首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The chromosomes of the invasive black-pigmy mussel (Xenostrobus securis (Lmk. 1819)) were analyzed by means of 4',6-diamidino-2-phenylindole (DAPI) / propidium iodide (PI) and chromomycin A3 (CMA) / DAPI fluorescence staining and fluorescent in situ hybridization using major rDNA, 5S rDNA, core histone genes, linker histone genes, and telomeric sequences as probes. The diploid chromosome number in this species is 2n = 30. The karyotype is composed of seven metacentric, one meta/submetacentric, and seven submetacentric chromosome pairs. Telomeric sequences appear at both ends of every single chromosome. Major rDNA clusters appear near the centromeres on chromosome pairs 1 and 3 and are associated with bright CMA fluorescence and dull DAPI fluorescence. This species shows five 5S rDNA clusters close to the centromeres on four chromosome pairs (2, 5, 6, and 8). Three of the four core histone gene clusters map to centromeric positions on chromosome pairs 7, 10, and 13. The fourth core histone gene cluster occupies a terminal position on chromosome pair 8, also bearing a 5S rDNA cluster. The two linker histone gene clusters are close to the centromeres on chromosome pairs 12 and 14. Therefore, the use of these probes allows the unequivocal identification of 11 of the 15 chromosome pairs that compose the karyotype of X. securis.  相似文献   

2.
We describe the chromosomal location of GC-rich regions, 28S and 5S rDNA, core histone genes, and telomeric sequences in the veneroid bivalve species Venerupis aurea and Tapes (Venerupis) rhomboides, using fluorochrome staining with propidium iodide, DAPI and chromomycin A3 (CMA) and fluorescent in situ hybridization (FISH). DAPI dull/CMA bright bands were coincident with the chromosomal location of 28S rDNA in both species. The major rDNA was interstitially clustered at a single locus on the short arms of the metacentric chromosome pair 5 in V. aurea, whereas in T. rhomboides it was subtelomerically clustered on the long arms of the subtelocentric chromosome pair 17. 5S rDNA also was a single subtelomeric cluster on the long arms of subtelocentric pair 17 in V. aurea and on the short arms of the metacentric pair 9 in T. rhomboides. Furthermore, V. aurea showed four telomeric histone gene clusters on three metacentric pairs, at both ends of chromosome 2 and on the long arms of chromosomes 3 and 8, whereas histone genes in T. rhomboides clustered interstitially on the long arms of the metacentric pair 5 and proximally on the long arms of the subtelocentric pair 12. Double and triple FISH experiments demonstrated that rDNA and H3 histone genes localized on different chromosome pairs in the two clam species. Telomeric signals were found at both ends of every single chromosome in both species. Chromosomal location of these three gene families in two species of Veneridae provides a clue to karyotype evolution in this commercially important bivalve family.  相似文献   

3.
In the present study the chromosome distribution of the 5S rDNA loci and its relation to the major rDNA genes were investigated in three Coregonid species (Salmonidae): Coregonus lavaretus, Coregonus peled and Coregonus albula, a family which has experienced large karyotype rearrangements along its evolution starting from a tetraploid ancestor. 5S PRINS/CMA3 sequential staining together with previous data enabled us to locate 5S rRNA genes and nucleolar organizer regions (NORs) in the three species analyzed. PRINS revealed the 5S rDNA cluster at the distal part of the long arm of a similar submetacentric chromosome pair in the three species. Our data indicate that 5S rDNA clusters have probably conserved chromosomal location in the genus Coregonus, whereas 45S rDNA (NOR) sites are clearly differentiated, from a single locus in C. peled, to multiple loci in C. lavaretus and highly polymorphic multichromosomal location in C. albula.  相似文献   

4.
We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nico-tiana sylvestris (2n=2x=24) and N. tomentosiformis (2n=2x=24) and compared these with patterns in N. tabacum (tobacco, 2n=4x=48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N. sylvestris type (from ca. 75% based on the sum of the rDNA copy numbers in the parents). Since the active genes are likely to be of an N. tomentosiformis type, the N. sylvestris type units are presumably contained within inactive loci (i.e. on chromosome S12). Nicotiana sylvestris has approximately three times as much rDNA as the other two species, resulting in much condensed rDNA at interphase. This species also has three classes of IGS, indicating gene conversion has not homogenised repeat length in this species. The results suggest that methylation and/or DNA condensation has reduced or prevented gene conversion from occurring at inactive genes at rDNA loci. Alternatively, active undermethylated units may be vulnerable to gene conversion, perhaps because they are decondensed and located in close proximity within the nucleolus at interphase. In TBY-2, restriction enzymes showed hybridisation patterns that were similar to, but different from, those of N. tabacum. In addition, TBY-2 has elevated rDNA copy number and variable numbers of rDNA loci, all indicating rDNA evolution in culture. Received: 17 November 1999; in revised form: 3 February 2000 / Accepted: 3 February 2000  相似文献   

5.
We designed two procedures to visualize simultaneously clusters of ribosomal RNA genes (rDNA) and the nucleolus in plant cells. The procedures combine fluorescence in situ hybridization (FISH) to visualize the rDNA clusters and silver staining to observe the nucleolus. When FISH is followed by silver staining, many minute FISH signals are localized in the nucleolus, and several large FISH signals are seen on the nucleolar periphery. When FISH was applied to the specimens with silver nitrate staining, large FISH signals were visualized in the nucleoplasm associated with the nucleolar periphery, but no signals were seen in the nucleoli. Thus, the two combinations of FISH and silver staining provided different details regarding the arrangement of rDNA clusters in the nucleolus of plant cells.  相似文献   

6.
We designed two procedures to visualize simultaneously clusters of ribosomal RNA genes (rDNA) and the nucleolus in plant cells. The procedures combine fluorescence in situ hybridization (FISH) to visualize the rDNA clusters and silver staining to observe the nucleolus. When FISH is followed by silver staining, many minute FISH signals are localized in the nucleolus, and several large FISH signals are seen on the nucleolar periphery. When FISH was applied to the specimens with silver nitrate staining, large FISH signals were visualized in the nucleoplasm associated with the nucleolar periphery, but no signals were seen in the nucleoli. Thus, the two combinations of FISH and silver staining provided different details regarding the arrangement of rDNA clusters in the nucleolus of plant cells.  相似文献   

7.
Ocalewicz K  Penman DJ  Babiak I 《Genetica》2008,133(3):261-267
The distribution of differentially stained chromatin was studied in the Atlantic halibut (Hippoglossus hippoglossus) chromosomes (2n = 48). Four pairs of homologous chromosomes were identified using a combination of traditional cytogenetic staining techniques (Giemsa/DAPI/CMA3/Ag-NO3). Chromosome 1 showed a length polymorphism (1S-short, 1L-long isoforms of the chromosome 1) which was related to the variation of the size of the Ag-NORs. In one specimen the Ag-NOR was translocated from chromosome 1 into the telomeric region on the q-arm of the chromosome 2 forming a derivative chromosome der(2)t(1S;2)(q?;q?). Four Ag-NOR genotypes have been shown: 1S1S, 1S1L, 1L1L and 1S der(2)t(1S;2)(q?;q?). The chromosome rearrangements did not leave any interstitially located telomeric sequences and the telomeres were confined to the ends of the chromosomes. A single chromosomal location of 5S rDNA clusters was found using the PRINS technique. In the extended metaphase spreads two adjacent clusters of 5S rDNA could be seen on one chromosome while condensed chromatin gave a single hybridization signal. Double 5S rDNA signals on the same chromosome arm suggested paracentric inversion of the minor rDNA site. 5S rDNA clusters were not co-localized with Ag-NORs. Although female and male karyotypes were compared no sex related cytogenetic markers were found.  相似文献   

8.
In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.  相似文献   

9.
P Martínez  A Vi?as  C Bouza  J Castro  L Sánchez 《Génome》1993,36(6):1119-1123
A quantitative analysis combined with Ag staining was carried out to study the size variation of the main nucleolar organizer region (NOR) bearing chromosome pair 11 of Salmo trutta. A standardized NOR size measurement was developed by comparing the length of the short arm (NOR-bearing region) to the total chromosome length. Statistical procedures support arguments for the existence of a large and structural polymorphism within this species for this chromosome region. A minimum of five different chromosome classes were identified, which account for the total variation found. Size variation among classes was due both to changes in the number of NOR clusters as well as to the amount of rDNA genes within each cluster. NOR size values were normally distributed in the sample analyzed.  相似文献   

10.
Ribosomal RNAs (rRNAs) are encoded by multicopy families of identical genes. In Dictyostelium and other protists, the rDNA is carried on extrachromosomal palindromic elements that comprise up to 20% of the nuclear DNA. We present the sequence of the 88 kb Dictyostelium rDNA element, noting that the rRNA genes are likely to be the only transcribed regions. By interrogating a library of ordered YAC clones, we provide evidence for a chromosomal copy of the rDNA on chromosome 4. This locus may provide master copies for the stable transmission of the extrachromosomal elements. The extrachromosomal elements were also found to form chromosome-sized clusters of DNA within nuclei of nocodazole-treated cells arrested in mitosis. These clusters resemble true chromosomes and may allow the efficient segregation of the rDNA during mitosis. These rDNA clusters may also explain the cytological observations of a seventh chromosome in this organism.  相似文献   

11.
The genus Nothoscordum Kunth comprises approximately 20 species native to South America. Karyologically, the genus is remarkable for its large chromosomes and Robertsonian translocations. Variation in chromosome number has been recorded in a few polyploid species and it is unknown among diploids. This study presents the chromosome number and morphology of 53 individuals of seven populations of N. arenarium Herter (2n = 10). In addition, karyotype analyses after C-banding, staining with CMA and DAPI, and in situ hybridization with 5S and 45S rDNA probes were performed in six individuals from one population. All individuals exhibited 2n = 10 (6M + 4A), except for one tetraploid (2n = 20, 12M + 8A) and one triploid (2n = 15, 9M + 6A) plant. C-banding revealed the presence of CMA(+) /DAPI (-) heterochromatin in the short arm and in the proximal region of the long arm of all acrocentric chromosomes. The 45S rDNA sites co-localized with the CMA (+) regions of the acrocentrics short arms, while the 5S rDNA probe only hybridized with the subterminal region of a pair of metacentric chromosomes. A change in the pattern of CMA bands and rDNA sites was observed in only one individual bearing a reciprocal translocation involving the long arm of a metacentric and the long arm of an acrocentric chromosome. These data suggest that, despite isolated cases of polyploidy and translocation, the karyotype of N. arenarium is very stable and the karyotypic instability described for other species may be associated with their polyploid condition.  相似文献   

12.
Although much is known about the pathology of human chronic atrophic (type A, autoimmune) gastritis, its cause is poorly understood. Mouse experimental autoimmune gastritis (EAG) is a CD4+ T cell-mediated organ-specific autoimmune disease of the stomach that is induced by neonatal thymectomy of BALB/c mice. It has many features similar to human autoimmune gastritis. To obtain a greater understanding of the genetic components predisposing to autoimmune gastritis, a linkage analysis study was performed on (BALB/cCrSlc x C57BL/6)F2 intercross mice using 126 microsatellite markers covering 95% of the autosomal genome. Two regions with linkage to EAG were identified on distal chromosome 4 and were designated Gasa1 and Gasa2. The Gasa1 gene maps within the same chromosomal segment as the type 1 diabetes and systemic lupus erythematosus susceptibility genes Idd11 and Nba1, respectively. Gasa2 is the more telomeric of the two genes and was mapped within the same chromosomal segment as the type 1 diabetes susceptibility gene Idd9. In addition, there was evidence of quantitative trait locus controlling autoantibody titer within the telomeric segment of chromosome 4. The clustering of genes conferring susceptibility to EAG with those conferring susceptibility to type 1 diabetes is consistent with the coinheritance of gastritis and diabetes within human families. This is the first linkage analysis study of autoimmune gastritis in any organism and as such makes an important and novel contribution to our understanding of the etiology of this disease.  相似文献   

13.
We designed two procedures to visualize simultaneously clusters of ribosomal RNA genes (rDNA) and the nucleolus in plant cells. The procedures combine fluorescence in situ hybridization (FISH) to visualize the rDNA clusters and silver staining to observe the nucleolus. When FISH is followed by silver staining, many minute FISH signals are localized in the nucleolus, and several large FISH signals are seen on the nucleolar periphery. When FISH was applied to the specimens with silver nitrate staining, large FISH signals were visualized in the nucleoplasm associated with the nucleolar periphery, but no signals were seen in the nucleoli. Thus, the two combinations of FISH and silver staining provided different details regarding the arrangement of rDNA clusters in the nucleolus of plant cells.  相似文献   

14.
Major and 5S ribosomal genes have been localized in chromosomes from five fish species, genus Astyanax, using in situ hybridization (FISH) with 28S and 5S rDNA probes. In situ signals for the major rDNA co-localized with the 5S rDNA clusters in the pericentromeric region of one marker chromosome in all five species analyzed. The conserved localization of these two rDNA clusters in the five related Astyanax species was considered as indicative of a close relationship among them. The use of these molecular markers for elucidating evolutionary relationships among closely related taxa is discussed.  相似文献   

15.
Unidirectional gene conversion of rDNA units has occurred in the evolution of natural tobacco (Nicotiana tabacum). In this paper we report the use of the synthetic tobacco line Th37, 4n (N. sylvestris × N. tomentosiformis), to study early rDNA evolution associated with allopolyploidy. At least three classes of newly amplified rDNA unit variants were identified (17/20 plants). Their presence was often accompanied by near-complete elimination of N. tomentosiformis-donated rDNA units (15/20 plants). Novel rDNA units were of N. tomentosiformis-type and contained rearranged subrepeats in the intergenic spacer. The maternal N. sylvestris-derived units were unchanged, except for some alteration in the ratio of individual gene family members. A cytogenetic analysis revealed rDNA sites on N. sylvestris-derived chromosomes S10, S11, and S12 and N. tomentosiformis-derived chromosomes T3 and in some cases T4. An rDNA locus does not occur on N. tomentosiformis chromosome 4. The locus on chromosome T4 of some hybrids correlates with the occurrence of the novel units that probably amplified at the locus. Combined with an analysis of tobacco cultivars, the data indicate that an initial burst of rDNA evolution associated with allopolyploidy was followed by a slower process that led towards reduced complexity and a decreased number of rDNA variants.  相似文献   

16.
Nucleolar organizing regions (NORs) containing rDNA gene clusters have been assigned to the equine autosomes ECA1, ECA28, and ECA31. Active NORs (Ag-NORs) are associated with argyrophilic proteins, which allow them to be readily identified using silver staining techniques. Fluorescence in situ hybridization (FISH) for rDNA can also be used to visualize all NOR clusters in the nucleus, regardless of whether they are active or inactive. The present study analyzed the distribution and behavior of equine Ag-NOR and NOR clusters in horse spermatozoa and during male meiosis by FISH and silver staining. The NOR foci were observed to be variable in number, size, and shape, but were usually located centrally and appeared as one or two nucleolus-like structures in the spermatozoa head. Three distinctive FISH signals identified the NOR-bearing chromosome pairs during the synaptic cell stage of meiosis I. At diakinesis/metaphase I, as well as different stages of meiosis II, FISH signals clearly depicted the NOR-bearing sister chromatids. The synaptonemal complexes of primary spermatocytes consistently showed three rDNA foci following FISH, but variably demonstrated two or three Ag-NOR bodies following silver staining. We propose rDNA loss and gain during unequal crossing-over events could be both a direct and indirect cause of variation in equine NOR foci. Additionally, our cytogenetic analysis did not confirm the presence of a fourth pair of NORs-bearing chromosomes in the horse, which is contrary to previously mitotic published data.  相似文献   

17.
The physical location of 18S-5.8S-28S rDNA, telomeric sequences with (TTAGGG)n DNA probe and (GATA)n microsatellites were performed by fluorescence in situ hybridization in chromosomes of red abalone Haliotis rufescens. The karyotype of red abalone showed a diploid number of 36 (8M+9SM+1ST). FISH performed with rDNA probe, showed the location of major ribosomal clusters in the terminal region of the large arms of two submetacentric pairs (chromosome 4 and 5). Localization of heteromorphisms of FISH-rDNA was found between chromosome homologues and sister chromatids in all metaphases analyzed. This indicates that rDNA clusters are variable within the red abalone genome. The variability in the NOR-bearing reported using silver staining in other gastropods and our result are discussed. In addition, the presence of microsatellite (TTAGGG)n and (GATA)n was demonstrated after FISH treatment by DNA probes. The telomeric sequence occurred at the ends of all mitotic chromosomes, while the (GATA)n repetitive was found on chromosomal interstitial zones as well as at the telomeres in abalone chromosomes.  相似文献   

18.
19.
ABSTRACT. Strains of the opportunistic fungal pathogen Candida albicans vary in the presence or absence of a self‐splicing group I intron ribozyme (Ca.LSU) in the 25S rRNA gene on chromosome R. Strains of C. albicans typically either lack or contain this ribozyme. However, some strains have both intron‐containing and intronless rRNA genes (rDNA). Pulsed‐field gel electrophoresis analysis of undigested and restricted DNA showed at least six different karyotypes among eight independent colonies of such a heteroallelic strain. In each case, the variation was in chromosome R, and was due to changes in the number of rDNA units. In strains with only one type of rDNA, chromosome R also varied considerably. Polymerase chain reaction amplification spanning the rDNA unit demonstrated that intron‐containing rDNA units are tandemly arrayed, and are immediately adjacent to intronless units in the same cluster. Both types of units were present in the rDNA clusters of both R chromosomes. Possible explanations of these results are loss of Ca.LSU group I intron through purifying selection and/or a relaxation of the commonly accepted concerted evolution of the rDNA units.  相似文献   

20.
The two nucleolus organizing chromosome pairs of the grasshopper Pyrgomorpha conica can carry a proximal supernumerary heterochromatic segment. We employed different cytological techniques to characterize and analyze the possible origin of this segment. The supernumerary segment and the nucleolus organizing regions (NORs) show similar responses after C-banding plus either Giemsa or acridine orange, and chromomycin A3/distamycin A staining to detect GC-rich chromosome regions. Fluorescence in situ hybridization with a biotinylated rDNA probe demonstrated that the segment originated by amplification of the rDNA genes. However, as the silver staining indicates, the ribosomal genes present in the segment are not active since no nucleolus is formed. The use of in situ digestion with the isoschizomeric MspI and HpaII restriction endonucleases and subsequent Giemsa, ethidium bromide or chromomycin A3/distamycin A staining, suggests that the segment has been inactivated by DNA methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号