首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limited reaction of glutaraldehyde with the Ca2+-ATPase (Mr approximately 110,000) of sarcoplasmic reticulum results in intramolecular cross-linking at the active site, which can be detected by an anomalous increase in apparent molecular weight (Mr approximately 125,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Ross D.C., and McIntosh D.B. (1987) J. Biol. Chem. 262, 2042-2049). ATP, ADP, AMPPCP, trinitrophenyladenosine triphosphate, and decavanadate inhibited the cross-link in a manner suggestive of a homogeneous class of inhibitory sites, with K0.5 values for inhibition in agreement with Kd values for binding to the active site. Cross-link formation was inhibited in proportion to phosphoenzyme levels formed from Pi (E2-P) whereas stoichiometric phosphorylation from CaATP (E1-P) had no effect. Inhibition was observed at millimolar concentrations of CaATP, indicative of nucleotide binding to E1-P. MgATP, in the presence of Ca2+, inhibited cross-linkage in the micromolar and millimolar concentration ranges, the former attributable to E1 X ATP and E2-P formation and the latter to ATP binding mainly to E1-P. The inability to cross-link the active site only of the E2-P intermediate suggests a unique active site conformation, possibly a closed active site cleft, which we suggest is linked to low affinity, inwardly orientated Ca2+-binding sites.  相似文献   

2.
The effect of controlled proteolysis on the plasma membrane (PM)Ca2+-ATPase was studied at the molecular level in PM purified from radish (Raphanus sativus L.) seedlings. Two new methods for labeling the PM Ca2+-ATPase are described. The PM Ca2+-ATPase can be selectively labeled by treatment with micromolar fluorescein isothiocyanate (FITC), a strong inhibitor of enzyme activity. Both inhibition of activity and FITC binding to the PM Ca2+-ATPase are suppressed by millimolar MgITP. The PM Ca2+-ATPase maintains the capability to bind calmodulin also after sodium dodecyl sulfate gel electrophoresis and blotting; therefore, it can be conveniently identified by 125l-calmodulin overlay in the presence of calcium. With both methods a molecular mass of 133 kD can be calculated for the PM Ca2+-ATPase. FITC-labeled PM Ca2+-ATPase co-migrates with the phosphorylated intermediate of the enzyme[mdash]labeled by incubation with [[gamma]-32P]GTP in the presence of calcium[mdash]on acidic sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Controlled trypsin treatment of purified PM determines a reduction of the molecular mass of the PM Ca2+-ATPase from 133 to 118 kD parallel to the increase of enzyme activity. Only the 133-kD but not the 118-kD PM Ca2+-ATPase binds calmodulin. These results indicate that trypsin removes from the PM Ca2+-ATPase an autoinhibitory domain that contains the calmodulin-binding domain of the enzyme.  相似文献   

3.
The (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase (Ca2+-transporting), EC 3.6.1.38) protein of rabbit skeletal sarcoplasmic reticulum (SR) rapidly incorporated 2 mol of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) per 10(5) g of protein with little change in the Ca2+-dependent ATPase activity. When 2 additional mol of the reagent were bound the Ca2+-ATPase, activity was inhibited. The same pattern was found for modified intact SR and the Ca2+ uptake ability was inhibited. MgATP, CaATP and MgADP protected the Ca2+-ATPase activity concurrent with a decrease of about 1 mol of the NBD group per 10(5) g protein, but the Ca2+ uptake ability was not protected. Calcium alone had no effect on the modification. The modified ATPase protein or SR formed non-serial oligomers or aggregates, but the ATPase protein remained the predominant species present. In the presence of MgATP, oligomer formation was reduced partially but the major changes in the Ca2+-ATPase activity were due to the modification of the ATPase monomer. Thiolysis of the NBD-ATPase protein with dithiothreitol did not restore the Ca2+-ATPase activity, although more than 1 mol of the NBD group was removed from cysteine residues. Cysteine residues were modified in the NBD-ATPase protein or SR when the enzyme activity was inhibited. Trypsin digestion of NBD-SR or its ATPase protein released the A, B, A1, and A2 fragments. The A fragment and its subfragment A2 contained most of the label. Substrate MgATP protection studies showed that the A1 and A2 fragments were involved in maintaining the Ca2+-ATPase activity. Reagent-induced conformational changes of these fragments rather than direct active site group labeling accounted for the loss of ATPase activity.  相似文献   

4.
The properties of sarcoplasmic reticulum Ca2+-ATPase have been studied after modification of the ATP high affinity binding site with fluorescein isothiocyanate, both in the membranous state and after solubilization with the nonionic detergent, octaethyleneglycol monododecyl ether. Total inactivation of both membrane-bound and solubilized Ca2+-ATPase requires covalent attachment of 1 mol of fluorescein/mol of enzyme (115,000 g of protein) or per binding site for ATP. Sedimentation velocity studies of soluble enzyme showed that both unlabeled and fluorescein-labeled Ca2+-ATPase were present in a predominantly monomeric form. The phosphorylation level of unlabeled Ca2+-ATPase was unchanged by solubilization. Dephosphorylation measurements at 0 degree C indicated that the phosphorylation is an intermediate in the ATPase reaction catalyzed by solubilized Ca2+-ATPase. Fluorescein labeling of half of the Ca2+-ATPase in the membrane did not influence the enzyme kinetics of the remaining unmodified Ca2+-ATPase. Measurements of both fluorescein and tryptophan fluorescence indicated that the soluble monomer of Ca2+-ATPase like the membrane-bound enzyme exists in a Ca2+-dependent equilibrium between two principal conformations (E and E). E (absence of Ca2+) is unstable in the soluble form, but the pCa dependence of the E - E equilibrium is identical with that of the membranous Ca2+-ATPase (pCa0.5 = 6.7 and Hill coefficient 2). These results suggest that the Ca2+-ATPase polypeptides function with a high degree of independence in the membrane.  相似文献   

5.
The mycotoxin, cyclopiazonic acid (CPA), inhibits the Ca2+-stimulated ATPase (EC 3.6.1.38) and Ca2+ transport activity of sarcoplasmic reticulum (Goeger, D. E., Riley, R. T., Dorner, J. W., and Cole, R. J. (1988) Biochem. Pharmacol. 37, 978-981). We found that at low ATP concentrations (0.5-2 microM) the inhibition of ATPase activity was essentially complete at a CPA concentration of 6-8 nmol/mg protein, indicating stoichiometric reaction of CPA with the Ca2+-ATPase. Cyclopiazonic acid caused similar inhibition of the Ca2+-stimulated ATP hydrolysis in intact sarcoplasmic reticulum and in a purified preparation of Ca2+-ATPase. Cyclopiazonic acid also inhibited the Ca2+-dependent acetylphosphate, p-nitrophenylphosphate and carbamylphosphate hydrolysis by sarcoplasmic reticulum. ATP protected the enzyme in a competitive manner against inhibition by CPA, while a 10(5)-fold change in free Ca2+ concentration had only moderate effect on the extent of inhibition. CPA did not influence the crystallization of Ca2+-ATPase by vanadate or the reaction of fluorescein-5'-isothiocyanate with the Ca2+-ATPase, but it completely blocked at concentrations as low as 1-2 mol of CPA/mol of ATPase the fluorescence changes induced by Ca2+ and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) in FITC-labeled sarcoplasmic reticulum and inhibited the cleavage of Ca2+-ATPase by trypsin at the T2 cleavage site in the presence of EGTA. These observations suggest that CPA interferes with the ATP-induced conformational changes related to Ca2+ transport. The effect of CPA on the sarcoplasmic reticulum Ca2+-ATPase appears to be fairly specific, since the kidney and brain Na+,K+-ATPase (EC 3.6.1.37), the gastric H+,K+-ATPase (EC 3.6.1.36), the mitochondrial F1-ATPase (EC 3.6.1.34), the Ca2+-ATPase of erythrocytes, and the Mg2+-activated ATPase of T-tubules and surface membranes of rat skeletal muscle were not inhibited by CPA, even at concentrations as high as 1000 nmol/mg protein.  相似文献   

6.
Sarcoplasmic reticulum (SR) microsomes were oxidized by exposure to peroxydisulfate, hydrogen peroxide, or iron/ascorbate or by extended storage. The decline in Ca2+-ATPase activity, Ca2+ transport, and the increase in Ca2+ permeability which occurred under these conditions did not appear to result from lipid oxidation because these functional changes were not correlated with the amount of thiobarbituric acid-reactive lipid. Consistent with this interpretation, lipid antioxidants did not prevent the decline in SR function. This suggests that inhibition was independent of lipid oxidation. Instead, oxidation directly inhibited the Ca2+-ATPase. The decline in enzyme activity may be due to oxidation of SH groups, as suggested by the ability of reducing agents to prevent inhibition, the decline in sulfhydryl content of oxidized SR, and the ability of sulfhydryl-binding agents to inhibit Ca2+-ATPase. Inhibition was not primarily due to crosslinking of the Ca2+-ATPase, because sodium dodecyl sulfate-polyacrylamide gels of normal and oxidized SR showed that the area of the Ca2+-ATPase band was not correlated with the Ca2+-ATPase activity. Inhibition of the Ca2+-ATPase by oxidative stress is relevant to models of cellular dysfunction in which toxicity is caused by a rise in intracellular calcium.  相似文献   

7.
This report describes Ca2+-dependent binding of 125I-labeled calmodulin (125I-CaM) to erythrocyte membranes and identification of two new CaM-binding proteins. Erythrocyte CaM labeled with 125I-Bolton Hunter reagent fully activated erythrocyte (Ca2+ + Mg2+)-ATPase. 125I-CaM bound to CaM depleted membranes in a Ca2+-dependent manner with a Ka of 6 x 10(-8) M Ca2+ and maximum binding at 4 x 10(-7) M Ca2+. Only the cytoplasmic surface of the membrane bound 125I-CaM. Binding was inhibited by unlabeled CaM and by trifluoperazine. Reduction of the free Ca2+ concentration or addition of trifluoperazine caused a slow reversal of binding. Nanomolar 125I-CaM required several hours to reach binding equilibrium, but the rate was much faster at higher concentrations. Scatchard plots of binding were curvilinear, and a class of high affinity sites was identified with a KD of 0.5 nM and estimated capacity of 400 sites per cell equivalent for inside-out vesicles (IOVs). The high affinity sites of IOVs most likely correspond to Ca2+ transporter since: (a) Ka of activation of (Ca2+ + Mg2+)-ATPase and KD for binding were nearly identical, and (b) partial digestion of IOVs with alpha-chymotrypsin produced activation of the (Ca2+ + Mg2+)-ATPase with loss of the high affinity sites. 125I-CaM bound in solution to a class of binding proteins (KD approximately 55 nM, 7.3 pmol per mg of ghost protein) which were extracted from ghosts by low ionic strength incubation. Soluble binding proteins were covalently cross-linked to 125I-CaM with Lomant's reagent, and 2 bands of 8,000 and 40,000 Mr (Mr of CaM subtracted) and spectrin dimer were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. The 8,000 and 40,000 Mr proteins represent a previously unrecognized class of CaM-binding sites which may mediate unexplained Ca2+-induced effects in the erythrocyte.  相似文献   

8.
The activity of the solubilized and purified (Ca2+ + Mg2+)-ATPase from human erythrocyte membranes was inhibited by N,N'-dicyclohexylcarbodiimide in a concentration-dependent manner. The carbodiimide prevented formation of the phosphorylated intermediate during the catalytic cycle of the enzyme. Treatment of the enzyme with N,N'-dicyclohexyl[14C]carbodiimide resulted in the formation of a 14C-labelled polypeptide corresponding to the enzyme monomer (molecular weight 136,000). The tryptic fragmentation of this 14C-labelled enzyme resulted in the formation of three major 14C-labelled fragments with molecular weights of 58,000, 36,500 and 23,000, the latter two probably representing transmembrane and calmodulin-binding domains of the enzyme, respectively. In the absence of calmodulin, 6.7 molecules of N,N'-dicyclohexyl[14C]carbodiimide covalently bound to each molecule of Ca2+-ATPase; in the presence of calmodulin, the number of molecules of carbodiimide bound was 13.1. The binding of N,N'-dicyclohexylcarbodiimide to the (Ca2+ + Mg2+)-ATPase greatly reduced its ability to bind to a calmodulin-agarose gel.  相似文献   

9.
Plasma membranes of many mammalian cells contain a Mg2+-dependent ATPase activity which is easily inactivated by detergents. This activity is the combined expression of at least two ATP-hydrolyzing enzymes (Knowles, A.F., Isler, R.E., and Reece, J.F. (1983) Biochim. Biophys. Acta 731, 88-96). We have purified one of these enzymes from the plasma membranes of a human oat cell carcinoma xenograft. The enzyme was extracted from the membranes by 0.5% digitonin and purified on a DE52 column. The purified enzyme contained a major protein band of Mr = 30,000 when dissociated by sodium dodecyl sulfate. It hydrolyzed all nucleoside triphosphates in the presence of Mg2+ or Ca2+, but showed little activity toward nucleoside diphosphates. The enzyme was inhibited by p-chloromercuriphenyl sulfonate, slowly inactivated by p-fluorosulfonylbenzoyl-5'-adenosine and dithiothreitol at room temperature, and lost activity readily in solutions containing low concentrations of several detergents. This knowledge of the macromolecular structure of the Mg2+(Ca2+)-ATPase and its catalytic properties is important in determining the orientation of the enzyme in the membrane and its physiological function.  相似文献   

10.
The mechanism of ATP hydrolysis was studied at 0 degrees C and pH 7.5 using purified leaky vesicles of sarcoplasmic reticulum Ca2+-ATPase and enzyme solubilized in monomeric form with high concentrations of octaethylene glycol monododecyl ether (C12E8). The enzyme reaction of membranous Ca2+-ATPase was characterized by an initial burst in the hydrolysis of ATP and modulated by millimolar concentrations of ATP. For detergent-solubilized Ca2+-ATPase no burst and moderate low affinity modulation was observed, but the reaction was activated both at low (phosphorylating) and intermediate (K0.5 = 0.06 mM) ATP concentrations. A study of the partial reactions indicated that the effects of detergent and ATP were attributable to activation of the E1P----E2P transition which was rate-limiting. E32P dephosphorylation of membranous Ca2+-ATPase and the detergent-solubilized monomer comprised both a slow and a rapid component. The inhibitory effect of high Ca2+ was correlated with the development of a dominant contribution of slow phase dephosphorylation and with ATP-induced extra binding of Ca2+ binding which presumably takes place at the phosphorylation site (ECaP). Ca2+ was bound with lesser affinity to detergent-solubilized Ca2+-ATPase but with qualitatively the same characteristics as to membranous ECaP. Either Ca2+ or Mg2+ was required for dephosphorylation, also after detergent solubilization. It is concluded that ATP hydrolysis occurs by the same steps for membranous and monomeric Ca2+-ATPase and involves formation of either EMgP or ECaP as reaction intermediates, leading to biphasic kinetics, which, therefore, cannot be taken as evidence of an oligomeric function of the enzyme.  相似文献   

11.
Investigation of the properties of Ca2(+)-ATPase of sarcoplasmic reticulum cross-linked at the active site with glutaraldehyde showed that ATP binding affinity and rate of ATP-dependent phosphorylation and Ca2+ occlusion were decreased 2-3 orders of magnitude compared with the native enzyme. Cross-linkage had little effect on or marginally increased the rate of acetyl phosphate- and p-nitrophenyl phosphate-supported Ca2+ occlusion. Ca2+ binding or Ca2(+)-induced changes in tryptophan fluorescence were unaffected. High levels of phosphoenzyme (up to 4 nmol/mg of protein) were obtained, with 2 mol of Ca2+ occluded/mol of E-P. Dephosphorylation and deocclusion occurred together at a slow rate (k = 0.01 s-1) and were stimulated in a monophasic manner up to 20-fold by ADP. Cross-linking inhibited E2-P formation from Pi in 30% (v/v) dimethyl sulfoxide by more than 95%. Induction of turnover of the native ATPase, under conditions designed to yield high steady state levels of E1 approximately P(2Ca), results in a 3-4-fold increase in reactivity of active site residues to glutaraldehyde. The results show that cross-linkage sterically impairs nucleotide binding, changing ATP and ADP into relatively poor substrates, slowing nucleotide-dependent phosphoryl transfer and Ca2+ occlusion and deocclusion. The forward reaction with smaller substrates is unaffected. Another major effect of the cross-link is to inhibit E2-P formation, causing accumulation of E1 approximately P(2Ca) during enzyme turnover and preventing phosphorylation by Pi in the reverse direction. We suggest that occlusion and deocclusion of cations at the transport site of the native enzyme are linked to a two-step cleft closure movement at the active site and that the crosslink stabilizes occluded forms of the pump because it blocks part of this tertiary structural change. The latter could normally be propagated through linking helices to the distal side of the pump to destabilize the cations and open the transport sites to the lumen.  相似文献   

12.
A proposed mechanism of action of hypoglycemic sulfonylureas is the prevention of transglutaminase-mediated endocytosis of insulin receptors. When activated by high levels of intracellular calcium, transglutaminase (TG) catalyzes the cross-linking of intracellular proteins to membrane proteins and modifies membrane structure and function. This study examined the effects of the sulfonylurea glipizide on TG activity in an erythrocyte model by assessing various membrane ATPase activities and high molecular weight protein polymer formation using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. To activate TG, red blood cells were exposed to 1 mM intracellular Ca2+ using 10(-5) M Ca2(+)-ionophore A23187. In Ca2(+)-stressed cells, calmodulin stimulation (0.1 micrograms/ml) of (Ca2+ + Mg2+)-ATPase was decreased to 21.2% of control activity. Increasing concentrations of calmodulin (0.1-3.0 micrograms/ml) could not overcome the inhibitory effects of TG on the (Ca2+ + Mg2+)-ATPase in Ca2(+)-stressed cells with or without glipizide. An increased Ca2+ sensitivity of calmodulin-independent (Ca2+ + Mg2+)-ATPase due to Ca2+ stress was seen in all Ca2(+)-stressed cells even in the presence of 1 mM glipizide. Structural changes were observed in the form of high molecular weight polymer formation. Cells exposed to high Ca2+ and glipizide (3 x 10(-5)-10(-3) M) showed no improvement in ATPase activity or protection from protein cross-linking compared with cells without the drug. We conclude that in this model glipizide fails to inhibit TG induced protein cross-linking and does not prevent the decrease in (Ca2+ + Mg2+)-ATPase activation in Ca2(+)-stressed red blood cells. This finding considerably weakens the proposal that sulfonylureas act by inhibiting TG activity.  相似文献   

13.
Lens membranes, purified from calf lenses, have been labeled by covalent cross-linking to membrane-bound 125I-calmodulin with dithiobis(succinimidyl propionate). Electrophoretic analysis in sodium dodecyl sulfate demonstrated two major 125I-containing products of Mr = 49 000 and 36 000. That the formation of these two components was specifically inhibited by unlabeled calmodulin, or calmodulin antagonists, would indicate that the formation of these components was calmodulin-specific. The size of these two 125I-labeled components was unchanged over a range of 125I-calmodulin or dithiobis(succinimidyl propionate) concentrations indicating that they represent 1:1 complexes between 125I-calmodulin (Mr = 17 000) and Mr-32 000 and Mr-19 000 lens membrane components respectively. Although formation of both cross-linked components exhibited an absolute dependence on Mg2+, the autoradiographic intensity of these components was enhanced when Ca2+ was included with Mg2+ during the cross-linking reaction. Labeling was maximal in 10 mM MgCl2 and approximately 1 microM Ca2+. Treatment of lens membranes with chymotrypsin resulted in the cleavage of MP26 (the major lens membrane protein), with the appearance of a major proteolytic fragment of Mr = 22 000. This proteolysis was not associated with any significant change in either the size or amount of the 125I-calmodulin-labeled membrane components. These results suggest that calmodulin interacts with two membrane proteins, but not significantly with MP26, in the intact lens cell membrane. Our results indicate the need to maintain caution in interpreting direct calcium plus calmodulin effects on MP26 and lens cell junctions.  相似文献   

14.
A novel photoreactive calmodulin (CaM) derivative was developed and used to label the purified CaM-sensitive adenylate cyclase from bovine cortex. 125I-CaM was conjugated with the heterobifunctional cross-linking agent p-nitrophenyl 3-diazopyruvate (DAPpNP). Spectral data indicated that diazopyruvoyl (DAP) groups were incorporated into the CaM molecule. Iodo-CaM-DAPs behaved like native CaM with respect to (1) Ca2+-dependent enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and (2) Ca2+-dependent stimulation of adenylate cyclase activity. 125I-CaM-DAP photochemically cross-linked to CaM-binding proteins in a manner that was both Ca2+ dependent and CaM specific. Photolysis of forskolin-agarose-purified adenylate cyclase from bovine cortex with 125I-CaM-DAP produced a single cross-linked product which migrates on sodium dodecyl sulfate-polyacrylamide gels with an apparent molecular weight of approximately 140,000.  相似文献   

15.
Interactions between transmembrane and cytoplasmic domains of Ca2+-ATPase from sarcoplasmic reticulum (SR) have been studied. To affect the hydrophobic transmembrane domain, we used four amphiphilic steroids - esters of a dibasic acid and 20-oxypregnene. All four steroids contained cholesterol-like nuclei and differed by the structure of side chains. Steroids with carboxyl groups in the side chains inhibited the rates of ATP hydrolysis and Ca2+ transport, whereas a steroid without the carboxyl group did not appreciably affect Ca2+-ATPase function. Fluorimetric titration of FITC-labelled Ca2+-ATPase in SR vesicles by Nd3+ showed that steroids increased the apparent dissociation constant for Nd3+ bound to the hydrolytic site, the potency order of the steroids being the same as for the sterol-induced inhibition of the hydrolytic activity of Ca2+-ATPase. These results suggest structural changes in the active site. Ca2+ transport was inhibited more efficiently by steroids than the hydrolytic activity of the enzyme. This could be partially due to the increase of the membrane passive permeability induced by steroids, which, in turn, reflected the efficiency of the interaction of the steroids with lipid bilayers. The effects of the steroids were largely dependent on their amphiphilicity (the availability of polar groups in regions A and D), the structure of the side chains, and, possibly, on the distance between the molecular polar groups. We suggest that the inhibition of hydrolytic and transport functions of Ca2+-ATPase in the SR membrane is due to the interaction of the steroids with the transmembrane alpha-helical segments.  相似文献   

16.
Phospholamban (PLB) inhibits the activity of SERCA2a, the Ca2+-ATPase in cardiac sarcoplasmic reticulum, by decreasing the apparent affinity of the enzyme for Ca2+. Recent cross-linking studies have suggested that PLB binding and Ca2+ binding to SERCA2a are mutually exclusive. PLB binds to the E2 conformation of the Ca2+-ATPase, preventing formation of E1, the conformation that binds two Ca2+ (at sites I and II) with high affinity and is required for ATP hydrolysis. Here we determined whether Ca2+ binding to site I, site II, or both sites is sufficient to dissociate PLB from the Ca2+ pump. Seven SERCA2a mutants with amino acid substitutions at Ca2+-binding site I (E770Q, T798A, and E907Q), site II (E309Q and N795A), or both sites (D799N and E309Q/E770Q) were made, and the effects of Ca2+ on N30C-PLB cross-linking to Lys328 of SERCA2a were measured. In agreement with earlier reports with the skeletal muscle Ca2+-ATPase, none of the SERCA2a mutants (except E907Q) hydrolyzed ATP in the presence of Ca2+; however, all were phosphorylatable by Pi to form E2P. Ca2+ inhibition of E2P formation was observed only in SERCA2a mutants retaining site I. In cross-linking assays, strong cross-linking between N30C-PLB and each Ca2+-ATPase mutant was observed in the absence of Ca2+. Importantly, however, micromolar Ca2+ inhibited PLB cross-linking only to mutants retaining a functional Ca2+-binding site I. The dynamic equilibrium between Ca2+ pumps and N30C-PLB was retained by all mutants, demonstrating normal regulation of cross-linking by ATP, thapsigargin, and anti-PLB antibody. From these results we conclude that site I is the key Ca2+-binding site regulating the physical association between PLB and SERCA2a.  相似文献   

17.
The effects of various divalent cations on the Ca2+ uptake by microsomes from bovine aortic smooth muscle were studied. High concentrations (1 mM) of Co2+, Zn2+, Mn2+, Fe2+, and Ni2+ inhibited neither the Ca2+ uptake by the microsomes nor the formation of the phosphorylated intermediate (E approximately P) of the Ca2+,Mg2+-ATPase of the microsomes. The cadmium ion, however, inhibited both the Ca2+ uptake and the E approximately P formation by the microsomes. Dixon plot analysis indicated Cd2+ inhibited (Ki = 135 microM) the Ca2+ dependent E approximately P formation in a non-competitive manner. The inhibitory effect of Cd2+ was lessened by cysteine or dithiothreitol. The strontium ion inhibited the Ca2+ uptake competitively, while the E approximately P formation increased on the addition of Sr2+ at low Ca2+ concentrations. At a low Ca2+ concentration (1 microM), Sr2+ was taken up by the aortic microsomes in the presence of 1 mM ATP. It is thus suggested that Sr2+ replaces Ca2+ at the Ca2+ binding site on the ATPase.  相似文献   

18.
It has been shown previously that glutaraldehyde cross-links the Ca(2+)-ATPase of sarcoplasmic reticulum intramolecularly at the active site, involving residues participating in nucleotide binding and the conformational change that results in Ca2+ release to the vesicle lumen and formation of ADP-insensitive E2-P (Ross, D. C., Davidson, G. A., and McIntosh, D. B. (1991) J. Biol. Chem. 266, 4613-4621). This study shows that 10 nmol of [14C]glutaraldehyde/mg of protein attached irreversibly to the ATPase under conditions optimal for formation of the intramolecular cross-link. Half of this amount (i.e. 1 mol/mol ATPase) was inhibited by nucleotide binding. Thermolysin digestion of derivatized vesicles released two nucleotide-sensitive 14C-labeled species, which were isolated and identified as FSRDR*S AND FSRDR*S FA* FA*VEPS where the missing residues are Lys-492 and Arg-678. The majority of the 14C label was released in the sixth cycle of both Edman degradations, confirming the cross-link position. Lys-492 and Arg-678 are evidently close together in the active site, but their distance apart in the linear sequence suggests that they may arise from separate domains, which together constitute an ATP binding cleft. Residues in both regions, and Lys-492 in particular (McIntosh, D.B., Woolley, D.G., and Berman, M.C. (1992) J. Biol. Chem. 267, 5301-5309), have been derivatized by nucleotide-based affinity probes. Mutations of both of these residues in some of the bacterial P-type ATPases suggest that they do not play an essential catalytic role, and the inability of the cross-linked ATPase to form E2-P and to release Ca2+ to the lumen is probably because an essential tertiary structural movement at the active site is blocked.  相似文献   

19.
(1) The effects of treatments that mimic calmodulin in increasing the apparent affinity for Ca2+ were tested to see whether, like calmodulin, they also change the activation of the Ca2+-ATPase from human red cell membranes by ATP at the low-affinity site. (2) Short incubations with either trypsin or acidic phospholipids such as phosphatidylserine increased the apparent affinity for ATP at the low-affinity site. (3) Under conditions in which it increased the apparent affinity of the Ca2+-ATPase for Ca2+, EGTA failed to change the activation by ATP. (4) As in calmodulin-bound Ca2+-ATPase, compound 48/80 inhibited the activity of the enzyme in the presence of phosphatidylserine by lowering the apparent affinity for ATP at the low-affinity site, leaving the maximum velocity of the enzyme unaltered. (5) Compound 48/80 also inhibited the Ca2+-ATPase after partial proteolysis, but in this case it lowered the maximum activity, leaving the apparent affinity of the enzyme for ATP at the low-affinity site unaltered. (6) Inhibition of the Ca2+-ATPase by compound 48/80 in the absence of calmodulin suggests that the inhibitor can act directly on the enzyme.  相似文献   

20.
Thrombin forms sodium dodecyl sulfate stable complexes of 77 and greater than 450 kDa with proteins secreted by activated platelets. The kinetics of formation of these complexes were investigated by addition of 125I-thrombin to the supernatant solution of A23187-activated platelets. Complexes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis either with or without reduction of disulfide bonds. When analyzed on nonreduced gels, the 77-kDa complex reached a maximum at about 3 min and then declined as the greater than 450-kDa complex increased. On reduced gels (on which there was no greater than 450-kDa complex) the 77-kDa complex approached the level of the greater than 450-kDa complex on nonreduced gels. The half-time of formation was less than 1 min for the 77-kDa complex and about 15 min for the greater than 450-kDa complex. These time courses suggested that the 77-kDa complex was incorporated into the greater than 450-kDa complex as an essential precursor. Formation of complexes was inhibited by a competitive inhibitor or a noncompetitive inhibitor of thrombin, and the pH dependence of formation of both complexes was similar to the pH dependence for catalytic activity of thrombin. Ca2+ inhibited formation of the greater than 450-kDa complex but not of the 77-kDa complex. A model is presented in which thrombin and a secreted protein form a 77-kDa complex by a process that involves the active site of thrombin. The 77-kDa complex is then incorporated into a greater than 450-kDa complex by thiol-disulfide exchange with thrombospondin, a process that is inhibited by Ca2+. Thrombin in the greater than 450-kDa complex had no catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号