首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostate cancer is the second highest caused by cancer-related death among males. microRNAs (miRs) have been reported to participate in carcinogenesis, yet their roles in prostate cancer are rarely studied or investigated. Therefore, the present study attempted to explore the effect of miR-137 in prostate cancer via regulating NADPH oxidase 4 (NOX4). Initially, microarray analysis was performed to obtain prostate cancer-related differentially expressed genes and miRs that regulated NOX4, followed by detecting the expression of miR-137 and NOX4 and its target relationship. Moreover, PC-3 cells were transfected with small interfering RNA (siNOX4) and miR-137 mimic for exploring the effect of miR-137 on glycolysis, cell proliferation, and apoptosis in prostate cancer by evaluating lactate production, glucose uptake, adenosine triphosphate (ATP) production, viability rate, and expression of cleaved caspases 3, 8, and 9, cytochrome c, cleaved poly ADP ribose polymerase (PARP), Bax, and Bcl-2. miR-137 was vital to prostate cancer progression via regulating NOX4. Besides, miR-137 expressed poorly while NOX4 expressed highly in prostate cancer. NOX4 was the target gene of miR-137. Additionally, overexpression of miR-137 and silencing of NOX4 were observed to decrease NOX4 and Bcl-2 protein expression, but increase cleaved caspases 3, 8, and 9, cytochrome c, cleaved-PARP, and Bax protein expression. Furthermore, miR-137 overexpression and NOX4 silencing contributed to decreased lactate production, glucose uptake, ATP production, and cell proliferation, but increased apoptosis rate. Collectively, the present study showed that miR-137 repressed glycolysis in prostate cancer through knockdown of NOX4, which might be a potential theoretical target for prostate cancer treatment.  相似文献   

2.
Sirtuin 3 (Sirt3) has a promising role in cancer tumourigenesis and treatment, but there have been controversies about its role as oncogene or tumour suppressor in different types of cancer. Changes in its expression are associated with the excessive production of reactive oxygen species (ROS), thus contributing to mitochondrial dysfunction and age-related pathologies. Hyperoxic treatment (i.e. generator of ROS) was shown to support some tumourigenic properties, but finally suppresses growth of certain mammary carcinoma cells. Due to strikingly reduced Sirt3 level in many breast cancer cell lines, we aimed to clarify the effect of de novo Sirt3 expression upon hyperoxic treatment in the human MCF-7 breast cancer cells. De novo expression of Sirt3 decreased metabolic activity and cellular growth of MCF-7 cells, reduced expression of proangiogenic and epithelial mesenchymal transition genes, induced metabolic switch from glycolysis to oxidative phosphorylation, and decreased abundance of senescent cells. These effects were enhanced upon hyperoxic treatment: induction of DNA damage and upregulation of p53, with an increase of ROS levels followed by mitochondrial and antioxidant dysfunction, resulted in additional reduction of metabolic activity and inhibition of cellular growth and survival. The mitigation of tumorigenic properties and enhancement of the susceptibility of the MCF-7 breast cancer cells to the hyperoxic treatment upon de novo Sirt3 expression indicates that these factors, individually and in combination, should be further explored in vitro and particularly in vivo, as an adjuvant tumour therapy in breast cancer malignancies.  相似文献   

3.
Aerobic glycolysis and mitochondrial dysfunction are common features of aggressive cancer growth. We observed promoter methylation and loss of expression in neurofilament heavy polypeptide (NEFH) in a significant proportion of primary esophageal squamous cell carcinoma (ESCC) samples that were of a high tumor grade and advanced stage. RNA interference-mediated knockdown of NEFH accelerated ESCC cell growth in culture and increased tumorigenicity in vivo, whereas forced expression of NEFH significantly inhibited cell growth and colony formation. Loss of NEFH caused up-regulation of pyruvate kinase-M2 type and down-regulation of pyruvate dehydrogenase, via activation of the Akt/β-catenin pathway, resulting in enhanced aerobic glycolysis and mitochondrial dysfunction. The acceleration of glycolysis and mitochondrial dysfunction in NEFH-knockdown cells was suppressed in the absence of β-catenin expression, and was decreased by the treatment of 2-Deoxyglucose, a glycolytic inhibitor, or API-2, an Akt inhibitor. Loss of NEFH activates the Akt/β-catenin pathway and increases glycolysis and mitochondrial dysfunction. Cancer cells with methylated NEFH can be targeted for destruction with specific inhibitors of deregulated downstream pathways.  相似文献   

4.
5.
Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis, and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a "lethal tumor micro-environment". Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer associated fibroblasts, which then acts as a "metabolic" and "mutagenic" motor to drive tumor-stroma co-evolution, DNA damage, and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress, and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the "Reverse Warburg Effect"). We provide evidence that oxidative stress in cancer associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin, and quercetin), or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use "oxidative stress" in adjacent fibroblasts i) as an "engine" to fuel their own survival via the stromal production of nutrients, and ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the "field effect" in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to down-regulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified, and are effectively "contagious"-spread from cell-to-cell like a virus-creating an "oncogenic/mutagenic" field promoting widespread DNA damage.  相似文献   

6.
7.
The H+-ATP synthase is a reversible engine of mitochondria that synthesizes or hydrolyzes ATP upon changes in cell physiology. ATP synthase dysfunction is involved in the onset and progression of diverse human pathologies. During ischemia, the ATP hydrolytic activity of the enzyme is inhibited by the ATPase inhibitory factor 1 (IF1). The expression of IF1 in human tissues and its participation in the development of human pathology are unknown. Here, we have developed monoclonal antibodies against human IF1 and determined its expression in paired normal and tumor biopsies of human carcinomas. We show that the relative mitochondrial content of IF1 increases significantly in carcinomas, suggesting the participation of IF1 in oncogenesis. The expression of IF1 varies significantly in cancer cell lines. To investigate the functional activity of IF1 in cancer, we have manipulated its cellular content. Overexpression of IF1 or of its pH-insensitive H49K mutant in cells that express low levels of IF1 triggers the up-regulation of aerobic glycolysis and the inhibition of oxidative phosphorylation with concurrent mitochondrial hyperpolarization. Treatment of the cells with the H+-ATP synthase inhibitor oligomycin mimicked the effects of IF1 overexpression. Conversely, small interfering RNA-mediated silencing of IF1 in cells that express high levels of IF1 promotes the down-regulation of aerobic glycolysis and the increase in oxidative phosphorylation. Overall, these findings support that the mitochondrial content of IF1 controls the activity of oxidative phosphorylation mediating the shift of cancer cells to an enhanced aerobic glycolysis, thus supporting an oncogenic role for the de-regulated expression of IF1 in cancer.  相似文献   

8.
9.
10.
11.
Increased conversion of glucose to lactic acid associated with decreased mitochondrial respiration is a unique feature of tumors first described by Otto Warburg in the 1920s. Recent evidence suggests that the Warburg effect is caused by oncogenes and is an underlying mechanism of malignant transformation. Using a novel approach to measure cellular metabolic rates in vitro, the bioenergetic basis of this increased glycolysis and reduced mitochondrial respiration was investigated in two human cancer cell lines, H460 and A549. The bioenergetic phenotype was analyzed by measuring cellular respiration, glycolysis rate, and ATP turnover of the cells in response to various pharmacological modulators. H460 and A549 cells displayed a dependency on glycolysis and an ability to significantly upregulate this pathway when their respiration was inhibited. The converse, however, was not true. The cell lines were attenuated in oxidative phosphorylation (OXPHOS) capacity and were unable to sufficiently upregulate mitochondrial OXPHOS when glycolysis was disabled. This observed mitochondrial impairment was intimately linked to the increased dependency on glycolysis. Furthermore, it was demonstrated that H460 cells were more glycolytic, having a greater impairment of mitochondrial respiration, compared with A549 cells. Finally, the upregulation of glycolysis in response to mitochondrial ATP synthesis inhibition was dependent on AMP-activated protein kinase activity. In summary, our results demonstrate a bioenergetic phenotype of these two cancer cell lines characterized by increased rate of glycolysis and a linked attenuation in their OXPHOS capacity. These metabolic alterations provide a mechanistic explanation for the growth advantage and apoptotic resistance of tumor cells. oxygen consumption; oxidative phosphorylation; Warburg effect; real time  相似文献   

12.
Warburg effect is a hallmark of cancer manifested by continuous prevalence of glycolysis and dysregulation of oxidative metabolism. Glycolysis provides survival advantage to cancer cells. To investigate molecular mechanisms underlying the Warburg effect, we first compared oxygen consumption among hFOB osteoblasts, benign osteosarcoma cells, Saos2, and aggressive osteosarcoma cells, 143B. We demonstrate that, as both proliferation and invasiveness increase in osteosarcoma, cells utilize significantly less oxygen. We proceeded to evaluate mitochondrial morphology and function. Electron microscopy showed that in 143B cells, mitochondria are enlarged and increase in number. Quantitative PCR revealed an increase in mtDNA in 143B cells when compared with hFOB and Saos2 cells. Gene expression studies showed that mitochondrial single-strand DNA-binding protein (mtSSB), a key catalyst of mitochondrial replication, was significantly up-regulated in 143B cells. In addition, increased levels of the mitochondrial respiratory complexes were accompanied by significant reduction of their activities. These changes indicate hyperactive mitochondrial replication in 143B cells. Forced overexpression of mtSSB in Saos2 cells caused an increase in mtDNA and a decrease in oxygen consumption. In contrast, knockdown of mtSSB in 143B cells was accompanied by a decrease in mtDNA, increase in oxygen consumption, and retardation of cell growth in vitro and in vivo. In summary, we have found that mitochondrial dysfunction in cancer cells correlates with abnormally increased mitochondrial replication, which according to our gain- and loss-of-function experiments, may be due to overexpression of mtSSB. Our study provides insight into mechanisms of mitochondrial dysfunction in cancer and may offer potential therapeutic targets.  相似文献   

13.
J. Neurochem. (2012) 122, 941-951. ABSTRACT: In vitro and in vivo models of Parkinson's disease (PD) suggest that increased oxidant production leads to mitochondrial dysfunction in dopaminergic neurons and subsequent cell death. However, it remains unclear if cell death in these models is caused by inhibition of mitochondrial function or oxidant production. The objective of this study was to determine the relationship between mitochondrial dysfunction and oxidant production in response to multiple PD neurotoxicant mimetics. MPP(+) caused a dose-dependent decrease in the basal oxygen consumption rate in dopaminergic N27 cells, indicating a loss of mitochondrial function. In parallel, we found that MPP(+) only modestly increased oxidation of hydroethidine as a diagnostic marker of superoxide production in these cells. Similar results were found using rotenone as a mitochondrial inhibitor, or 6-hydroxydopamine (6-OHDA) as a mechanistically distinct PD neurotoxicant, but not with exposure to paraquat. In addition, the extracellular acidification rate, used as a marker of glycolysis, was stimulated to compensate for oxygen consumption rate inhibition after exposure to MPP(+) , rotenone, or 6-OHDA, but not paraquat. Together these data indicate that MPP(+) , rotenone, and 6-OHDA dramatically shift bioenergetic function away from the mitochondria and towards glycolysis in N27 cells.  相似文献   

14.
Endothelial dysfunction is associated with KCa3.1 dysfunction and contributes to the development of hypertension in preeclampsia. However, evidence of endothelial KCa3.1 dysfunction in the vascular system from women with preeclampsia is still lacking. Therefore, we examined whether endothelial KCa3.1 dysfunction occurs in vessels from women with preeclampsia. We compared KCa3.1 and NADPH oxidase (NOX) expression in umbilical vessels and primary cultured human umbilical vein endothelial cells (HUVECs) from normal (NP; n=17) and preeclamptic pregnancy (PE; n=19) and examined the effects of plasma from NP or PE on KCa3.1 and NOX2 expression in primary cultured HUVECs from NP or human uterine microvascular endothelial cells. The endothelial KCa3.1 was downregulated, and NOX2 was upregulated, in umbilical vessels and HUVECs from PE, compared with those from NP. In addition, HUVECs from PE showed a significant decrease in KCa3.1 current. Plasma from PE induced KCa3.1 down regulation, NOX2 upregulation, phosphorylated-p38 mitogen-activated protein kinase downregulation, and superoxide generation, and these effects were prevented by antioxidants (tempol or tiron), NOX2 inhibition, or anti-lectin-like oxidized low-density lipoprotein (LDL) receptor 1 (LOX1) antibody. Oxidized LDL and the superoxide donor xanthine/xanthine oxidase mixture induced KCa3.1 downregulation. In contrast, plasma from PE did not generate hydrogen peroxide, and the hydrogen peroxide donor tert-butylhydroperoxide induced KCa3.1 upregulation. These results provide the first evidence that plasma from PE generates superoxide via a LOX1–NOX2-mediated pathway and downregulates endothelial KCa3.1, which may contribute to endothelial dysfunction and vasculopathy in preeclampsia. This suggests KCa3.1as a novel target for patients with preeclampsia.  相似文献   

15.
Cancer cells exhibit increased glycolysis for ATP production due, in part, to respiration injury (the Warburg effect). Because ATP generation through glycolysis is less efficient than through mitochondrial respiration, how cancer cells with this metabolic disadvantage can survive the competition with other cells and eventually develop drug resistance is a long-standing paradox. We report that mitochondrial respiration defects lead to activation of the Akt survival pathway through a novel mechanism mediated by NADH. Respiration-deficient cells (rho(-)) harboring mitochondrial DNA deletion exhibit dependency on glycolysis, increased NADH, and activation of Akt, leading to drug resistance and survival advantage in hypoxia. Similarly, chemical inhibition of mitochondrial respiration and hypoxia also activates Akt. The increase in NADH caused by respiratory deficiency inactivates PTEN through a redox modification mechanism, leading to Akt activation. These findings provide a novel mechanistic insight into the Warburg effect and explain how metabolic alteration in cancer cells may gain a survival advantage and withstand therapeutic agents.  相似文献   

16.
We have shown that protein kinase CKII (CKII) inhibition induces senescence through the p53-dependent pathway in HCT116 cells. Here we examined the molecular mechanism through which CKII inhibition activates p53 in HCT116 cells. CKII inhibition by treatment with CKII inhibitor or CKIIα small-interfering RNA (siRNA) increased intracellular hydrogen peroxide and superoxide anion levels. These effects were significantly blocked by pretreatment of cells with the antioxidant N-acetylcysteine. Additionally, NADPH oxidase (NOX) inhibitor apocynin and p22phox siRNA significantly reduced p53 expression and suppressed the appearance of senescence markers. CKII inhibition did not affect mitochondrial superoxide generation. These data demonstrate that CKII inhibition induces superoxide anion generation via NOX activation, and subsequent superoxide-dependent activation of p53 acts as a mediator of senescence in HCT116 cells after down-regulation of CKII.  相似文献   

17.
Increased aerobic glycolysis and oxidative stress are important features of cancer cell metabolism, but the underlying biochemical and molecular mechanisms remain elusive. Using a tetracycline inducible model, we show that activation of K-ras(G12V) causes mitochondrial dysfunction, leading to decreased respiration, elevated glycolysis, and increased generation of reactive oxygen species. The K-RAS protein is associated with mitochondria, and induces a rapid suppression of respiratory chain complex-I and a decrease in mitochondrial transmembrane potential by affecting the cyclosporin-sensitive permeability transition pore. Furthermore, pre-induction of K-ras(G12V) expression in vitro to allow metabolic adaptation to high glycolytic metabolism enhances the ability of the transformed cells to form tumor in vivo. Our study suggests that induction of mitochondrial dysfunction is an important mechanism by which K-ras(G12V) causes metabolic changes and ROS stress in cancer cells, and promotes tumor development.  相似文献   

18.
Genomics has contributed to the treatment of a fraction of cancer patients. However, there is a need to profile the proteins that define the phenotype of cancer and its pathogenesis. The reprogramming of metabolism is a major trait of the cancer phenotype with great potential for prognosis and targeted therapy. This review overviews the major changes reported in the steady-state levels of proteins of metabolism in primary carcinomas, paying attention to those enzymes that correlate with patients' survival. The upregulation of enzymes of glycolysis, pentose phosphate pathway, lipogenesis, glutaminolysis and the antioxidant defense is concurrent with the downregulation of mitochondrial proteins involved in oxidative phosphorylation, emphasizing the potential of mitochondrial metabolism as a promising therapeutic target in cancer. We stress that high-throughput quantitative expression profiling of differentially expressed proteins in large cohorts of carcinomas paired with normal tissues will accelerate translation of metabolism to a successful personalized medicine in cancer.  相似文献   

19.
Mitochondria are essential cellular organelles that are involved in regulating cellular energy, metabolism, survival, and proliferation. To some extent, cancer is a genetic and metabolic disease that is closely associated with mitochondrial dysfunction. Hypoxia-inducible factors (HIFs), which are major molecules that respond to hypoxia, play important roles in cancer development by participating in multiple processes, such as metabolism, proliferation, and angiogenesis. The Warburg phenomenon reflects a pseudo-hypoxic state that activates HIF-1α. In addition, a product of the Warburg effect, lactate, also induces HIF-1α. However, Warburg proposed that aerobic glycolysis occurs due to a defect in mitochondria. Moreover, both HIFs and mitochondrial dysfunction can lead to complex reprogramming of energy metabolism, including reduced mitochondrial oxidative metabolism, increased glucose uptake, and enhanced anaerobic glycolysis. Thus, there may be a connection between HIFs and mitochondrial dysfunction. In this review, we systematically discuss the crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Above all, the stability and activity of HIFs are closely influenced by mitochondrial dysfunction related to tricarboxylic acid cycle, electron transport chain components, mitochondrial respiration, and mitochondrial-related proteins. Furthermore, activation of HIFs can lead to mitochondrial dysfunction by affecting multiple mitochondrial functions, including mitochondrial oxidative capacity, biogenesis, apoptosis, fission, and autophagy. In general, the regulation of tumorigenesis and development by HIFs and mitochondrial dysfunction are part of an extensive and cooperative network.Subject terms: Cancer metabolism, Cancer microenvironment  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号