首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The peripheral Golgi protein golgin-160 is induced during 3T3L1 adipogenesis and is primarily localized to the Golgi cisternae distinct from the trans-Golgi network (TGN) in a general distribution similar to p115. Small interfering RNA (siRNA)-mediated reduction in golgin-160 protein resulted in an increase accumulation of the insulin-responsive amino peptidase (IRAP) and the insulin-regulated glucose transporter (GLUT4) at the plasma membrane concomitant with enhanced glucose uptake in the basal state. The redistribution of GLUT4 was rescued by expression of a siRNA-resistant golgin-160 cDNA. The basal state accumulation of plasma membrane GLUT4 occurred due to an increased rate of exocytosis without any significant effect on the rate of endocytosis. This GLUT4 trafficking to the plasma membrane in the absence of golgin-160 was independent of TGN/Golgi sorting, because it was no longer inhibited by the expression of a dominant-interfering Golgi-localized, gamma-ear-containing ARF-binding protein mutant and displayed reduced binding to the lectin wheat germ agglutinin. Moreover, expression of the amino terminal head domain (amino acids 1-393) had no significant effect on the distribution or insulin-regulated trafficking of GLUT4 or IRAP. In contrast, expression of carboxyl alpha helical region (393-1498) inhibited insulin-stimulated GLUT4 and IRAP translocation, but it had no effect on the sorting of constitutive membrane trafficking proteins, the transferrin receptor, or vesicular stomatitis virus G protein. Together, these data demonstrate that golgin-160 plays an important role in directing insulin-regulated trafficking proteins toward the insulin-responsive compartment in adipocytes.  相似文献   

2.
The majority of GLUT4 is sequestered in unique intracellular vesicles in the absence of insulin. Upon insulin stimulation GLUT4 vesicles translocate to, and fuse with, the plasma membrane. To determine the effect of GLUT4 content on the distribution and subcellular trafficking of GLUT4 and other vesicle proteins, adipocytes of adipose-specific, GLUT4-deficient (aP2-GLUT4-/-) mice and adipose-specific, GLUT4-overexpressing (aP2-GLUT4-Tg) mice were studied. GLUT4 amount was reduced by 80-95% in aP2-GLUT4-/- adipocytes and increased approximately 10-fold in aP2-GLUT4-Tg adipocytes compared with controls. Insulin-responsive aminopeptidase (IRAP) protein amount was decreased 35% in aP2-GLUT4-/- adipocytes and increased 45% in aP2-GLUT4-Tg adipocytes. VAMP2 protein was also decreased by 60% in aP2-GLUT4-/- adipocytes and increased 2-fold in aP2-GLUT4-Tg adipocytes. IRAP and VAMP2 mRNA levels were unaffected in aP2-GLUT4-Tg, suggesting that overexpression of GLUT4 affects IRAP and VAMP2 protein stability. The amount and subcellular distribution of syntaxin4, SNAP23, Munc-18c, and GLUT1 were unchanged in either aP2-GLUT4-/- or aP2-GLUT4-Tg adipocytes, but transferrin receptor was partially redistributed to the plasma membrane in aP2-GLUT4-Tg adipocytes. Immunogold electron microscopy revealed that overexpression of GLUT4 in adipocytes increased the number of GLUT4 molecules per vesicle nearly 2-fold and the number of GLUT4 and IRAP-containing vesicles per cell 3-fold. In addition, the proportion of cellular GLUT4 and IRAP at the plasma membrane in unstimulated aP2-GLUT4-Tg adipocytes was increased 4- and 2-fold, respectively, suggesting that sequestration of GLUT4 and IRAP is saturable. Our results show that GLUT4 overexpression or deficiency affects the amount of other GLUT4-vesicle proteins including IRAP and VAMP2 and that GLUT4 sequestration is saturable.  相似文献   

3.
Vesicles carrying recycling plasma membrane proteins from early endosomes have not yet been characterized. Using Chinese hamster ovary cells transfected with the facilitative glucose transporter, GLUT4, we identified two classes of discrete, yet similarly sized, small vesicles that are derived from early endosomes. We refer to these postendosomal vesicles as endocytic small vesicles or ESVs. One class of ESVs contains a sizable fraction of the pool of the transferrin receptor, and the other contains 40% of the total cellular pool of GLUT4 and is enriched in the insulin-responsive aminopeptidase (IRAP). The ESVs contain cellubrevin and Rab4 but are lacking other early endosomal markers, such as EEA1 or syntaxin13. The ATP-, temperature-, and cytosol-dependent formation of ESVs has been reconstituted in vitro from endosomal membranes. Guanosine 5'-[gamma-thio]triphosphate and neomycin, but not brefeldin A, inhibit budding of the ESVs in vitro. A monoclonal antibody recognizing the GLUT4 cytoplasmic tail perturbs the in vitro targeting of GLUT4 to the ESVs without interfering with the incorporation of IRAP or TfR. We suggest that cytosolic proteins mediate the incorporation of recycling membrane proteins into discrete populations of ESVs that serve as carrier vesicles to store and then transport the cargo from early endosomes, either directly or indirectly, to the cell surface.  相似文献   

4.
Insulin regulates the uptake of glucose into skeletal muscle and adipocytes by redistributing the tissue-specific glucose transporter GLUT4 from intracellular vesicles to the cell surface. To date, GLUT4 is the only protein involved in insulin-regulated vesicular traffic that has this tissue distribution, thus raising the possibility that its expression alone may allow formation of an insulin-responsive vesicular compartment. We show here that treatment of differentiating C2C12 myoblasts with dexamethasone, acting via the glucocorticoid receptor, causes a >or=10-fold increase in GLUT4 expression but results in no significant change in insulin-stimulated glucose transport. Signaling from the insulin receptor to its target, Akt2, and expression of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor, or SNARE, proteins syntaxin 4 and vesicle-associated membrane protein are normal in dexamethasone-treated C2C12 cells. However, these cells show no insulin-dependent trafficking of the insulin-responsive aminopeptidase or the transferrin receptor, respective markers for intracellular GLUT4-rich compartments and endosomes that are insulin responsive in mature muscle and adipose cells. Therefore, these data support the hypothesis that GLUT4 expression by itself is insufficient to establish an insulin-sensitive vesicular compartment.  相似文献   

5.
In fat and skeletal muscle cells, insulin-responsive vesicles, or IRVs, deliver glucose transporter Glut4 and several associated proteins to the plasma membrane in response to hormonal stimulation. Although the protein composition of the IRVs is well studied, the mechanism of their formation is unknown. It is believed, however, that the cytoplasmic tails of the IRV component proteins carry targeting information to this compartment. To test this hypothesis, we have studied targeting of sortilin, one of the major IRV constituents. We have found that the reporter protein consisting of the cytoplasmic tail of sortilin and EGFP is co-localized with ectopically expressed Glut4 in the perinuclear compartment of undifferentiated 3T3-L1 cells that do not form insulin-responsive vesicles. Upon cell differentiation, this reporter protein does not enter the IRVs; moreover, it loses its perinuclear localization and becomes randomly distributed throughout the whole intracellular space. In contrast, the tagged luminal Vps10p domain of sortilin demonstrates partial co-localization with Glut4 in both undifferentiated and differentiated cells and is targeted to the IRVs upon cell differentiation. Using chemical cross-linking and the yeast two-hybrid system, we show that sortilin interacts with Glut4 and IRAP in the vesicular lumen. Our results suggest that luminal interactions between component proteins play an important role in the process of IRV biogenesis.  相似文献   

6.
To examine the functional role of the interaction between Munc18c and syntaxin 4 in the regulation of GLUT4 translocation in 3T3L1 adipocytes, we assessed the effects of introducing three different peptide fragments (20 to 24 amino acids) of Munc18c from evolutionarily conserved regions of the Sec1 protein family predicted to be solvent exposed. One peptide, termed 18c/pep3, inhibited the binding of full-length Munc18c to syntaxin 4, whereas expression of the other two peptides had no effect. In parallel, microinjection of 18c/pep3 but not a control peptide inhibited the insulin-stimulated translocation of endogenous GLUT4 and insulin-responsive amino peptidase (IRAP) to the plasma membrane. In addition, expression of 18c/pep3 prevented the insulin-stimulated fusion of endogenous and enhanced green fluorescent protein epitope-tagged GLUT4- and IRAP-containing vesicles into the plasma membrane, as assessed by intact cell immunofluorescence. However, unlike the pattern of inhibition seen with full-length Munc18c expression, cells expressing 18c/pep3 displayed discrete clusters of GLUT4 abd IRAP storage vesicles at the cell surface which were not contiguous with the plasma membrane. Together, these data suggest that the interaction between Munc18c and syntaxin 4 is required for the integration of GLUT4 and IRAP storage vesicles into the plasma membrane but is not necessary for the insulin-stimulated trafficking to and association with the cell surface.  相似文献   

7.
Insulin-responsive aminopeptidase trafficking in 3T3-L1 adipocytes   总被引:9,自引:0,他引:9  
The insulin-responsive aminopeptidase (IRAP/VP165/gp160) was identified originally in GLUT4-containing vesicles and shown to translocate in response to insulin, much like the glucose transporter 4 (GLUT4). This study characterizes the trafficking and kinetics of IRAP in exocytosis, endocytosis, and recycling to the membrane in 3T3-L1 adipocytes. After exposure of 3T3-L1 adipocytes to insulin, IRAP translocated to the plasma membrane as assessed by either cell fractionation, surface biotinylation, or the plasma membrane sheet assay. The rate of exocytosis closely paralleled that of GLUT4. In the continuous presence of insulin, IRAP was endocytosed with a half-time of about 3-5 min. IRAP endocytosis is inhibited by cytosol acidification, a property of clathrin-mediated endocytosis, but not by the expression of a constitutively active Akt/PKB. Arrival in an LDM fraction derived via subcellular fractionation exhibited a slower time course than disappearance from the cell surface, suggesting additional endocytic intermediates. As assayed by membrane "sheets," GLUT4 and IRAP showed similar internalization rates that are wortmannin-insensitive and occur with a half-time of roughly 5 min. IRAP remaining on the cell surface 10 min following insulin removal was both biotin- and avidin-accessible, implying the absence of thin-necked invaginations. Finally, endocytosed IRAP quickly recycled back to the plasma membrane in a wortmannin-sensitive process. These results demonstrate rapid endocytosis and recycling of IRAP in the presence of insulin and trafficking that matches GLUT4 in rate.  相似文献   

8.
Insulin-regulated aminopeptidase (IRAP), a marker of glucose transporter 4 (GLUT4) storage vesicles (GSVs), is the only protein known to traffic with GLUT4. In the basal state, GSVs are sequestered from the constitutively recycling endosomal system to an insulin-responsive, intracellular pool. Insulin induces a rapid translocation of GSVs to the cell surface from this pool, resulting in the incorporation of IRAP and GLUT4 into the plasma membrane. We sought to identify proteins that interact with IRAP to further understand this GSV trafficking process. This study describes our identification of a novel interaction between the amino terminus of IRAP and the Akt substrate, AS160 (Akt substrate of 160 kDa). The validity of this interaction was confirmed by coimmunoprecipitation of both overexpressed and endogenous proteins. Moreover, confocal microscopy demonstrated colocalization of these proteins. In addition, we demonstrate that the IRAP-binding domain of AS160 falls within its second phosphotyrosine-binding domain and the interaction is not regulated by AS160 phosphorylation. We hypothesize that AS160 is localized to GLUT4-containing vesicles via its interaction with IRAP where it inhibits the activity of Rab substrates in its vicinity, effectively tethering the vesicles intracellularly.  相似文献   

9.
Following biosynthesis, both GLUT1 and VSV-G proteins appear rapidly (2-3 h) at the plasma membrane, whereas GLUT4 is retained in intracellular membrane compartments and does not display any significant insulin responsiveness until 6-9 h. Surprisingly, the acquisition of insulin responsiveness did not require plasma membrane endocytosis, as expression of a dominant-interfering dynamin mutant (Dyn/K44A) had no effect on the insulin-stimulated GLUT4 translocation. Furthermore, expression of endocytosis-defective GLUT4 mutants or continuous surface labeling with an exofacial specific antibody demonstrated that GLUT4 did not transit the cell surface prior to the acquisition of insulin responsiveness. The expression of a dominant-interfering GGA mutant (VHS-GAT) had no effect on the trafficking of newly synthesized GLUT1 or VSV-G protein to the plasma membrane, but completely blocked the insulin-stimulated translocation of newly synthesized GLUT4. Furthermore, in vitro budding of GLUT4 vesicles but not GLUT1 or the transferrin receptor was inhibited by VHS-GAT. Together, these data demonstrate that following biosynthesis, GLUT4 directly sorts and traffics to the insulin-responsive storage compartment through a specific GGA-sensitive process.  相似文献   

10.
Insulin-regulated aminopeptidase (IRAP) is a marker for insulin-sensitive recycling compartments of fat and muscle cells that contain the glucose transporter isoform GLUT4. Unlike GLUT4, IRAP is expressed in many other cell types. Thus, it is a potential marker for regulated recycling compartments that are analogous to GLUT4 vesicles. In bone marrow-derived mast cells, IRAP is highly expressed and localizes to an intracellular compartment different from secretory granules. Using cell-surface biotinylation, we determined that IRAP underwent rapid redistribution to the plasma membrane on antigen/immunoglobulin E (IgE) stimulation and was re-internalized within 30 min. When granule exocytosis was inhibited, by removing extracellular calcium, adding the protein kinase C inhibitor bisindolylmaleimide or the phosphatidylinositol 3-kinase inhibitor wortmannin, IRAP redistribution was still detected in stimulated cells. However, the redistribution of IRAP required intracellular calcium. By immunofluorescence, IRAP significantly co-localized with the transferrin receptor (TfR), a marker for constitutively recycling endosomes. However, antigen/IgE stimulation did not increase TfR on the cell surface, indicating that IRAP and TfR may follow different pathways to the plasma membrane. In rat peritoneal mast cells, the distributions of IRAP and TfR overlapped to only a limited extent, indicating that overlap may decrease with cell differentiation. We propose that IRAP vesicles represent a second IgE-sensitive exocytotic compartment in mast cells, which is regulated differently from secretory granules, and that these vesicles may be similar to GLUT4 vesicles.  相似文献   

11.
Differentiating 3T3-L1 cells exhibit a dramatic increase in the rate of insulin-stimulated glucose transport during their conversion from proliferating fibroblasts to nonproliferating adipocytes. On day 3 of 3T3-L1 cell differentiation, basal glucose transport and cell surface transferrin binding are markedly diminished. This occurs concomitant with the formation of a distinct insulin-responsive vesicular pool of intracellular glucose transporter 1 (GLUT1) and transferrin receptors as assessed by sucrose velocity gradients. The intracellular distribution of the insulin-responsive aminopeptidase is first readily detectable on day 3, and its gradient profile and response to insulin at this time are identical to that of GLUT1. With further time of differentiation, GLUT4 is expressed and targeted to the same insulin-responsive vesicles as the other three proteins. Our data are consistent with the notion that a distinct insulin-sensitive vesicular cargo compartment forms early during fat call differentiation and its formation precedes GLUT4 expression. The development of this compartment may result from the differentiation-dependent inhibition of constitutive GLUT1 and transferrin receptor trafficking such that there is a large increase in, or the new formation of, a population of postendosomal, insulin-responsive vesicles.  相似文献   

12.
Insulin-responsive aminopeptidase (IRAP) colocalizes with glucose transporter type 4 (GLUT4) in adipocytes and is recruited to the plasma membrane in response to insulin. Microinjection of peptides corresponding to the IRAP cytoplasmic domain sequences causes GLUT4 recruitment in adipocytes. Inhibitors of protein kinase C-zeta (PKC-zeta) abolish the insulin-induced GLUT4 recruitment in rat adipocytes. These findings suggest an interesting possibility that PKC-zeta may phosphorylate IRAP, playing a key role in GLUT4/IRAP recruitment. To test this possibility, here we studied the (32)P incorporation into IRAP catalyzed by PKC-zeta in insulin-stimulated cells. There was a small but significant (32)P incorporation into IRAP in rat adipocytes, which was partly abolished upon addition of a PKC-zeta pseudosubstrate, suggesting that PKC-zeta may be responsible in part for the IRAP phosphorylation in adipocytes. PKC-zeta also catalyzed the incorporation of (32)P not only into IRAP in GLUT4 vesicles isolated from rat adipocytes but also into the IRAP cytoplasmic domain inserts in glutathione S-transferase-fusion proteins, demonstrating direct IRAP phosphorylation by PKC-zeta. Reversed-phase HPLC, matrix-assisted laser desorption ionization mass spectrometry, and radiosequencing of the tryptic digests of the (32)P-labeled IRAP fusion proteins identified Ser-80 and Ser-91 as major phosphorylation sites. In GLUT4 vesicles, the (32)P incorporation into IRAP was exclusively localized at a 6.9-kDa tryptic fragment identified as IRAP(76-138) and the (32)P labeling at Ser-80 accounted for 80-90% of the total IRAP labeling, suggesting that Ser-80 is the major phosphorylation site in intact IRAP. These findings are consistent with the possibility that the IRAP cytoplasmic domain phosphorylation by PKC-zeta plays a key role in insulin-induced IRAP or GLUT4 recruitment in adipocytes.  相似文献   

13.
Syntaxins are thought to be membrane receptors that bind proteins of the synaptobrevin/vesicle-associated membrane protein (VAMP) family found on transport vesicles. Recently, we detected synaptobrevin II and cellubrevin on immunopurified vesicles containing the glucose transporter 4 (GLUT4) in insulin-responsive cells. In an effort to identify the plasma membrane receptors for these vesicles, we now examine the expression of syntaxins in the 3T3-L1 adipocyte cell line. Neither syntaxin 1A nor 1B was found, in keeping with the neuronal restriction of these isoforms. In contrast, syntaxins 2 and 4 were readily detectable. By subcellular fractionation and estimation of protein yields, 67% of syntaxin 4 was localized to the plasma membrane, 24% to the low-density microsomes, and 9% to the high-density microsomes. Interestingly, acute insulin treatment decreased the content of syntaxin 4 in low-density microsomes and caused a corresponding gain in the plasma membrane fraction, reminiscent of the recruitment of GLUT4 glucose transporters. In contrast, there was no change in the distribution of syntaxin 2, which was mostly associated in the plasma membrane. A fraction of the intracellular syntaxin 4 was recovered with immunopurified GLUT4-containing vesicles. Moreover, anti-syntaxin 4 antibodies introduced in permeabilized 3T3-L1 adipocytes significantly reduced the insulin-dependent stimulation of glucose transport, in contrast to the introduction of irrelevant immunoglobulin G, which was without consequence. We propose that either the plasma membrane and/or the vesicular syntaxin 4 are involved in docking and/or fusion of GLUT4 vesicles at the cell surface of 3T3-L1 adipocytes.  相似文献   

14.
The insulin-regulated aminopeptidase (IRAP) is a zinc-dependent membrane aminopeptidase. It is the homologue of the human placental leucine aminopeptidase. In fat and muscle cells, IRAP colocalizes with the insulin-responsive glucose transporter GLUT4 in intracellular vesicles and redistributes to the cell surface in response to insulin, as GLUT4 does. To address the question of the physiological function of IRAP, we generated mice with a targeted disruption of the IRAP gene (IRAP-/-). Herein, we describe the characterization of these mice with regard to glucose homeostasis and regulation of GLUT4. Fed and fasted blood glucose and insulin levels in the IRAP-/- mice were normal. Whereas IRAP-/- mice responded to glucose administration like control mice, they exhibited an impaired response to insulin. Basal and insulin-stimulated glucose uptake in extensor digitorum longus muscle, and adipocytes isolated from IRAP-/- mice were decreased by 30-60% but were normal for soleus muscle from male IRAP-/- mice. Total GLUT4 levels were diminished by 40-85% in the IRAP-/- mice in the different muscles and in adipocytes. The relative distribution of GLUT4 in subcellular fractions of basal and insulin-stimulated IRAP-/- adipocytes was the same as in control cells. We conclude that IRAP-/- mice maintain normal glucose homeostasis despite decreased glucose uptake into muscle and fat cells. The absence of IRAP does not affect the subcellular distribution of GLUT4 in adipocytes. However, it leads to substantial decreases in GLUT4 expression.  相似文献   

15.
16.
To examine the acquisition of insulin sensitivity after the initial biosynthesis of the insulin-responsive aminopeptidase (IRAP), 3T3-L1 adipocytes were transfected with an enhanced green fluorescent protein-IRAP (EGFP-IRAP) fusion protein. In the absence of insulin, IRAP was rapidly localized (1-3 h) to secretory membranes and retained in these intracellular membrane compartments with little accumulation at the plasma membrane. However, insulin was unable to induce translocation to the plasma membrane until 6-9 h after biosynthesis. This was in marked contrast to another type II membrane protein (syntaxin 3) that rapidly defaulted to the plasma membrane 3 h after expression. In parallel with the time-dependent acquisition of insulin responsiveness, the newly synthesized IRAP protein converted from a brefeldin A-sensitive to a brefeldin A-insensitive state. The initial trafficking of IRAP to the insulin-responsive compartment was independent of plasma membrane endocytosis, as expression of a dominant-interfering dynamin mutant (Dyn/K44A) inhibited transferrin receptor endocytosis but had no effect on the insulin-stimulated translocation of the newly synthesized IRAP protein.  相似文献   

17.
Glut4-containing vesicles represent a regulated recycling compartment in insulin-sensitive fat and skeletal muscle cells, the nature and origin of which are not fully understood. In addition to Glut4 itself, these vesicles compartmentalize a number of proteins, at least one of which, insulin-responsive aminopeptidase, or IRAP, is completely colocalized with Glut4 in insulin-sensitive tissues. However, unlike Glut4, IRAP is expressed in a variety of other tissues and cell lines. Here, we explored the intracellular localization of IRAP in the rat pheochromocytoma cell line PC12. We found that this protein is present in a distinct population of slowly recycling light vesicles. By gradient centrifugations, immunoadsorption and double immunofluorescent staining, these vesicles are different from transferrin-containing endosomes, small synaptic vesicles and secretory granules and may thus represent a novel compartment in PC12 cells. Glut4-GFP chimera transiently expressed in PC12 cells is targeted to IRAP-containing vesicles indicating that cotargeting of Glut4 and IRAP is not specific for adipocytes and myocytes, but is faithful in a foreign cell type. We suggest that PC12 cells may possess a novel type of a vesicular carrier that may represent the homolog of Glut4-vesicles.  相似文献   

18.
The glucose transporter GLUT4 and the aminopeptidase IRAP (insulin-responsive aminopeptidase) are the major cargo proteins of GSVs (GLUT4 storage vesicles) in adipocytes and myocytes. In the basal state, most GSVs are sequestered in perinuclear and other cytosolic compartments. Following insulin stimulation, GSVs undergo exocytic translocation to insert GLUT4 and IRAP into the plasma membrane. The mechanisms regulating GSV trafficking are not fully defined. In the present study, using 3T3-L1 adipocytes transfected with siRNAs (small interfering RNAs), we show that insulin-stimulated IRAP translocation remained intact despite substantial GLUT4 knockdown. By contrast, insulin-stimulated GLUT4 translocation was impaired upon IRAP knockdown, indicating that IRAP plays a role in GSV trafficking. We also show that knockdown of tankyrase, a Golgi-associated IRAP-binding protein that co-localizes with perinuclear GSVs, attenuated insulin-stimulated GSV translocation and glucose uptake without disrupting insulin-induced phosphorylation cascades. Moreover, iodixanol density gradient analyses revealed that tankyrase knockdown altered the basal-state partitioning of GLUT4 and IRAP within endosomal compartments, apparently by shifting both proteins toward less buoyant compartments. Importantly, the afore-mentioned effects of tankyrase knockdown were reproduced by treating adipocytes with PJ34, a general PARP (poly-ADP-ribose polymerase) inhibitor that abrogated tankyrase-mediated protein modification known as poly-ADP-ribosylation. Collectively, these findings suggest that physiological GSV trafficking depends in part on the presence of IRAP in these vesicles, and that this process is regulated by tankyrase and probably its PARP activity.  相似文献   

19.
Insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase, is dynamically retained within the endosomal compartment of fibroblasts. The characteristics of this dynamic retention are rapid internalization from the plasma membrane and slow recycling back to the cell surface. These specialized trafficking kinetics result in <15% of IRAP on the cell surface at steady state, compared with 35% of the transferrin receptor, another transmembrane protein that traffics between endosomes and the cell surface. Here we demonstrate that a 29-amino acid region of IRAP's cytoplasmic domain (residues 56--84) is necessary and sufficient to promote trafficking characteristic of IRAP. A di-leucine sequence and a cluster of acidic amino acids within this region are essential elements of the motif that slows IRAP recycling. Rapid internalization requires any two of three distinct motifs: M(15,16), DED(64--66), and LL(76,77). The DED and LL sequences are part of the motif that regulates recycling, demonstrating that this motif is bifunctional. In this study we used horseradish peroxidase quenching of fluorescence to demonstrate that IRAP is dynamically retained within the transferrin receptor-containing general endosomal recycling compartment. Therefore, our data demonstrate that motifs similar to those that determine targeting among distinct membrane compartments can also regulate the rate of transport of proteins from endosomal compartments. We propose a model for dynamic retention in which IRAP is transported from the general endosomal recycling compartment in specialized, slowly budding recycling vesicles that are distinct from those that mediate rapid recycling back to the surface (e.g., transferrin receptor-containing transport vesicles). It is likely that the dynamic retention of IRAP is an example of a general mechanism for regulating the distribution of proteins between the surface and interior of cells.  相似文献   

20.
The poly(ADP-ribose) polymerase tankyrase was originally described as a telomeric protein whose catalytic activity was proposed to regulate telomere function. Subsequent studies revealed that most tankyrase is actually extranuclear, but a discordant pattern of cytoplasmic targeting was reported. Here we used fractionation and immunofluorescence to show in 3T3-L1 fibroblasts that tankyrase is a peripheral membrane protein associated with the Golgi. We further colocalized tankyrase with GLUT4 storage vesicles in the juxtanuclear region of adipocytes. Consistent with this colocalization, we found that tankyrase binds specifically to a resident protein of GLUT4 vesicles, IRAP (insulin-responsive amino peptidase). The binding of tankyrase to IRAP involves the ankyrin repeats of tankyrase and a defined sequence ((96)RQSPDG(101)) in the IRAP cytosolic domain (IRAP(1-109)). Tankyrase is a novel signaling target of mitogen-activated protein kinase (MAPK); it is stoichiometrically phosphorylated upon insulin stimulation. Phosphorylation enhances the poly(ADP-ribose) polymerase activity of tankyrase but apparently does not mediate the acute effect of insulin on GLUT4 targeting. Taken together, tankyrase is a novel target of MAPK signaling in the Golgi, where it is tethered to GLUT4 vesicles by binding to IRAP. We speculate that tankyrase may be involved in the long term effect of the MAPK cascade on the metabolism of GLUT4 vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号