首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Duggal  Arti  Dumas  M.T.  Jeng  R.S.  Hubbes  M. 《Mycopathologia》1997,140(1):35-49
Eighteen isolates representing six Fusarium species from diverse hosts and geographical origins were evaluated to determine ribosomal DNA variation using polymerase chain reaction and restriction fragment length polymorphisms. No length variation was observed for amplified 18S and 28S regions. However, amplification of the ITS region showed one isolate, a F. oxysporum, to be about 120 bp larger than the remaining 17. Restriction digestions in the 18S region revealed polymorphisms within species of F. oxysporum and F. solani. An amplified variable stretch of the 28S gene showed restriction site differences between F. avenecum, F. sambucinum and F. sporotrichioides. A large degree of polymorphism was observed both between and within species in the ITS region. Therefore, entire sequences of the ITS and the 5.8S subunit were obtained for 17 of the 18 isolates. These sequences, along with those from eight additional isolates, were analysed using PAUP to assess the occurrence of DNA sequence divergence within the ITS region. The lack of correlation between molecular-based relationships and species affinities inferred from morphology for some isolates indicates that species designation can be unreliable using morphological data alone. Possible reasons for the discordance of the sequence and morphological data are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Summary The nucleotide sequence of a spacer region between rice 17S and 25S rRNA genes (rDNAs) has been determined. The coding regions for the mature 17S, 5.8S and 25S rRNAs were identified by sequencing terminal regions of these rRNAs. The first internal transcribed spacer (ITS1), between 17S and 5.8S rDNAs, is 194–195 bp long. The second internal transcribed spacer (ITS2), between 5.8S and 25S rDNAs, is 233 bp long. Both spacers are very rich in G+C, 72.7% for ITS1 and 77.3% for ITS2. The 5.8S rDNA is 163–164 bp long and similar in primary and secondary structures to other eukaryotic 5.8S rDNAs. The 5.8S rDNA is capable of interacting with the 5′ terminal region of 25S rDNA.  相似文献   

4.
5.
Villa NO  Kageyama K  Asano T  Suga H 《Mycologia》2006,98(3):410-422
Fifty-eight isolates representing 39 Pythium species and 17 isolates representing nine Phytophthora species were chosen to investigate intra- and intergeneric relationships with sequence analysis of three genomic areas. The internal transcribed spacer regions (ITS1 and ITS2), including the 5.8S gene of the ribosomal DNA were PCR amplified with the universal primers ITS1 and ITS4. On the other hand 563 bp of the cytochrome oxidase II (cox II) gene was amplified with the primer pair FM66 and FM58 for Pythium and FM75 and FM78 for Phytophthora. The 658 bp partial beta-tubulin gene was amplified with the forward primer BT5 and reverse primer BT6. Maximum parsimony analysis of the three DNA regions revealed four major clades, reflective of sporangial morphology. Clade 1 was composed of Pythium isolates that bear filamentous to lobulate sporangia. Clade 2 represents Pythium isolates that bear globose to spherical zoosporangia or spherical hyphal swellings. Meanwhile Phytophthora isolates were lumped into Clade 3 wherein the papillate, semipapillate and nonpapillate species occupied separate subclades. Lastly, Clade 4 was composed of Pythium species that bear subglobose sporangia resembling the papillate sporangia observed in Phytophthora. Hence a number of species (Ph. undulata, P. helicoides, P. ostracodes, P. oedochilum and P. vexans) have been proposed to be the elusive intermediate species in the Pythium-to-Phytophthora evolutionary line.  相似文献   

6.
Single-strand-conformation polymorphism (SSCP) of ribosomal DNA of 29 species (282 isolates) of Phytophthora was characterized in this study. Phytophthora boehmeriae, Phytophthora botryosa, Phytophthora cactorum, Phytophthora cambivora, Phytophthora capsici, Phytophthora cinnamomi, Phytophthora colocasiae, Phytophthora fragariae, Phytophthora heveae, Phytophthora hibernalis, Phytophthora ilicis, Phytophthora infestans, Phytophthora katsurae, Phytophthora lateralis, Phytophthora meadii, Phytophthora medicaginis, Phytophthora megakarya, Phytophthora nicotianae, Phytophthora palmivora, Phytophthora phaseoli, Phytophthora pseudotsugae, Phytophthora sojae, Phytophthora syringae, and Phytophthora tropicalis each showed a unique SSCP pattern. Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, and Phytophthora megasperma each had more than one distinct pattern. A single-stranded DNA ladder also was developed, which facilitates comparison of SSCP patterns within and between gels. With a single DNA fingerprint, 277 isolates of Phytophthora recovered from irrigation water and plant tissues in Virginia were all correctly identified into eight species at substantially reduced time, labor, and cost. The SSCP analysis presented in this work will aid in studies on taxonomy, genetics, and ecology of the genus Phytophthora.  相似文献   

7.
A molecular phylogeny of Phytophthora and related oomycetes   总被引:11,自引:0,他引:11  
Phylogenetic relationships among 50 Phytophthora species and between Phytophthora and other oomycetes were examined on the basis of the ITS sequences of genomic rDNA. Phytophthora grouped with Pythium, Peronospora, and Halophytophthora, distant from genera in the Saprolegniales. Albugo was intermediate between these two groups. Unlike Pythium, Phytophthora was essentially monophyletic, all but three species forming a cluster of eight clades. Two clades contained only species with nonpapillate sporangia. The other six clades included either papillate and semipapillate, or semipapillate and nonpapillate types, transcending traditional morphological groupings, which are evidently not natural assemblages. Peronospora was related to P. megakarya and P. palmivora and appears to be derived from a Phytophthora that has both lost the ability to produce zoospores and become an obligate biotroph. Three other Phytophthoras located some distance from the main Phytophthora-Peronospora cluster probably represent one or more additional genera.  相似文献   

8.
疫病是我国植胶区的主要病害。近年来,作者从云南西双版纳和广东海南岛的橡胶树和胶园土共分离出57株疫霉菌种。通过分类研究,共鉴定出4个种:恶疫霉 Phytophthoracactorum(Leb.& Cohn)Schroeter,辣椒疫霉 P.capsici Leoman,柑桔褐腐疫霉 P.citrophthora(Sm.& Sm.)Leonian,和棕榈疫霉 P.palmivora(Butl.)Butler。其中辣椒疫霉是首次在橡胶树上发现。我国橡胶树疫霉的种群结构与东南亚和南亚的有所不同,除棕榈疫霉外,其余3种在东南亚和南亚均未发现。而东南亚常见种:簇囊疫霉(P.botryosa)、橡胶疫霉(P.heveae)和蜜色疫霉(P.meadii),在我国却迄今尚未发现或有待证实。以前报道分离自胶园土壤中的芋疫霉(P.colocasiae),可能系柑桔褐腐疫霉之误。绝大多数分离物经配对培养均可产生性器官:辣椒疫霉的A~1交配型和A~2交配型大致相等;柑桔褐腐疫霉和棕榈疫霉的A~2交配型则明显多于A~1交配型。  相似文献   

9.
The internal transcribed spacer (ITS) region of the ribosomal DNA from the European scallops Aequipecten opercularis, Mimachlamys varia, Hinnites distortus, and Pecten maximus was PCR amplified and sequenced. For each species, three or five clones were examined. The size ranged between 636 and 713 bp (ITS1, 209-276 bp; 5.8S rRNA gene, 157 bp; ITS2, 270-294 bp) and GC content ranged between 47 and 50% (ITS1, 43-49%; 5.8S rRNA gene, 56-57%; ITS2, 44-49%). Variation within repeats was minimal; only clones from M. varia and P. maximus displayed a few variable sites in ITS2. Among scallops, including Chlamys farreri whose ITS sequence appears in databases, significant variation was observed in both ITS1 and ITS2. Phylogenetic analysis using ITS1, ITS2, or both spacer sequences always yielded trees with similar topology. Aequipecten opercularis and P. maximus grouped in one clade and the other three scallops (C. farreri, M. varia, and H. distortus) in another, where M. varia and H. distortus are the more closely related species. These results provide new insights into the evolutionary relationships of scallop species and corroborate the close evolutionary relationship between the tribes Aequipectinini and Pectinini previously deduced from 18S rDNA sequences.  相似文献   

10.
中国橡胶树疫霉种的研究   总被引:3,自引:0,他引:3  
疫病是我国植胶区的主要病害。近年来,作者从云南西双版纳和广东海南岛的橡胶树和胶园土共分离出57株疫霉菌种。通过分类研究,共鉴定出4个种:恶疫霉 Phytophthoracactorum(Leb.& Cohn)Schroeter,辣椒疫霉 P.capsici Leoman,柑桔褐腐疫霉 P.citrophthora(Sm.& Sm.)Leonian,和棕榈疫霉 P.palmivora(Butl.)Butler。其中辣椒疫霉是首次在橡胶树上发现。我国橡胶树疫霉的种群结构与东南亚和南亚的有所不同,除棕榈疫霉外,其余3种在东南亚和南亚均未发现。而东南亚常见种:簇囊疫霉(P.botryosa)、橡胶疫霉(P.heveae)和蜜色疫霉(P.meadii),在我国却迄今尚未发现或有待证实。以前报道分离自胶园土壤中的芋疫霉(P.colocasiae),可能系柑桔褐腐疫霉之误。绝大多数分离物经配对培养均可产生性器官:辣椒疫霉的A~1交配型和A~2交配型大致相等;柑桔褐腐疫霉和棕榈疫霉的A~2交配型则明显多于A~1交配型。  相似文献   

11.
An improved protocol, including DNA extraction with Chelex, two amplifications with a nested primer set, and DNA purification by electrophoresis, made it possible to analyze nuclear rDNA sequences of powdery mildew fungi using at most several hundred conidia or 20 cleistothecia. Nucleotide sequence diversity of the nuclear rDNA region containing the two internal transcribed spacers (ITS1 and ITS2) and 5.8S rRNA gene derived from conidia and cleistothecia was investigated for four kinds of powdery mildew fungi including two isolates of the same species. The results showed that the nucleotide sequences of the nuclear rDNA region were highly conserved between the teleomorph and the anamorph. Thus, the nucleotide sequence data obtained from either developmental stage can be used for phylogenetic studies of powdery mildew fungi. The nucleotide sequences of the 5.8S rRNA genes of the four species were highly conserved, but those of their ITS regions were variable. This suggests that the nuclear rDNA region is not suitable for phylogenetic studies of distantly related powdery mildew fungi, because too much sequence diversity exists, within the ITS, and too little phylogenetic information is contained within the 5.8S rRNA gene. However, the ITS region will be useful for phylogenetic comparison of closely related species or intraspecies. Contribution No. 132 from the Laboratory of Plant Pathology, Mie University.  相似文献   

12.
We previously reported the occurrence of genetically‐diverse symbiotic dinoflagellates (zooxanthellae) within and between 7 giant clam species (Tridacnidae) from the Philippines based on the algal isolates' allozyme and random amplified polymorphic DNA (RAPD) patterns. We also reported that these isolates all belong to clade A of the Symbiodinium phylogeny with identical 18S rDNA sequences. Here we extend the genetic characterization of Symbiodinium isolates from giant clams and propose that they are conspecific. We used the combined DNA sequences of the internal transcribed spacer (ITS)1, 5.8S rDNA, and ITS2 regions (rDNA‐ITS region) because the ITS1 and ITS2 regions evolve faster than 18S rDNA and have been shown to be useful in distinguishing strains of other dinoflagellates. DGGE of the most variable segment of the rDNA‐ITS region, ITS1, from clonal representatives of clades A, B, and C showed minimal intragenomic variation. The rDNA‐ITS region shows similar phylogenetic relationships between Symbiodinium isolates from symbiotic bivalves and some cnidarians as does 18S rDNA, and that there are not many different clade A species or strains among cultured zooxanthellae (CZ) from giant clams. The CZ from giant clams had virtually identical sequences, with only a single nucleotide difference in the ITS2 region separating two groups of isolates. These data suggest that there is one CZ species and perhaps two CZ strains, each CZ strain containing individuals that have diverse allozyme and RAPD genotypes. The CZ isolated from giant clams from different areas in the Philippines (21 isolates, 7 clam species), the Australian Great Barrier Reef (1 isolate, 1 clam species), Palau (8 isolates, 7 clam species), and Okinawa, Japan (1 isolate, 1 clam species) shared the same rDNA‐ITS sequences. Furthermore, analysis of fresh isolates from giant clams collected from these geographical areas shows that these bivalves also host indistinguishable clade C symbionts. These data demonstrate that conspecific Symbiodinium genotypes, particularly clade A symbionts, are distributed in giant clams throughout the Indo‐Pacific.  相似文献   

13.
Variation among 39 isolates of Phytophthora of six morphological species (P. citrophthora. P. parasitka, P. capsici, P. palmivora and P. meadii. from rubber and citrus trees, and P. colocasiae from taro) was studied using random amplified polymorphic DNA (RAPD) analysis. Ten randomly-chosen 10-mer primers were used. Generally, the banding patterns were similar within species and different between species, but no one primer was able to distinguish all six species from one another. Cluster analysis on pooled data from all the primers gave six groups of isolates corresponding to the six morphological species. The group corresponding to P. citrophthora was divided further into subgroups that were related to host species and geographical location. This work confirmed the existing morphological classification of Phytophthora isolates from rubber and citrus trees in tropical China and showed the validity of using RAPDs to study the taxonomy of Phytophthora.  相似文献   

14.
The genetic diversity of the Stemphylium solani isolates from cotton was assessed by Enterobacterial Repetitive Intergenic Consensus (ERIC) and Repetitive Extragenic Palindromes (REP)-PCR fingerprinting. Twenty eight monosporic isolates of S. solani from cotton were used along with five isolates from tomato and one isolate of Alternaria macrospora from cotton for comparison. The dendrogram obtained revealed clear differences between the cotton and tomato isolates as well as between the tomato isolates from different geographic regions. The genetic relationships among S. solani isolates were also analyzed by sequencing the internal transcribed spacer (ITS) region of four isolates representing the three ERIC and REP groups. The tomato isolate from the State of S?o Paulo showed a distinct ITS sequence from that of the cotton isolates and tomato isolate from the State of Goiás, giving evidence that it belongs to a different genotype of S. solani. This is the first report of the entire sequence of the ITS1-5.8S-ITS2 regions of S. solani.  相似文献   

15.
The nucleotide sequences of partial 18S, complete internal transcribed spacer region 1 (ITS1), complete 5.8S, complete ITS2 and partial 28S of ribosomal DNA (rDNA) and cytochrome c oxidase subunit 1 of mitochondrial DNA (MCOI) from five species of gnathostomes (G. spinigerum, G. doloresi, G. nipponicum, G. hispidum and G. binucleatum with the former four species being distributed in Japan and Asia) that cause human gnathostomiasis were compared by direct polymerase chain reaction cycle-sequencing. The nucleotide sequences of each region of the18S (613 bp), 5.8S (158 bp) and 28S (598 bp) rDNA from the five species were almost identical. The ITS1 region was different in length for the five species. The nucleotide sequences of each region of ITS2 and partial MCO1 regions were different among the five species. Therefore, these two regions can be used as genetic markers for identification of worms.  相似文献   

16.
Inferring phylogenetic relationships among closely related plant species is often difficult due to the lack of molecular markers exhibiting enough nucleotide variability at this taxonomic level. Moreover, gene tree does not necessary represent the true species tree because of random sorting of polymorphic alleles in different lineages. A solution to these problems is to use many amplified fragment length polymorphisms (AFLP) distributed throughout the whole genome, to infer cladistic and phenetic among-species relationships. Phylogenetic relationships among interfertile species of Trollius L. (Ranunculaceae) were investigated using nuclear DNA (ITS1+5.8S rRNA+ITS2) and chloroplast DNA (trnL intron and trnL-trnF intergene spacer) sequences, and AFLP markers. ITS sequences were not informative at the intrageneric level, but confirmed the sister relationship between Trollius and Adonis genera, and provided new information on the phylogenetic relationships among five Ranunculaceae genera. Chloroplast DNA was more informative among Trollius species, but not consistent with the sections previously described. AFLP proved to be a powerful tool to resolve the complex genetic relationships between the morphological entities constituting the genus Trollius. Although as much as 76.1% of the total AFLP variability was found within a priori defined morphological groups, the remaining 23.9% variability differentiating groups was sufficient to generate congruent and robust cladistic and phenetic trees. Several morphological traits, independent from those used to define groups, were mapped onto the molecular phylogeny, and their evolution discussed in relation to the absence/presence of pollinator-seed parasite Chiastocheta flies.  相似文献   

17.
Genetic diversity among 27 isolates (23 from chickpea and 4 from other host crops) of Rhizoctonia bataticola representing 11 different states of India was determined by random amplified polymorphic DNA (RAPD), internal transcribed spacer restriction fragment length polymorphism (ITS-RFLP) and ITS sequencing. The isolates showed variability in virulence test. Unweighted paired group method with arithmetic average cluster analysis was used to group the isolates into distinct clusters. The clusters generated by RAPD grouped all the isolates into six categories at 40% genetic similarity. High level of diversity was observed among the isolates of different as well as same state. Some of the RAPD (OPN 4, OPN 12, and OPN 20) markers clearly distinguished majority of the isolates into the area specific groups. The ITS I, 5.8rDNA and ITS II regions of 11 isolates representing different RAPD groups were amplified with primers ITS 1 and ITS 4 and digested with seven restriction enzymes. The restriction enzymes DraI, MboI, RsaI, and AluI were found to be suitable for differentiating the isolates into five categories by showing isolate specific ITS-RFLP patterns. The isolates were variable in their nucleotide sequences of the ITS regions. This is the first study on genetic diversity among chickpea isolates of R. bataticola.  相似文献   

18.
The internal transcribed spacer sequences spanning the regions between the 17S and 25S rRNAs (ITS1 and ITS2) and including the complete sequence of the 5.8S rRNA were used for phylogenetic analyses. This approach to define phylogenetic relationships within the genus Tricholoma was tested using different isolates of T. terreum. Fruitbodies identified in nature were analysed in order to allow use of morphology for taxonomy. The isolates from different locations were closely related as could be expected for one species. Thus, the method could be applied to different Tricholoma species. Three clusters within the genus Tricholoma can be distinguished with four additional species not included in any of these clusters. Molecular analyses of two Cortinarius species confirm a phylogenetically distinct genus.  相似文献   

19.
Restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the internal transcribed spacers (ITS1 and ITS2) was used for examination of 66 isolates belonging to 19 species. Intraspecies variability was found in the examined region of 11 species (Candida albicans, C. catenulata, C. colliculosa, C. glabrata, C. kefyr, C. melinii, C. parapsilosis, C. guillermondii, C. solanii, C. tropicalis, Saccharomyces cerevisiae). Region of ITS-5.8S rDNA was amplified using the primers ITS1 and ITS4. The amplicons were digested by HaeIII, HinfI and CfoI. The recognized intraspecies variability was confirmed in the second step, in which the shorter fragments of this region were amplified using primers ITS1 and ITS2 and analyzed by capillary electrophoresis. Considerable intraspecific variability renders this method unsuitable for species identification, whereas it can be useful for epidemiological tracing of isolates.  相似文献   

20.
Puccinia dioicae var. micropuncta and P. caricis-stipatae complete their life cycle by host-alternating between Artemisia (spermogonial-aecial stage) and Carex (uredinial-telial stage). These species are suggested to be biologically distinct by inoculation experiments and field observations. Two additional Puccinia ferruginosa and P. artemisiae-keiskeanae produce only telial stage on Artemisia. Similarities in the teliospore morphology and host relationship of the four Puccinia species suggest their close phylogenetic relationship. Nucleotide sequences of D1/D2 region and ITS2 regions with partial 5.8S rDNA were analyzed to depict possible phylogenetic relationships among the four Puccinia species. In D1/D2 analysis, both macrocyclic and microcyclic species were closely positioned in one clade, not permitting resolution of the phylogenetic relationship between the species. The DNA sequence of ITS2 including partial 5.8S rDNA was sufficiently variable to separate two macrocyclic species and P. artemisiae-keiskeanae; however, confident resolution of phylogenetic relationships of the three species was not possible. Nevertheless, the analysis suggested the derivation of P. artemisiae-keiskeanae from a macrocyclic, heteroecious ancestor that is most likely to be an ancestor of both P. caricis-stipatae and P. dioicae var. micropuncta. In contrast, three isolates of morphologically identifiable P. ferruginosa were variously positioned in the phylogenetic tree, suggesting that P. ferruginosa is not monophyletic.Contribution no. 192, Laboratory of Plant Parasitic Mycology, Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号