首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 'Great American Interchange' (GAI) is recognized as having had a dramatic effect on biodiversity throughout the Neotropics. However, investigation of patterns in Neotropical avian biodiversity has generally been focused on South American taxa in the Amazon Basin, leaving the contribution of Central American taxa under-studied. More rigorous studies of lineages distributed across the entire Neotropics are needed to uncover phylogeographical patterns throughout the area, offering insights into mechanisms that contribute to overall Neotropical biodiversity. Here we use mitochondrial DNA sequence data and intensive geographical sampling from the widespread Neotropical avian genus Trogon to investigate the role of the GAI in shaping its phylogeographical history. Our results show that genetic diversity in Trogon exceeds the perceived biodiversity, and that the GAI resulted in lineage diversification within the genus. Despite greater diversity in South America, a Central American centre of origin with multiple and independent dispersals into South America is indicated. These dispersals were followed by the evolution of divergent lineages associated with the Andes Mountains and other South American geographical features. According to our phylogenetic reconstructions, several species, which were originally defined by morphological characters, are nonmonophyletic. In sum, our results elucidate the evolutionary history of Trogon , reveal patterns obscured by extant biodiversity, and serve as a biogeographical model to consider in future studies.  相似文献   

2.
The Neotropical crocodylian species, Caiman crocodilus, is widely distributed through Mesoamerica, northern South America, and the Amazon basin. Four subspecies are recognized within C. crocodilus, suggesting some geographic variation in morphology. In this study, we utilized mitochondrial DNA (mtDNA) sequence data from 45 individuals of C. crocodilus throughout its range to infer its evolutionary history and population structure, as well as to evaluate genealogical support for subspecies and their geographic distributions. Our molecular phylogenetic results identified five mtDNA haplotype clades with a mean sequence divergence of 3.4%, indicating considerable evolutionary independence among phylogeographic lineages. Our results were also broadly consistent with current subspecific taxonomy, with some important additional findings. First, we found substantial genetic structuring within C. c. fuscus from southern Mesoamerica. Second, though we confirmed the existence of a widespread Amazonian clade, we also discovered a cryptic and divergent mtDNA lineage that was indistinguishable from C. c. crocodilus based on external morphology. Third, we confirm the status of C. c. chiapasius as a distinct evolutionary lineage, and provide evidence that C. c. fuscus may be moving northward and hybridizing with C. c. chiapasius in northern Mesoamerica. Finally, our results parallel previous phylogeographic studies of other organisms that have demonstrated significant genetic structure over shorter geographic distances in Mesoamerica compared with Amazonia. We support conservation efforts for all five independent lineages within C. crocodilus, and highlight the subspecies C. c. chiapasius as a unit of particular conservation concern.  相似文献   

3.
The crab-eating fox is a medium-sized Neotropical canid with generalist habits and a broad distribution in South America. We have investigated its genetic diversity, population structure and demographic history across most of its geographic range by analysing 512 base pairs (bp) of the mitochondrial DNA (mtDNA) control region, 615 bp of the mtDNA cytochrome b gene and 1573 total nucleotides from three different nuclear fragments. MtDNA data revealed a strong phylogeographic partition between northeastern Brazil and other portions of the species' distribution, with complete separation between southern and northern components of the Atlantic Forest. We estimated that the two groups diverged from each other c. 400,000-600,000 years ago, and have had contrasting population histories. A recent demographic expansion was inferred for the southern group, while northern populations seem to have had a longer history of large population size. Nuclear sequence data did not support this north-south pattern of subdivision, likely due at least in part to secondary male-mediated historical gene flow, inferred from multilocus coalescent-based analyses. We have compared the inferred phylogeographic patterns to those observed for other Neotropical vertebrates, and report evidence for a major north-south demographic discontinuity that seems to have marked the history of the Atlantic Forest biota.  相似文献   

4.
Owl monkeys (Aotus spp.) inhabit much of South America yet represent an enigmatic evolutionary branch among primates. While morphological, cytogenetic, and immunological evidence suggest that owl monkey populations have undergone isolation and diversification since their emergence in the New World, problems with adjacent species ranges, and sample provenance have complicated efforts to characterize genetic variation within the genus. As a result, the phylogeographic history of owl monkey species and subspecies remains unclear, and the extent of genetic diversity at the population level is unknown. To explore these issues, we analyzed mitochondrial DNA (mt DNA) variation in a population of wild Azara's owl monkeys (Aotus azarai azarai) living in the Gran Chaco region of Argentina. We sequenced the complete mitochondrial genome from one individual (16,585 base pairs (bp)) and analyzed 1,099 bp of the hypervariable control region (CR) and 696 bp of the cytochrome oxidase II (COII) gene in 117 others. In addition, we sequenced the mitochondrial genome (16,472 bp) of one Nancy Ma's owl monkey (A. nancymaae). Based on the whole mtDNA and COII data, we observed an ancient phylogeographic discontinuity among Aotus species living north, south, and west of the Amazon River that began more than eight million years ago. Our population analyses identified three major CR lineages and detected a high level of haplotypic diversity within A. a. azarai. These data point to a recent expansion of Azara's owl monkeys into the Argentinean Chaco. Overall, we provide a detailed view of owl monkey mtDNA variation at genus, species, and population levels.  相似文献   

5.
We present phylogenetic relationships and phylogeographic patterns of the two species of bulldog bats, genus Noctilio. Using a comprehensive sampling of 118 individuals throughout the species distribution, we investigated the distribution of molecular variation in one nuclear and two mitochondrial markers. Phylogenetic trees do not recover Noctilio albiventris as a monophyletic group and point to three similar‐age intraspecific genetic lineages, suggesting cryptic diversity in this taxon. These lineages correspond to the subspecies previously proposed, and are strongly associated with major river basins in South America. Analyses also suggest a very recent origin for the fishing bat Noctilio leporinus, which probably originates from N. albiventris, with a population expansion corresponding to its invasion in South America. Based on our analysis, the speciation event was dated in the Pleistocene epoch and seems to be associated with the variation of the sea level in the Caribbean islands. The present work indicates how phylogeographic studies support the identification of independent evolutionary lineages, driving new systematic/taxonomic investigations, while at the same time shed light on the role of the Caribbean in shaping Neotropical bat fauna diversity. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

6.
Few studies to date have examined genetic variability of widespread tropical amphibian species over their distributional range using different kinds of molecular markers. Here, we use genetic data in an attempt to delimit evolutionary entities within two groups of Neotropical frogs, the Scinax ruber species group and the Rhinella margaritifera species group. We combined mitochondrial and nuclear markers for a phylogenetic (a total of approximately 2500 bp) and phylogeographic study (approximately 1300 bp) to test the reliability of the currently accepted taxonomic assignments and to explore the geographic structure of their genetic variation, mainly based upon samples from the French Guianan region. Phylogenetic analyses demonstrated the polyphyly of Scinax ruber and Rhinella margaritifera. S. ruber consists of six lineages that may all merit species status. Conflicting signals of mitochondrial and nuclear markers indicated, among some Scinax lineages and species, the possibility of ongoing hybridization processes. R. margaritifera consisted of 11 lineages which might represent distinct species as well. Phylogeographic analyses added further information in support of the specific status of these lineages. Lineages of low divergence were found in sympatry and were reciprocally monophyletic for mitochondrial as well as nuclear genes, indicating the existence of young lineages that should be awarded species status. Our results highlight the utility of combining phylogenetic and phylogeographic methods, as well as the use of both mitochondrial and nuclear markers within one study. This approach helped to better understand the evolutionary history of taxonomically complex groups of species. The assessment of the geographic distribution of genetic diversity in tropical amphibian communities can lead to conclusions that differ strongly from prior analyses based on the occurrence of currently recognized species alone. Such studies, therefore, hold the potential to contribute to a more objective assessment of amphibian conservation priorities in tropical areas.  相似文献   

7.
Environmental changes over the Plio‐Pleistocene have been key drivers of speciation patterns and genetic diversification in high‐latitude and mesic environments, yet comparatively little is known about the evolutionary history of species in arid environments. We applied phylogenetic and phylogeographic analyses to understand the evolutionary history of Warramaba grasshoppers from the Australian arid zone, a group including sexual and parthenogenetic lineages. Sequence data (mitochondrial COI) showed that the four major sexual lineages within Warramaba most likely diverged in the Pliocene, around 2–7 million years ago. All sexual lineages exhibited considerable phylogenetic structure. Detailed analyses of the hybrid parthenogenetic species W. virgo and its sexual progenitors showed a pattern of high phylogenetic diversity and phylogeographic structure in northern lineages, and low diversity and evidence for recent expansion in southern lineages. Northern sexual lineages persisted in localized refugia over the Pleistocene, with sustained barriers promoting divergence over this period. Southern parts of the present range became periodically unsuitable during the Pleistocene, and it is into this region that parthenogenetic lineages have expanded. Our results strongly parallel those for sexual and parthenogenetic lineages of the gecko Heteronotia from the same region, indicating a highly general effect of Plio‐Pleistocene environmental change on diversification processes in arid Australia.  相似文献   

8.
ABSTRACT: BACKGROUND: The temporal and geographical diversification of Neotropical insects remains poorly understood because of the complex changes in geological and climatic conditions that occurred during the Cenozoic. To better understand extant patterns in Neotropical biodiversity, we investigated the evolutionary history of three Neotropical swallowtail Troidini genera (Papilionidae). First, DNA-based species delimitation analyses were conducted to assess species boundaries within Neotropical Troidini using an enlarged fragment of the standard barcode gene. Molecularly delineated species were then used to infer a time-calibrated species-level phylogeny based on a three-gene dataset and Bayesian dating analyses. The corresponding chronogram was used to explore their temporal and geographical diversification through distinct likelihood-based methods. RESULTS: The phylogeny for Neotropical Troidini was well resolved and strongly supported. Molecular dating and biogeographic analyses indicate that the extant lineages of Neotropical Troidini have a late Eocene (33-42 Ma) origin in North America. Two independent lineages (Battus and Euryades+Parides) reached South America via the GAARlandia connection, and later became extinct in North America. They only began substantive diversification during the Miocene in Amazonia. Macroevolutionary analysis supports the "museum model" of diversification, rather than Pleistocene refugia, as the best explanation for the diversification of these lineages. CONCLUSIONS: This study demonstrates that: (i) current Neotropical biodiversity may have originated ex situ; (ii) the GAARlandia bridge was important in facilitating invasions of South America; (iii) colonization of Amazonia initiated the crown diversification of these swallowtails; and (iv) Amazonia is not only a species-rich region but also acted as a sanctuary for the dynamics of this diversity. In particular, Amazonia probably allowed the persistence of old lineages and contributed to the steady accumulation of diversity over time with constant net diversification rates, a result that contrasts with previous studies on other South American butterflies.  相似文献   

9.
The ocelot (Leopardus pardalis) and margay (L. wiedii) are sister-species of Neotropical cats which evolved from a lineage that migrated into South America during the formation of the Panamanian land bridge 3–5 million years ago. Patterns of population genetic divergence of each species were studied by phylogenetic analyses of mitochondrial DNA (mtDNA) control region sequences in individuals sampled across the distribution of these taxa. Abundant genetic diversity and remarkably concordant phylogeographic partitions for both species were observed, identifying parallel geographic regions which likely reflect historical faunal barriers. Inferred aspects of phylogeography, population genetic structure, and demographic history were used to formulate conservation recommendations for these species. In addition, observed patterns of sequence variation provided insight into the molecular evolution of the mtDNA control region in closely related felids. Received: 26 January 1998 / Accepted: 14 May 1998  相似文献   

10.
We generated mitochondrial DNA (mtDNA) sequence data from 402 individuals of the fire ant Solenopsis invicta collected from 11 native populations and analyzed these data using a combination of demographic, phylogenetic, and phylogeographic methods to infer features of the evolutionary history of this species. Prior expectations regarding high levels of genetic structure and isolation by distance among populations were supported by the data, but we also discovered several unanticipated patterns. Our analyses revealed a major genetic break between S. invicta mtDNA haplotypes that coincides with the Mesopotamia wetlands region of South America, resulting in two higher level nested clade groupings. In addition, we identified contrasting patterns of genetic differentiation within these two major groups, which may reflect differences in connectivity of suitable habitat in different parts of the native range of S. invicta. Our study represents the first attempt to understand the phylogeographic history of S. invicta across its native range.  相似文献   

11.
Fishes of the genus Prochilodus are ecologically and commercially important, ubiquitous constituents of large river biota in South America. Recent ecologic and demographic studies indicate that these fishes exist in large, stable populations with adult census numbers exceeding one million individuals. Abundance data present a stark contrast to very low levels of genetic diversity (theta) and small effective population sizes (Ne) observed in a mitochondrial (mt) DNA dataset obtained for two species, Prochilodus mariae, and its putative sister taxon, Prochilodus rubrotaeniatus. Both species occupy major river drainages (Orinoco, Essequibo, and Negro) of northeastern South America. Disparity between expectations based on current abundance and life history information and observed genetic data in these lineages could result from historical demographic bottlenecks, or alternatively, natural selection (i.e., a mtDNA selective sweep). To ascertain underlying processes that affect mtDNA diversity in these species we compared theta and Ne estimates obtained from two, unlinked nuclear loci (calmodulin intron-4 and elongation factor-1alpha intron-6) using an approach based on coalescent theory. Genetic diversity and Ne estimated from mtDNA and nuclear sequences were uniformly low in P. rubrotaeniatus from the Rio Negro, suggesting that this population has encountered a historical bottleneck. For all P. mariae populations, theta and Ne based on nuclear sequences were comparable to expectations based on current adult census numbers and were significantly greater than mtDNA estimates, suggesting that a selective mtDNA sweep has occurred in this species. Comparative genetic analysis indicates that a suite of evolutionary processes involving historical demography and natural selection have influenced patterns of genetic variation and speciation in this important Neotropical fish group.  相似文献   

12.
The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. Therefore, phylogeographic studies of invasive species within their native ranges are useful to understand invasion biology in an evolutionary context. Here we integrated classical and Bayesian phylogeographic methods using mitochondrial and nuclear DNA markers with a palaeodistribution modelling approach, to infer the phylogeographic history of the invasive ant Wasmannia auropunctata across its native distribution in South America. We discuss our results in the context of the recent establishment of this mostly tropical species in the Mediterranean region. Our Bayesian phylogeographic analysis suggests that the common ancestor of the two main clades of W. auropunctata occurred in central Brazil during the Pliocene. Clade A would have differentiated northward and clade B southward, followed by a secondary contact beginning about 380 000 years ago in central South America. There were differences in the most suitable habitats among clades when considering three distinct climatic periods, suggesting that genetic differentiation was accompanied by changes in niche requirements, clade A being a tropical lineage and clade B a subtropical and temperate lineage. Only clade B reached more southern latitudes, with a colder climate than that of northern South America. This is concordant with the adaptation of this originally tropical ant species to temperate climates prior to its successful establishment in the Mediterranean region. This study highlights the usefulness of exploring the evolutionary history of invasive species within their native ranges to better understand biological invasions.  相似文献   

13.
Through the examination of past and present distributions of plants and animals, historical biogeographers have provided many insights on the dynamics of the massive organismal exchange between North and South America. However, relatively few phylogeographic studies have been attempted in the land bridge of Mesoamerica despite its importance to better understand the evolutionary forces influencing this biodiversity 'hotspot'. Here we use mitochondrial DNA sequence data from fresh samples and formalin-fixed museum specimens to investigate the genetic and biogeographic diversity of the threatened Mesoamerican spiny-tailed lizards of the Ctenosaura quinquecarinata complex. Species boundaries and their phylogeographic patterns are examined to better understand their disjunct distribution. Three monophyletic, allopatric lineages are established using mtDNA phylogenetic and nested clade analyses in (i) northern: México, (ii) central: Guatemala, El Salvador and Honduras, and (iii) southern: Nicaragua and Costa Rica. The average sequence divergence observed between lineages varied between 2.0% and 3.7% indicating that they do not represent a very recent split and the patterns of divergence support the recently established nomenclature of C. quinquecarinata, Ctenosaura flavidorsalis and Ctenosaura oaxacana. Considering the geological history of Mesoamerica and the observed phylogeographic patterns of these lizards, major evolutionary episodes of their radiation in Mesoamerica are postulated and are indicative of the regions' geological complexity. The implications of these findings for the historical biogeography, taxonomy and conservation of these lizards are discussed.  相似文献   

14.
The role of Pleistocene climate changes in promoting evolutionary diversification in global biota is well documented, but the great majority of data regarding this subject come from North America and Europe, which were greatly affected by glaciation. The effects of Pleistocene changes on cold‐ and/or dry‐adapted species in tropical areas where glaciers were not present remain sparsely investigated. Many such species are restricted to small areas surrounded by unfavourable habitats, which may represent potential interglacial microrefugia. Here, we analysed the phylogeographic structure and diversification history of seven cactus species in the Pilosocereus aurisetus complex that are restricted to rocky areas with high diversity and endemism within the Neotropical savannas of eastern South America. We combined palaeodistributional estimates with standard phylogeographic approaches based on two chloroplast DNA regions (trnT‐trnL and trnS‐trnG), exon 1 of the nuclear gene PhyC and 10 nuclear microsatellite loci. Our analyses revealed a phylogeographic history marked by multiple levels of distributional fragmentation, isolation leading to allopatric differentiation and secondary contact among divergent lineages within the complex. Diversification and demographic events appear to have been affected by the Quaternary climatic cycles as a result of isolation in multiple patches of xerophytic vegetation. These small patches presently harbouring P. aurisetus populations seem to operate as microrefugia, both at present and during Pleistocene interglacial periods; the role of such microrefugia should be explored and analysed in greater detail.  相似文献   

15.

Background

The Neotropical avifauna is more diverse than that of any other biogeographic region, but our understanding of patterns of regional divergence is limited. Critical examination of this issue is currently constrained by the limited genetic information available. This study begins to address this gap by assembling a library of mitochondrial COI sequences, or DNA barcodes, for Argentinian birds and comparing their patterns of genetic diversity to those of North American birds.

Methodology and Principal Findings

Five hundred Argentinian species were examined, making this the first major examination of DNA barcodes for South American birds. Our results indicate that most southern Neotropical bird species show deep sequence divergence from their nearest-neighbour, corroborating that the high diversity of this fauna is not based on an elevated incidence of young species radiations. Although species ages appear similar in temperate North and South American avifaunas, patterns of regional divergence are more complex in the Neotropics, suggesting that the high diversity of the Neotropical avifauna has been fueled by greater opportunities for regional divergence. Deep genetic splits were observed in at least 21 species, though distribution patterns of these lineages were variable. The lack of shared polymorphisms in species, even in species with less than 0.5M years of reproductive isolation, further suggests that selective sweeps could regularly excise ancestral mitochondrial polymorphisms.

Conclusions

These findings confirm the efficacy of species delimitation in birds via DNA barcodes, even when tested on a global scale. Further, they demonstrate how large libraries of a standardized gene region provide insight into evolutionary processes.  相似文献   

16.
Although mitochondrial DNA markers have several properties that make them suitable for phylogeographic studies, they are not free of difficulties. Phylogeographic inferences within and between closely related species can be mislead by introgression and retention of ancestral polymorphism. Here we combine different phylogenetic, phylogeographic, and population genetic methods to extract the maximum information from the Liolaemus darwinii complex. We estimate the phylogeographic structure of L. darwinii across most of its distributional range, and we then estimate relationships between L. darwinii and the syntopic species L. laurenti and L. grosseorum. Our results suggest that range expansion of these lineages brought them into secondary contact in areas where they are presently in syntopy. Here we present the first evidence for introgression in lizards from temperate South America (of L. danwinii mitochondrial DNA into L. laurenti and L. grosseorum), and for incomplete lineage sorting (between L. darwinii and L. laurenti). We show that a combination of methods can provide additional support for inferences derived from any single method and thus provide more robust interpretations and narrow the range of plausible hypotheses about mechanisms and processes of divergence. Additional studies are needed in this group of lizards and in other codistributed groups to determine if Pleistocene climatic changes could be a general factor influencing the evolutionary history of a regional biota.  相似文献   

17.
The puma is an iconic predator that ranges throughout the Americas, occupying diverse habitats. Previous phylogeographic analyses have revealed that it exhibits moderate levels of genetic structure across its range, with few of the classically recognized subspecies being supported as distinct demographic units. Moreover, most of the species’ molecular diversity was found to be in South America. To further investigate the phylogeographic structure and demographic history of pumas we analyzed mtDNA sequences from 186 individuals sampled throughout their range, with emphasis on South America. Our objectives were to refine the phylogeographic assessment within South America and to investigate the demographic history of pumas using a coalescent approach. Our results extend previous phylogeographic findings, reassessing the delimitation of historical population units in South America and demonstrating that this species experienced a considerable demographic expansion in the Holocene, ca. 8,000 years ago. Our analyses indicate that this expansion occurred in South America, prior to the hypothesized re-colonization of North America, which was therefore inferred to be even more recent. The estimated demographic history supports the interpretation that pumas suffered a severe demographic decline in the Late Pleistocene throughout their distribution, followed by population expansion and re-colonization of the range, initiating from South America.  相似文献   

18.
《PloS one》2014,9(9)
Species distributed across vast continental areas and across major biomes provide unique model systems for studies of biotic diversification, yet also constitute daunting financial, logistic and political challenges for data collection across such regions. The tree frog Dendropsophus minutus (Anura: Hylidae) is a nominal species, continentally distributed in South America, that may represent a complex of multiple species, each with a more limited distribution. To understand the spatial pattern of molecular diversity throughout the range of this species complex, we obtained DNA sequence data from two mitochondrial genes, cytochrome oxidase I (COI) and the 16S rhibosomal gene (16S) for 407 samples of D. minutus and closely related species distributed across eleven countries, effectively comprising the entire range of the group. We performed phylogenetic and spatially explicit phylogeographic analyses to assess the genetic structure of lineages and infer ancestral areas. We found 43 statistically supported, deep mitochondrial lineages, several of which may represent currently unrecognized distinct species. One major clade, containing 25 divergent lineages, includes samples from the type locality of D. minutus. We defined that clade as the D. minutus complex. The remaining lineages together with the D. minutus complex constitute the D. minutus species group. Historical analyses support an Amazonian origin for the D. minutus species group with a subsequent dispersal to eastern Brazil where the D. minutus complex originated. According to our dataset, a total of eight mtDNA lineages have ranges >100,000 km2. One of them occupies an area of almost one million km2 encompassing multiple biomes. Our results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity still remains to be discovered.  相似文献   

19.
This study uses a combined methodological approach including phylogenetic, phylogeographic, and demographic analyses to understand the evolutionary history of the northern leopard frog, Rana pipiens. We tested hypotheses concerning how (or if) known geological events and key features of the species biology influenced the contemporary geographic and genetic distribution of R. pipiens. We assayed mitochondrial DNA variation from 389 individuals within 35 populations located throughout the species range. Our a priori expectations for patterns and processes influencing the current genetic structure of R. pipiens were supported by the data. However, our analyses revealed specific aspects of R. pipiens evolutionary history that were unexpected. The phylogenetic analysis indicated that R. pipiens is split into populations containing discrete eastern or western haplotypes, with the Mississippi River and Great Lakes region dividing the geographic ranges. Nested clade analysis indicated that the biological process most often invoked to explain the pattern of haplotype position is restricted gene flow with isolation by distance. Demographic analyses showed evidence of both historical bottlenecks and population expansions. Surprisingly, the genetic evidence indicated that the western haplotypes had significantly reduced levels of genetic diversity relative to the eastern haplotypes and that major range expansions occurred in both regions well before the most recent glacial retreat. This study provides a detailed history of how a widespread terrestrial vertebrate responded to episodic Pleistocene glacial events in North America. Moreover, this study illustrates how complementary methods of data analysis can be used to disentangle recent and ancient effects on the genetic structure of a species.  相似文献   

20.
The giant otter, Pteronura brasiliensis, occupies a range including the major drainage basins of South America, yet the degree of structure that exists within and among populations inhabiting these drainages is unknown. We sequenced portions of the mitochondrial DNA (mtDNA) cytochrome b (612bp) and control region (383 bp) genes in order to determine patterns of genetic variation within the species. We found high levels of mtDNA haplotype diversity (h = 0.93 overall) and support for subdivision into four distinct groups of populations, representing important centers of genetic diversity and useful units for prioritizing conservation within the giant otter. We tested these results against the predictions of three hypotheses of Amazonian diversification (Pleistocene Refugia, Paleogeography, and Hydrogeology). While the phylogeographic pattern conformed to the predictions of the Refugia Hypothesis, molecular dating using a relaxed clock revealed the phylogroups diverged from one another between 1.69 and 0.84 Ma, ruling out the influence of Late Pleistocene glacial refugia. However, the role of Plio-Pleistocene climate change could not be rejected. While the molecular dating also makes the influence of geological arches according to the Paleogeography Hypothesis extremely unlikely, the recent Pliocene formation of the Fitzcarrald Arch and its effect of subsequently altering drainage pattern could not be rejected. The data presented here support the interactions of both climatic and hydrological changes resulting from geological activity in the Plio-Pleistocene, in shaping the phylogeographic structure of the giant otter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号