on two years' data from 2003 to 2004. Major resulTs included that: (1) Reco was affected by soil temperature, soil moisture, canopy air temperature and humidity, where soil temperature at 5 cm depth was the dominant factor. (2) The exponential equation, Van't Hoff equation, Arrhenius equation and Lyold-Talor equation can be used to describe the relationship between Reco and temperature factors with similar statistical significance, while Lyold-Talor equation was the most sensitive to the temperature index (Q10). (3) The multiplicative model driven by soil temperature (Ts) and soil moisture (Ms) was more corresponsive to Reco, which explained that there were more Reco variations than Lyold-Talor equation, both for higher and lower Ms. However, there was no statistical difference between the two models. (4) Annually accumulated Reco of the mixed forest in 2003 was estimated as 1100–1135.6 gC m?2 a?1 by using daytime data, which was 12%–25% higher than Reco (921–975 gC m?2 a?1) estimated by using nighttime data. The resulTs suggested that using daytime data to estimate Reco can avoid the common underestimation problem caused by using eddy covariance methods. The study provides a basic method for further study on accurate estimation of net ecosystem CO2 exchange (NEE) in the coniferous and broad-leaved mixed forest in southern China.  相似文献   

14.
The kinetic parameters Km, Vmax, Tt (turnover time), and v (natural velocity) were determined for H2 and acetate conversion to methane by Wintergreen Lake sediment, using short-term (a few hours) methods and incubation temperatures of 10 to 14°C. Estimates of the Michaelis-Menten constant, Km, for both the consumption of hydrogen and the conversion of hydrogen to methane by sediment microflora averaged about 0.024 μmol g−1 of dry sediment. The maximal velocity, Vmax, averaged 4.8 μmol of H2 g−1 h−1 for hydrogen consumption and 0.64 μmol of CH4 g−1 h−1 for the conversion of hydrogen to methane during the winter. Estimated natural rates of hydrogen consumption and hydrogen conversion to methane could be calculated from the Michaelis-Menten equation and estimates of Km, Vmax, and the in situ dissolved-hydrogen concentration. These results indicate that methane may not be the only fate of hydrogen in the sediment. Among several potential hydrogen donors tested, only formate stimulated the rate of sediment methanogenesis. Formate conversion to methane was so rapid that an accurate estimate of kinetic parameters was not possible. Kinetic experiments using [2-14C]acetate and sediments collected in the summer indicated that acetate was being converted to methane at or near the maximal rate. A minimum natural rate of acetate conversion to methane was estimated to be about 110 nmol of CH4 g−1 h−1, which was 66% of the Vmax (163 nmol of CH4 g−1 h−1). A 15-min preincubation of sediment with 5.0 × 10−3 atm of hydrogen had a pronounced effect on the kinetic parameters for the conversion of acetate to methane. The acetate pool size, expressed as the term Km + Sn (Sn is in situ substrate concentration), decreased by 37% and Tt decreased by 43%. The Vmax remained relatively constant. A preincubation with hydrogen also caused a 37% decrease in the amount of labeled carbon dioxide produced from the metabolism of [U-14C]valine by sediment heterotrophs.  相似文献   

15.
王秀梅  陈鹏  张锡珍  阮长春 《生态学报》2014,34(13):3629-3634
为正确评估广谱杀虫剂烯啶虫胺对天敌昆虫异色瓢虫Harmonia axyridis(Pallas)的影响,采取滤纸接触法测定了烯啶虫胺(防治蚜虫田间推荐用量)对异色瓢虫影响,并使用生命表研究了烯啶虫胺对异色瓢虫实验种群的影响,为协调害虫的化学防治与生物防治提供参考。结果表明:该剂量烯啶虫胺对异色瓢虫当代(F0)取食具有显著影响,药剂处理后7d内,成虫取食量显著降低;对F0代成虫寿命及雌虫繁殖能力未见负面影响;烯啶虫胺处理对异色瓢虫初产卵、F1代幼虫及蛹的历期没有显著影响;卵孵化率明显小于对照组,幼虫存活率及蛹羽化率没有显著影响。F0代种群净增值力、周限增长率、内禀增长率与对照相比差异不显著,分别为812.66粒(对照899.73粒)、1.084(对照1.093)、0.081(对照0.089),药剂处理种群加倍时间为8.557d,与对照7.888d相比没有显著延长。这些结果说明,大田中使用烯啶虫胺防治蚜虫时理论上对异色瓢虫种群繁殖及发育没有显著影响,但施药初期会影响异色瓢虫的取食量。  相似文献   

16.
Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) is one of the most important and effective predators of Tetranychus spp. (Acari: Tetranychidae). This study analyzed the effects of hexythiazox and spiromesifen resistance on biological characteristics of N. californicus. Pre-oviposition, oviposition, post-oviposition times, adult lifespan, total number of eggs laid per female, net reproductive rate (R0), intrinsic rate of increase (rm), doubling time (DT), mean generation time (T) and finite rate of increase (λ) were compared among three populations: 63.9-fold hexythiazox resistant (HEX14), 53.6-fold spiromesifen resistant (SPR13) and a susceptible base population. Pre-oviposition and oviposition times, mean number of eggs/female, adult lifespan, R0 and rm values were all significantly higher for the two resistant populations than for the susceptible population. Life tables of HEX14, SPR13 and the susceptible population showed that R0 was 35.0, 26.5 and 19.4 (females/female generation), rm was 0.35, 0.32 and 0.30 (females/female/day), DT was 1.92, 2.07 and 2.27 days, T was 9.8, 9.8 and 9.7 days, and λ was 1.43, 1.39 and 1.35 (individuals/female/day), respectively.  相似文献   

17.
Structural changes of barnase during folding were investigated using time-resolved small-angle X-ray scattering (SAXS). The folding of barnase involves a burst-phase intermediate, sometimes designated as the denatured state under physiological conditions, Dphys, and a second hidden intermediate. Equilibrium SAXS measurements showed that the radius of gyration (Rg) of the guanidine unfolded state (U) is 26.9 ± 0.7 Å, which remains largely constant over a wide denaturant concentration range. Time-resolved SAXS measurements showed that the Rg value extrapolated from kinetic Rg data to time zero, Rg,0, is 24.3 ± 0.1 Å, which is smaller than that of U but which is expanded from that of folding intermediates of other proteins with similar chain lengths (19 Å). After the burst-phase change, a single-exponential reduction in Rg2 was observed, which corresponds to the formation of the native state for the major component containing the native trans proline isomer. We estimated Rg of the minor component of Dphys containing the non-native cis proline isomer (Dphys,cis) to be 25.7 ± 0.6 Å. Moreover, Rg of the major component of Dphys containing the native proline isomer (Dphys,tra) was estimated as 23.9 ± 0.2 Å based on Rg,0. Consequently, both components of the burst-phase intermediate of barnase (Dphys,tra and Dphys,cis) are still largely expanded. It was inferred that Dphys possesses the N-terminal helix and the center of the β-sheet formed independently and that the formation of the remainder of the protein occurs in the slower phase.  相似文献   

18.
The somatic and gonad productions of the cirolanid isopod Excirolana armata were analyzed by taking monthly samples from December 2003 to November 2005 on Una beach, S?o Paulo state (24°S), southeastern Brazil. Sampling was performed along three fixed transects established from the base of the foredunes to the waterline. Weight-specific growth rate was used to estimate the E. armata somatic production for 2004 and 2005, separately. The gonad production was estimated based on the monthly reproductive potential (mean number of eggs/embryos per female × monthly abundance of ovigerous females with near-release broods) for 2004. The annual somatic production of E. armata population varied from 15.57 to 17.25?g AFDW m?1?year?1 and the somatic production/biomass ratio (P s/B) from 3.55 to 3.14?year?1 for 2004 and 2005, respectively. The P s/B ratios were higher for males (4.02 and 3.19?year?1 for 2004 and 2005) than for females (3.10?year?1 for both years). The annual gonad production (P g?=?1.07?g AFDW m?1?year?1) contributed about 15 and 6% to the total production (P s?+?P g) of females and the population, respectively. The proportion of gonad to somatic production of females (P g/P s) increased with individual size (ca 90% in the 7.5?mm size class), and the annual weight-specific gonad production (P g/B ratio) was estimated to 0.24?year?1. The high P s/B ratios estimated for E. armata derive from the fast growth of individuals and show the importance of this population to the energy flow on Una beach ecosystem. However, the low percentage of juveniles verified in this population and in other studies of populations of the genus Excirolana is discussed as an important source of underestimation of P s/B ratio.  相似文献   

19.
Plants of alfalfa (Medicago sativa) and orchard grass (Dactylus glomerata) were grown in controlled environment chambers at two CO2 concentrations (350 and 700 μmol mol-1) and 4 constant day/night growth temperatures of 15, 20, 25 and 30°C for 50–90 days to determine changes in growth and whole plant CO2 efflux (dark respiration). To facilitate comparisons with other studies, respiration data were expressed on the basis of leaf area, dry weight and protein. Growth at elevated CO2 increased total plant biomass at all temperatures relative to ambient CO2, but the relative enhancement declined (P≤0.05) as temperature increased. Whole plant respiration (Rd) at elevated CO2 declined at 15 and 20°C in D. glomerata on an area, weight or protein basis and in M. sativa on a weight or protein basis when compared to ambient CO2. Separation of Rd into respiration required for growth (Rg) and maintenance (Rm) showed a significant effect of elevated CO2 on both components. Rm was reduced in both species but only at lower temperatures (15°C in M. sativa and 15 and 20°C in D. glomerata). The effect on Rm could not be accounted for by protein content in either species. Rg was also reduced with elevated CO2; however no particular effect of temperature was observed, i. e. Rg was reduced at 20, 25 and 30°C in M. sativa and at 15 and 25°C in D. glomerata. For the two perennial species used in the present study, the data suggest that both Rg and Rm can be reduced by anticipated increases in atmospheric CO2; however, CO2 inhibition of total plant respiration may decline as a function of increasing temperature  相似文献   

20.
Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae) is a cosmopolitan species and the main pest of fennel in northeastern Brazil. Understanding the relationship between temperature variations and the population growth rates of H. foeniculi is essential to predict the population dynamics of this aphid in the fennel crop. The aim of this study was to measure the effect of constant temperature on the adult prereproductive period and the life table fertility parameters (infinitesimal increase ratio (rm), gross reproduction rate (GRR), net reproduction rate (R0), finite increase ratio (λ), generation time (GT), the time required for the population to double in the number of individuals (DT), and the reproduction value (RVx)) of the fennel pest H. foeniculi. The values of lx (survival of nymphs at age x) increased as the temperature rose from 15 to 28°C and fell at 30°C, whereas mx (number of nymphs produced by each nymph of age x) increased from 15 to 25°C and fell at 28 and 30°C. The net reproduction rates (R0) of populations of H. foeniculi increased with temperature and ranged from 1.9 at 15°C to 12.23 at 28°C for each generation. The highest population increase occurred with the apterous aphids at 28°C. The rate of population increase per unit time (rm) (day) ranged from 0.0033 (15°C) to 0.1995 (28°C). The highest values of rm were recorded at temperatures of 28°C and 30°C. The rm values were a good fit to the models tested, with R2 > 0.91 and R2 adj > 0.88. The models tested (Davidson, Sharpe and DeMichele modified by Schoolfield et al., Logan et al., Lamb, and Briere et al.) were very good fits for the rm values observed, with R2 > 0.91 and R2 adj > 0.88. The only exception was the Davidson model. Of the parameters studied, the reproductive capacity was higher in the apterous aphids, with the unique exception of daily fecundity at 28°C, which was higher in the alate aphids of H. foeniculi. Parameters relating to the age-specific fertility table for H. foeniculi were heavily influenced by temperature, with the highest biotic potential and population growth capacity found at 34°C. Therefore, the results obtained in this study could be of practical significance for predicting outbreaks of fennel aphids and improving the management of this aphid in fennel crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号