首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Orai1, the pore subunit of Ca(2+) release-activated Ca(2+) channels, has four transmembrane segments (TMs). The first segment, TMI, lines the pore and plays an important role in channel activation and ion permeation. TMIII, on the other hand, does not line the pore but still regulates channel gating and permeation properties. To understand the role of TMIII, we have mutated and characterized several residues in this domain. Mutation of Trp-176 to Cys (W176C) and Gly-183 to Ala (G183A) had dramatic effects. Unlike wild-type channels, which exhibit little outward current and are activated by STIM1, W176C mutant channels exhibited a large outward current at positive potentials and were constitutively active in the absence of STIM1. G183A mutant channels also exhibited substantial outward currents but were active only in the presence of 2-aminoethoxydiphenyl borate (2-APB), irrespective of STIM1. With W176C mutant channels inward, monovalent currents were blocked by Ca(2+) with a high affinity similar to the wild type, but the Ca(2+)-dependent blocking of outward currents differed in the two cases. Although a 50% block of the WT outward current required 250 μm Ca(2+), more than 6 mm was necessary to have the same effect on W176C mutant channels. In the presence of extracellular Ca(2+), W176C and G183A outward currents developed slowly in a voltage-dependent manner, whereas they developed almost instantaneously in the absence of Ca(2+). These changes in permeation and gating properties mimic the changes induced by mutations of Glu-190 in TMIII and Asp-110/Asp-112 in the TMI/TMII loop. On the basis of these data, we propose that TMIII maintains negatively charged residues at or near the selectivity filter in a conformation that facilitates Ca(2+) inward currents and prevents outward currents of monovalent cations. In addition, to controlling selectivity, TMIII may also stabilize channel gating in a closed state in the absence of STIM1 in a Trp-176-dependent manner.  相似文献   

2.
Cav1.2 Ca(2+) channel activity diminishes in inside-out patches (run-down). Previously, we have found that with ATP, calpastatin domain L (CSL) and calmodulin (CaM) recover channel activity from the run-down in guinea pig cardiac myocytes. Because the potency of the CSL repriming effect was smaller than that of CaM, we hypothesized that CSL might act as a partial agonist of CaM in the channel-repriming effect. To examine this hypothesis, we investigated the effect of the competitions between CSL and CaM on channel activity and on binding in the channel. We found that CSL suppressed the channel-activating effect of CaM in a reversible and concentration-dependent manner. The channel-inactivating effect of CaM seen at high concentrations of CaM, however, did not seem to be affected by CSL. In the GST pull-down assay, CSL suppressed binding of CaM to GST fusion peptides derived from C-terminal regions in a competitive manner. The inhibition of CaM binding by CSL was observed with the IQ peptide but not the PreIQ peptide, which is the CaM-binding domain in the C terminus. The results are consistent with the hypothesis that CSL competes with CaM as a partial agonist for the site in the IQ domain in the C-terminal region of the Cav1.2 channel, which may be involved in activation of the channel.  相似文献   

3.
Pathogen/microbe- or plant-derived signaling molecules (PAMPs/MAMPs/DAMPs) or elicitors induce increases in the cytosolic concentration of free Ca(2+) followed by a series of defense responses including biosynthesis of antimicrobial secondary metabolites called phytoalexins; however, the molecular links and regulatory mechanisms of the phytoalexin biosynthesis remains largely unknown. A putative voltage-gated cation channel, OsTPC1 has been shown to play a critical role in hypersensitive cell death induced by a fungal xylanase protein (TvX) in suspension-cultured rice cells. Here we show that TvX induced a prolonged increase in cytosolic Ca(2+), mainly due to a Ca(2+) influx through the plasma membrane. Membrane fractionation by two-phase partitioning and immunoblot analyses revealed that OsTPC1 is localized predominantly at the plasma membrane. In retrotransposon-insertional Ostpc1 knock-out cell lines harboring a Ca(2+)-sensitive photoprotein, aequorin, TvX-induced Ca(2+) elevation was significantly impaired, which was restored by expression of OsTPC1. TvX-induced production of major diterpenoid phytoalexins and the expression of a series of diterpene cyclase genes involved in phytoalexin biosynthesis were also impaired in the Ostpc1 cells. Whole cell patch clamp analyses of OsTPC1 heterologously expressed in HEK293T cells showed its voltage-dependent Ca(2+)-permeability. These results suggest that OsTPC1 plays a crucial role in TvX-induced Ca(2+) influx as a plasma membrane Ca(2+)-permeable channel consequently required for the regulation of phytoalexin biosynthesis in cultured rice cells.  相似文献   

4.
CaV2.1 channels, which conduct P/Q-type Ca2+ currents, initiate synaptic transmission at most synapses in the central nervous system. Ca2+/calmodulin-dependent facilitation and inactivation of these channels contributes to short-term facilitation and depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin (CaM) from its binding site, differentially regulate CaV2.1 channels, and contribute to the diversity of short-term synaptic plasticity. The neuronal calcium sensor protein visinin-like protein 2 (VILIP-2) inhibits inactivation and enhances facilitation of CaV2.1 channels. Here we examine the molecular determinants for differential regulation of CaV2.1 channels by VILIP-2 and CaM by construction and functional analysis of chimeras in which the functional domains of VILIP-2 are substituted in CaM. Our results show that the N-terminal domain, including its myristoylation site, the central α-helix, and the C-terminal lobe containing EF-hands 3 and 4 of VILIP-2 are sufficient to transfer its regulatory properties to CaM. This regulation by VILIP-2 requires binding to the IQ-like domain of CaV2.1 channels. Our results identify the essential molecular determinants of differential regulation of CaV2.1 channels by VILIP-2 and define the molecular code that these proteins use to control short-term synaptic plasticity.  相似文献   

5.
Cav1.4 L-type Ca2+ channels are crucial for synaptic transmission in retinal photoreceptors and bipolar neurons. Recent studies suggest that the activity of this channel is regulated by the Ca2+-binding protein 4 (CaBP4). In the present study, we explored this issue by examining functional effects of CaBP4 on heterologously expressed Cav1.4. We show that CaBP4 dramatically increases Cav1.4 channel availability. This effect crucially depends on the presence of the C-terminal ICDI (inhibitor of Ca2+-dependent inactivation) domain of Cav1.4 and is absent in a Cav1.4 mutant lacking the ICDI. Using FRET experiments, we demonstrate that CaBP4 interacts with the IQ motif of Cav1.4 and that it interferes with the binding of the ICDI domain. Based on these findings, we suggest that CaBP4 increases Cav1.4 channel availability by relieving the inhibitory effects of the ICDI domain on voltage-dependent Cav1.4 channel gating. We also functionally characterized two CaBP4 mutants that are associated with a congenital variant of human night blindness and other closely related nonstationary retinal diseases. Although both mutants interact with Cav1.4 channels, the functional effects of CaBP4 mutants are only partially preserved, leading to a reduction of Cav1.4 channel availability and loss of function. In conclusion, our study sheds new light on the functional interaction between CaBP4 and Cav1.4. Moreover, it provides insights into the mechanism by which CaBP4 mutants lead to loss of Cav1.4 function and to retinal disease.  相似文献   

6.
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) regulates Ca(2+) (I(Ca)) and M-type K(+) currents in superior cervical ganglion sympathetic neurons. In those cells, M(1) muscarinic and AT(1) angiotensin types do not elicit Ca(2+)(i) signals and suppress both currents via depletion of PIP(2), whereas the B(2) bradykinin and P2Y purinergic types elicit robust IP(3)-mediated [Ca(2+)](i) rises and neither deplete PIP(2) nor inhibit I(Ca). We have suggested that this specificity arises from differential Ca(2+)(i) signals underlying receptor-specific stimulation of PIP(2) synthesis by phosphatidylinositol (PI) 4-kinase. Here, we investigate which PI 4-kinase isoform underlies this signal, whether stimulation of PI 4-phosphate 5-kinase is also required, and the origin of receptor-specific Ca(2+)(i) signals. Recordings of I(Ca) were used as a PIP(2) "biosensor." In control, stimulation of M(1), but not B(2) or P2Y, receptors robustly suppressed I(Ca). However, when PI 4-kinase IIIβ, diacylglycerol kinase, Rho, or Rho-kinase was blocked, agonists of all three receptors robustly suppressed I(Ca). Overexpression of exogenous M(1) receptors yielded large [Ca(2+)](i) rises by muscarinic agonist, and transfection of wild-type IRBIT decreased Ca(2+)(i) signals, whereas dominant negative IRBIT-S68A had little effect on B(2) or P2Y responses but greatly increased muscarinic responses. We conclude that overlaid on microdomain organization is IRBIT, setting a "threshold" for [IP(3)], assisting in fidelity of receptor specificity.  相似文献   

7.
Zinc ion (Zn(2+)) is an endogenous allosteric modulator that regulates the activity of a wide variety of ion channels in a reversible and concentration-dependent fashion. Here we used patch clamp recording to study the effects of Zn(2+) on the melastatin transient receptor potential 2 (TRPM2) channel. Zn(2+) inhibited the human (h) TRPM2 channel currents, and the steady-state inhibition was largely not reversed upon washout and concentration-independent in the range of 30-1000 μM, suggesting that Zn(2+) induces channel inactivation. Zn(2+) inactivated the channels fully when they conducted inward currents, but only by half when they passed outward currents, indicating profound influence of the permeant ion on Zn(2+) inactivation. Alanine substitution scanning mutagenesis of 20 Zn(2+)-interacting candidate residues in the outer pore region of the hTRPM2 channel showed that mutation of Lys(952) in the extracellular end of the fifth transmembrane segment and Asp(1002) in the large turret strongly attenuated or abolished Zn(2+) inactivation, and mutation of several other residues dramatically changed the inactivation kinetics. The mouse (m) TRPM2 channels were also inactivated by Zn(2+), but the kinetics were remarkably slower. Reciprocal mutation of His(995) in the hTRPM2 channel and the equivalent Gln(992) in the mTRPM2 channel completely swapped the kinetics, but no such opposing effects resulted from exchanging another pair of species-specific residues, Arg(961)/Ser(958). We conclude from these results that Zn(2+) inactivates the TRPM2 channels and that residues in the outer pore are critical determinants of the inactivation.  相似文献   

8.
9.
An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.  相似文献   

10.
Ca2+ sparks are short lived and localized Ca2+ transients resulting from the opening of ryanodine receptors in sarcoplasmic reticulum. These events relax certain types of smooth muscle by activating big conductance Ca2+-activated K+ channels to produce spontaneous transient outward currents (STOCs) and the resultant closure of voltage-dependent Ca2+ channels. But in many smooth muscles from a variety of organs, Ca2+ sparks can additionally activate Ca2+-activated Cl channels to generate spontaneous transient inward current (STICs). To date, the physiological roles of Ca2+ sparks in this latter group of smooth muscle remain elusive. Here, we show that in airway smooth muscle, Ca2+ sparks under physiological conditions, activating STOCs and STICs, induce biphasic membrane potential transients (BiMPTs), leading to membrane potential oscillations. Paradoxically, BiMPTs stabilize the membrane potential by clamping it within a negative range and prevent the generation of action potentials. Moreover, blocking either Ca2+ sparks or hyperpolarization components of BiMPTs activates voltage-dependent Ca2+ channels, resulting in an increase in global [Ca2+]i and cell contraction. Therefore, Ca2+ sparks in smooth muscle presenting both STICs and STOCs act as a stabilizer of membrane potential, and altering the balance can profoundly alter the status of excitability and contractility. These results reveal a novel mechanism underlying the control of excitability and contractility in smooth muscle.  相似文献   

11.
Inwardly rectifying K+ (Kir) channels set the resting membrane potential and regulate cellular excitability. The activity of Kir channels depends critically on the phospholipid PIP2. The molecular mechanism by which PIP2 regulates Kir channel gating is poorly understood. Here, we utilized a combination of computational and electrophysiological approaches to discern structural elements involved in regulating the PIP2-induced gating kinetics of Kir2 channels. We identify a novel role for the cytosolic GH loop. Mutations that directly or indirectly affect GH loop flexibility (e.g. V223L, E272G, D292G) increase both the on- and especially the off-gating kinetics. These effects are consistent with a model in which competing interactions between the CD and GH loops for the N terminus regulate the gating of the intracellular G loop gate.  相似文献   

12.
13.
Recoverin, a 23-kDa Ca2+-binding protein of the neuronal calcium sensing (NCS) family, inhibits rhodopsin kinase, a Ser/Thr kinase responsible for termination of photoactivated rhodopsin in rod photoreceptor cells. Recoverin has two functional EF hands and a myristoylated N terminus. The myristoyl chain imparts cooperativity to the Ca2+-binding sites through an allosteric mechanism involving a conformational equilibrium between R and T states of the protein. Ca2+ binds preferentially to the R state; the myristoyl chain binds preferentially to the T state. In the absence of myristoylation, the R state predominates, and consequently, binding of Ca2+ to the non-myristoylated protein is not cooperative. We show here that a mutation, C39A, of a highly conserved Cys residue among NCS proteins, increases the apparent cooperativity for binding of Ca2+ to non-myristoylated recoverin. The binding data can be explained by an effect on the T/R equilibrium to favor the T state without affecting the intrinsic binding constants for the two Ca2+ sites.  相似文献   

14.
Activation of Ca(2+) release-activated Ca(2+) channels by depletion of intracellular Ca(2+) stores involves physical interactions between the endoplasmic reticulum Ca(2+) sensor, STIM1, and the channels composed of Orai subunits. Recent studies indicate that the Orai3 subtype, in addition to being store-operated, is also activated in a store-independent manner by 2-aminoethyldiphenyl borate (2-APB), a small molecule with complex pharmacology. However, it is unknown whether the store-dependent and -independent activation modes of Orai3 channels operate independently or whether there is cross-talk between these activation states. Here we report that in addition to causing direct activation, 2-APB also regulates store-operated gating of Orai3 channels, causing potentiation at low doses and inhibition at high doses. Inhibition of store-operated gating by 2-APB was accompanied by the suppression of several modes of Orai3 channel regulation that depend on STIM1, suggesting that high doses of 2-APB interrupt STIM1-Orai3 coupling. Conversely, STIM1-bound Orai3 (and Orai1) channels resisted direct gating by high doses of 2-APB. The rate of direct 2-APB activation of Orai3 channels increased linearly with the degree of STIM1-Orai3 uncoupling, suggesting that 2-APB has to first disengage STIM1 before it can directly gate Orai3 channels. Collectively, our results indicate that the store-dependent and -independent modes of Ca(2+) release-activated Ca(2+) channel activation are mutually exclusive: channels bound to STIM1 resist 2-APB gating, whereas 2-APB antagonizes STIM1 gating.  相似文献   

15.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of CaV2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca2+/CaM stimulus. Autophosphorylated CaMKII can bind the CaV2.1 channel and synapsin-1 simultaneously. CaMKII binding to CaV2.1 channels induces Ca2+-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of CaV2.1 channels by binding of Ca2+/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to CaV2.1 channels. These results define the functional properties of a signaling complex of CaMKII and CaV2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity.  相似文献   

16.
Bax inhibitor-1 (BI-1) is a multitransmembrane domain-spanning endoplasmic reticulum (ER)-located protein that is evolutionarily conserved and protects against apoptosis and ER stress. Furthermore, BI-1 is proposed to modulate ER Ca(2+) homeostasis by acting as a Ca(2+)-leak channel. Based on experimental determination of the BI-1 topology, we propose that its C terminus forms a Ca(2+) pore responsible for its Ca(2+)-leak properties. We utilized a set of C-terminal peptides to screen for Ca(2+) leak activity in unidirectional (45)Ca(2+)-flux experiments and identified an α-helical 20-amino acid peptide causing Ca(2+) leak from the ER. The Ca(2+) leak was independent of endogenous ER Ca(2+)-release channels or other Ca(2+)-leak mechanisms, namely translocons and presenilins. The Ca(2+)-permeating property of the peptide was confirmed in lipid-bilayer experiments. Using mutant peptides, we identified critical residues responsible for the Ca(2+)-leak properties of this BI-1 peptide, including a series of critical negatively charged aspartate residues. Using peptides corresponding to the equivalent BI-1 domain from various organisms, we found that the Ca(2+)-leak properties were conserved among animal, but not plant and yeast orthologs. By mutating one of the critical aspartate residues in the proposed Ca(2+)-channel pore in full-length BI-1, we found that Asp-213 was essential for BI-1-dependent ER Ca(2+) leak. Thus, we elucidated residues critically important for BI-1-mediated Ca(2+) leak and its potential channel pore. Remarkably, one of these residues was not conserved among plant and yeast BI-1 orthologs, indicating that the ER Ca(2+)-leak properties of BI-1 are an added function during evolution.  相似文献   

17.
STIM1 and Orai represent the key components of Ca(2+) release-activated Ca(2+) channels. Activation of Orai channels requires coupling of the C terminus of STIM1 to the N and C termini of Orai. Although the latter appears to be central in the interaction with STIM1, the role of the N terminus and particularly of the conserved region close to the first transmembrane sequence is less well understood. Here, we investigated in detail the functional role of this conserved region in Orai3 by stepwise deletions. Molecular determinants were mapped for the two modes of Orai3 activation via STIM1 or 2-aminoethoxydiphenyl borate (2-APB) and for current gating characteristics. Increasing N-terminal truncations revealed a progressive decrease of the specific fast inactivation of Orai3 concomitant with diminished binding to calmodulin. STIM1-dependent activation of Orai3 was maintained as long as the second half of this conserved N-terminal domain was present. Further truncations abolished it, whereas Orai3 stimulation via 2-APB was partially retained. In aggregate, the N-terminal conserved region plays a multifaceted role in Orai3 current gating with distinct structural requirements for STIM1- and 2-APB-stimulated activation.  相似文献   

18.
TRPM7 is a novel magnesium-nucleotide-regulated metal current (MagNuM) channel that is regulated by serum Mg2+ concentrations. Changes in Mg2+ concentration have been shown to alter cell proliferation in various cells; however, the mechanism and the ion channel(s) involved have not yet been identified. Here we demonstrate that TRPM7 is expressed in control and prostate cancer cells. Supplementation of intracellular Mg-ATP or addition of external 2-aminoethoxydiphenyl borate inhibited MagNuM currents. Furthermore, silencing of TRPM7 inhibited whereas overexpression of TRPM7 increased endogenous MagNuM currents, suggesting that these currents are dependent on TRPM7. Importantly, although an increase in the serum Ca2+/Mg2+ ratio facilitated Ca2+ influx in both control and prostate cancer cells, a significantly higher Ca2+ influx was observed in prostate cancer cells. TRPM7 expression was also increased in cancer cells, but its expression was not dependent on the Ca2+/Mg2+ ratio per se. Additionally, an increase in the extracellular Ca2+/Mg2+ ratio led to a significant increase in cell proliferation of prostate cancer cells when compared with control cells. Consistent with these results, age-matched prostate cancer patients also showed a subsequent increase in the Ca2+/Mg2+ ratio and TRPM7 expression. Altogether, we provide evidence that the TRPM7 channel has an important role in prostate cancer and have identified that the Ca2+/Mg2+ ratio could be essential for the initiation/progression of prostate cancer.  相似文献   

19.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+ release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μm but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.  相似文献   

20.
Non-receptor-tyrosine kinases (protein-tyrosine kinases) and non-receptor tyrosine phosphatases (PTPs) have been implicated in the regulation of ion channels, neuronal excitability, and synaptic plasticity. We previously showed that protein-tyrosine kinases such as Src kinase and PTPs such as PTPα and PTPε modulate the activity of delayed-rectifier K(+) channels (I(K)). Here we show cultured cortical neurons from PTPε knock-out (EKO) mice to exhibit increased excitability when compared with wild type (WT) mice, with larger spike discharge frequency, enhanced fast after-hyperpolarization, increased after-depolarization, and reduced spike width. A decrease in I(K) and a rise in large-conductance Ca(2+)-activated K(+) currents (mBK) were observed in EKO cortical neurons compared with WT. Parallel studies in transfected CHO cells indicate that Kv1.1, Kv1.2, Kv7.2/7.3, and mBK are plausible molecular correlates of this multifaceted modulation of K(+) channels by PTPε. In CHO cells, Kv1.1, Kv1.2, and Kv7.2/7.3 K(+) currents were up-regulated by PTPε, whereas mBK channel activity was reduced. The levels of tyrosine phosphorylation of Kv1.1, Kv1.2, Kv7.3, and mBK potassium channels were increased in the brain cortices of neonatal and adult EKO mice compared with WT, suggesting that PTPε in the brain modulates these channel proteins. Our data indicate that in EKO mice, the lack of PTPε-mediated dephosphorylation of Kv1.1, Kv1.2, and Kv7.3 leads to decreased I(K) density and enhanced after-depolarization. In addition, the deficient PTPε-mediated dephosphorylation of mBK channels likely contributes to enhanced mBK and fast after-hyperpolarization, spike shortening, and consequent increase in neuronal excitability observed in cortical neurons from EKO mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号