首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pericardial fat is a localized fat depot associated with coronary artery calcium and myocardial infarction. We hypothesized that genetic loci would be associated with pericardial fat independent of other body fat depots. Pericardial fat was quantified in 5,487 individuals of European ancestry from the Framingham Heart Study (FHS) and the Multi-Ethnic Study of Atherosclerosis (MESA). Genotyping was performed using standard arrays and imputed to ~2.5 million Hapmap SNPs. Each study performed a genome-wide association analysis of pericardial fat adjusted for age, sex, weight, and height. A weighted z-score meta-analysis was conducted, and validation was obtained in an additional 3,602 multi-ethnic individuals from the MESA study. We identified a genome-wide significant signal in our primary meta-analysis at rs10198628 near TRIB2 (MAF 0.49, p = 2.7 × 10(-08)). This SNP was not associated with visceral fat (p = 0.17) or body mass index (p = 0.38), although we observed direction-consistent, nominal significance with visceral fat adjusted for BMI (p = 0.01) in the Framingham Heart Study. Our findings were robust among African ancestry (n = 1,442, p = 0.001), Hispanic (n = 1,399, p = 0.004), and Chinese (n = 761, p = 0.007) participants from the MESA study, with a combined p-value of 5.4E-14. We observed TRIB2 gene expression in the pericardial fat of mice. rs10198628 near TRIB2 is associated with pericardial fat but not measures of generalized or visceral adiposity, reinforcing the concept that there are unique genetic underpinnings to ectopic fat distribution.  相似文献   

2.
We evaluated the influence of measurement site on the ranking (low to high) of abdominal subcutaneous (SAT) and visceral (VAT) adipose tissue. We also determined the influence of measurement site on the prediction of abdominal SAT and VAT mass. The subjects included 100 men with computed tomography (CT) measurements at L4-L5 and L3-L4 levels and 100 men with magnetic resonance imaging (MRI) measurements at L4-L5 and 5 cm above L4-L5 (L4-L5 +5 cm). Corresponding mass values were determined by using multiple-image protocols. For SAT, 90 and 92 of the 100 subjects for CT and MRI, respectively, had a difference in rank position at the two levels. The change in rank position exceeded the error or measurement for approximately 75% of the subjects for both methods. For VAT, 91 and 95 of the 100 subjects for CT and MRI, respectively, had a difference in rank position at the two levels. The change in rank position exceeded the error of measurement for 36% of the subjects for CT and for 8% of the subjects for MRI. For both imaging modalities, the variance explained in SAT and VAT mass (kg) was comparable for L4-L5, L4-L5 +5 cm, and L3-L4 levels. In conclusion, the ranking of subjects for abdominal SAT and VAT quantity is influenced by measurement location. However, the ability to predict SAT and VAT mass by using single images obtained at the L4-L5, L4-L5 +5 cm, or L3-L4 levels is comparable.  相似文献   

3.
4.
Metabolic pathologies mainly originate from adipose tissue (AT) dysfunctions. AT differences are associated with fat-depot anatomic distribution in subcutaneous (SAT) and visceral omental (VAT) pads. We address the question whether the functional differences between the two compartments may be present early in the adipose stem cell (ASC) instead of being restricted to the mature adipocytes. Using a specific human ASC model, we evaluated proliferation/differentiation of ASC from abdominal SAT-(S-ASC) and VAT-(V-ASC) paired biopsies in parallel as well as the electrophysiological properties and functional activity of ASC and their in vitro-derived adipocytes. A dramatic difference in proliferation and adipogenic potential was observed between the two ASC populations, S-ASC having a growth rate and adipogenic potential significantly higher than V-ASC and giving rise to more functional and better organized adipocytes. To our knowledge, this is the first comprehensive electrophysiological analysis of ASC and derived-adipocytes, showing electrophysiological properties, such as membrane potential, capacitance and K(+)-current parameters which confirm the better functionality of S-ASC and their derived adipocytes. We document the greater ability of S-ASC-derived adipocytes to secrete adiponectin and their reduced susceptibility to lipolysis. These features may account for the metabolic differences observed between the SAT and VAT. Our findings suggest that VAT and SAT functional differences originate at the level of the adult ASC which maintains a memory of its fat pad of origin. Such stem cell differences may account for differential adipose depot susceptibility to the development of metabolic dysfunction and may represent a suitable target for specific therapeutic approaches.  相似文献   

5.
Objective: Abdominal visceral (VAT) and subcutaneous adipose tissue (SAT) display significant metabolic differences, with VAT showing a functional association to metabolic/cardiovascular disorders. A third abdominal adipose layer, derived by the division of SAT and identified as deep subcutaneous adipose tissue (dSAT), may play a significant and independent metabolic role. The aim of this study was to evaluate depot‐specific differences in the expression of proteins key to adipocyte metabolism in a lean population to establish a potential physiologic role for dSAT. Research Methods and Procedures: Adipocytes and preadipocytes were isolated from whole biopsies taken from superficial SAT (sSAT), dSAT, and VAT samples obtained from 10 healthy normal weight patients (7 women and 3 men), with a mean age of 56.4 ± 4.04 years and a mean BMI of 23.1 ± 0.5 kg/m2. Samples were evaluated for depot‐specific differences in insulin sensitivity using adiponectin, glucose transport protein 4 (GLUT4), and resistin mRNA and protein expression, glucocorticoid metabolism by 11β‐hydroxysteroid dehydrogenase type‐1 (11β‐HSD1) expression, and alterations in the adipokines leptin and tumor necrosis factor‐α (TNF‐α). Results: Although no regional differences in expression were observed for adiponectin or TNF‐α, dSAT whole biopsies and adipocytes, while intermediary to both sSAT and VAT, reflected more of the VAT expression profile of 11β‐HSD1, leptin, and resistin. Only in the case of the intracellular pool of GLUT4 proteins in whole biopsies was an independent pattern of expression observed for dSAT. In an evaluation of the homeostatic model, dSAT 11β‐HSD1 protein (r = 0.9573, p = 0.0002) and TNF‐α mRNA (r = 0.8210, p = 0.0236) correlated positively to the homeostatic model. Discussion: Overall, dSAT seems to be a distinct abdominal adipose depot supporting an independent metabolic function that may have a potential role in the development of obesity‐associated complications.  相似文献   

6.
7.
Intramuscular fat content (IFC) is an essential quantitative trait of meat, affecting multiple meat quality indicators. A certain amount of IFC could not only improve the sensory score of pork but also increase the flavour, tenderness, juiciness and shelf-life. To dissect the genetic determinants of IFC, two methods, including genome-wide efficient mixed-model analysis (GEMMA) and linkage disequilibrium adjusted kinships (LDAKs), were used to carry out genome-wide association studies for IFC in Suhuai pig population. A total of 14 and 18 significant single nucleotide polymorphisms (SNPs) were identified by GEMMA and LDAK, respectively. The results of these two methods were highly consistent and all 14 significant SNPs in GEMMA were detected by LDAK. Seven of the 18 SNPs reached the genome-wide significance level (P < 9.85E−07) while 11 cases reached the suggestive significance level (P < 1.77E−05). These significant SNPs were mainly distributed on Sus scrofa chromosome (SSC) 5, 3, and 7. Moreover, one locus resides in a 2.27 Mb (71.37–73.64 Mb) region on SSC5 harbouring 13 significant SNPs associated with IFC, and the lead SNP (rs81302978) also locates in this region. Linkage disequilibrium (LD) analysis showed that there were four pairs of complete LD (r2 = 1) among these 13 SNPs, and the remaining 9 SNPs with incomplete LD (r2 ≠ 1) were selected for subsequent analyses of IFC. Association analyses showed that 7 out of 9 SNPs were significantly associated with IFC (P < 0.05) in 330 Suhuai pigs, and the other 2 SNPs tended to reach a significant association level with IFC (P < 0.1). The phenotypic variance explained (PVE) range of these 9 SNPs was 0.92–3.55%. Meanwhile, the lead SNP was also significantly associated (rs81302978) with IFC (P < 0.05) in 378 commercial hybrid pigs (Pietrain × Duroc) × (Landrace × Yorkshire) (PDLY), and the PVE was 1.38%. Besides, two lipid metabolism-relevant candidate genes, the leucine rich repeat kinase 2 (LRRK2) and PDZ domain containing ring finger 4 (PDZRN4) were identified in the 2.27 Mb region on SSC5. In conclusion, our results may provide a set of markers useful for genetic improvement of IFC in pigs and will advance the genome selection process of IFC on pig breeding programmes.  相似文献   

8.
It is well known that visceral adipose tissue (VAT) is associated with insulin resistance (IR). Considerable debate remains concerning the potential positive effect of thigh subcutaneous adipose tissue (TSAT). Our objective was to observe whether VAT and TSAT are opposite, synergistic or additive for both peripheral and hepatic IR. Fifty-two volunteers (21 male/31 female) between 30 and 75 years old were recruited from the general population. All subjects were sedentary overweight or obese (mean BMI 33.0 ± 3.4 kg/m(2)). Insulin sensitivity was determined by a 4-h hyperinsulinemic-euglycemic clamp with stable isotope tracer dilution. Total body fat and lean body mass were determined by dual X-ray absorptiometry. Abdominal and mid-thigh adiposity was determined by computed tomography. VAT was negatively associated with peripheral insulin sensitivity, while TSAT, in contrast, was positively associated with peripheral insulin sensitivity. Subjects with a combination of low VAT and high TSAT had the highest insulin sensitivity, subjects with a combination of high VAT and low TSAT were the most insulin resistant. These associations remained significant after adjusting for age and gender. These data confirm that visceral excess abdominal adiposity is associated with IR across a range of middle-age to older men and women, and further suggest that higher thigh subcutaneous fat is favorably associated with better insulin sensitivity. This strongly suggests that these two distinct fat distribution phenotypes should both be considered in IR as important determinants of cardiometabolic risk.  相似文献   

9.
Excessive abdominal fat might be associated with more severe metabolic disorders in Holstein cows. Our hypothesis was that there are genetic differences between cows with low and high abdominal fat deposition and a normal cover of subcutaneous adipose tissue. The objective of this study was to assess the genetic basis for variation in visceral adiposity in US Holstein cows. The study included adult Holstein cows sampled from a slaughterhouse (Green Bay, WI, USA) during September 2016. Only animals with a body condition score between 2.75 and 3.25 were considered. The extent of omental fat at the level of the insertion of the lesser omentum over the pylorus area was assessed. A group of 100 Holstein cows with an omental fold <5 mm in thickness and minimum fat deposition throughout the entire omentum, and the second group of 100 cows with an omental fold ⩾20 mm in thickness and with a marked fat deposition observed throughout the entire omentum were sampled. A small piece of muscle from the neck was collected from each cow into a sterile container for DNA extraction. Samples were submitted to a commercial laboratory for interrogation of genome-wide genomic variation using the Illumina BovineHD Beadchip. Genome-Wide association analysis was performed to test potential associations between fat deposition and genomic variation. A univariate mixed linear model analysis was performed using genome-wide efficient mixed model association to identify single nucleotide polymorphisms (SNPs) significantly associated with variation in a visceral fat deposition. The chip heritability was 0.686 and the estimated additive genetic and residual variance components were 0.427 and 0.074, respectively. In total, 11 SNPs defining four quantitative trait locus (QTL) regions were found to be significantly associated with visceral fat deposition (P<0.00001). Among them, two of the QTL were detected with four and five significantly associated SNPs, respectively; whereas, the QTLs detected on BTA12 and BTA19 were each detected with only one significantly associated SNP. No enriched gene ontology terms were found within the gene networks harboring these genes when supplied to DAVID using either theBos taurus or human gene ontology databases. We conclude that excessive omental fat in Holstein cows with similar body condition scores is not caused by a single Mendelian locus and that the trait appears to be at least moderately heritable; consequently, selection to reduce excessive omental fat is potentially possible, but would require the generation of predicted transmitting abilities from larger and random samples of Holstein cattle.  相似文献   

10.

Objective:

We and others have shown relationships between circulating levels of persistent organic pollutants (POPs) and different measures of obesity in both cross‐sectional and prospective studies. Since viscerally located fat seems to be the most harmful type, we investigated whether plasma POP levels were more closely related to visceral adipose tissue (VAT) than to subcutaneous adipose tissue (SAT).

Design and Methods:

Thousand hundred and sixteen subjects aged 70 years were investigated in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study; 23 POPs were analyzed using high‐resolution gas chromatography/high‐resolution mass spectrometry. Abdominal magnetic resonance imaging, measuring VAT and SAT, respectively, was performed in a representative subsample of 287 subjects.

Results:

The less chlorinated polychlorinated biphenyl (PCB) congeners (105 and 118), and the pesticides dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB), and trans‐nonachlordane (TNC) were positively related to both VAT and SAT, whereas the more highly chlorinated PCBs (153, 156, 157, 169, 170, 180, 194, 206, and 209) were inversely related to both VAT and SAT. PCB189 was related to the VAT/SAT ratio in an inverted U‐shaped manner (P = 0.0008).

Conclusions:

In conclusion, the results were in accordance with our previous studies using waist circumference and fat mass as obesity measure. However, the novel finding that PCB189 was related to the VAT/SAT ratio deserves further investigation since exposure to this PCB congener, which has previously been linked to diabetes development, might thereby play a role in the distribution of abdominal adipose tissue.  相似文献   

11.
Multiple Sclerosis (MS) is the most common progressive and disabling neurological condition affecting young adults in the world today. From a genetic point of view, MS is a complex disorder resulting from the combination of genetic and non-genetic factors. We aimed to identify previously unidentified loci conducting a new GWAS of Multiple Sclerosis (MS) in a sample of 296 MS cases and 801 controls from the Spanish population. Meta-analysis of our data in combination with previous GWAS was done. A total of 17 GWAS-significant SNPs, corresponding to three different loci were identified:HLA, IL2RA, and 5p13.1. All three have been previously reported as GWAS-significant. We confirmed our observation in 5p13.1 for rs9292777 using two additional independent Spanish samples to make a total of 4912 MS cases and 7498 controls (ORpooled = 0.84; 95%CI: 0.80-0.89; p = 1.36 × 10-9). This SNP differs from the one reported within this locus in a recent GWAS. Although it is unclear whether both signals are tapping the same genetic association, it seems clear that this locus plays an important role in the pathogenesis of MS.  相似文献   

12.
Objective : Visceral (VAT) and abdominal subcutaneous (SAT) adipose tissues contribute to obesity but may have different metabolic and atherosclerosis risk profiles. We sought to determine the associations of abdominal VAT and SAT mass with markers of cardiac and metabolic risk in a large, multiethnic, population‐based cohort of obese adults. Design and Methods : Among obese participants in the Dallas Heart Study, we examined the cross‐sectional associations of abdominal VAT and SAT mass, assessed by magnetic resonance imaging (MRI) and indexed to body surface area (BSA), with circulating biomarkers of insulin resistance, dyslipidemia, and inflammation (n = 942); and with aortic plaque and liver fat by MRI and coronary calcium by computed tomography (n = 1200). Associations of VAT/BSA and SAT/BSA were examined after adjustment for age, sex, race, menopause, and body mass index. Results : In multivariable models, VAT significantly associated with the homeostasis model assessment of insulin resistance (HOMA‐IR), lower adiponectin, smaller LDL and HDL particle size, larger VLDL size, and increased LDL and VLDL particle number (p < 0.001 for each). VAT also associated with prevalent diabetes, metabolic syndrome, hepatic steatosis, and aortic plaque (p < 0.001 for each). VAT independently associated with C‐reactive protein but not with any other inflammatory biomarkers tested. In contrast, SAT associated with leptin and inflammatory biomarkers, but not with dyslipidemia or atherosclerosis. Associations between SAT and HOMA‐IR were significant in univariable analyses but attenuated after multivariable adjustment. Conclusion : VAT associated with an adverse metabolic, dyslipidemic, and atherogenic obesity phenotype. In contrast, SAT demonstrated a more benign phenotype, characterized by modest associations with inflammatory biomarkers and leptin, but no independent association with dyslipidemia, insulin resistance, or atherosclerosis in obese individuals. These findings suggest that abdominal fat distribution defines distinct obesity sub‐phenotypes with heterogeneous metabolic and atherosclerosis risk.  相似文献   

13.
Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41 ± 11 yrs of age) presenting a wide range of BMI (21.4 to 48.6 kg/m(2)) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p 相似文献   

14.
Intra-abdominal fat is associated with insulin resistance and cardiovascular risk. Levels of serum retinol-binding protein (RBP4), secreted by fat and liver cells, are increased in obesity and type 2 diabetes (T2D). Here we report that, in 196 subjects, RBP4 is preferentially expressed in visceral (Vis) versus subcutaneous (SC) fat. Vis fat RBP4 mRNA was increased approximately 60-fold and 12-fold in Vis and SC obese subjects respectively versus lean subjects, and approximately 2-fold with impaired glucose tolerance/T2D subjects versus normoglycemic subjects. In obese subjects, serum RBP4 was increased 2- to 3-fold, and serum transthyretin, which stabilizes RBP4 in the circulation, was increased 35%. Serum RBP4 correlated positively with adipose RBP4 mRNA and intra-abdominal fat mass and inversely with insulin sensitivity, independently of age, gender, and body mass index. RBP4 mRNA correlated inversely with GLUT4 mRNA in Vis fat and positively with adipocyte size in both depots. RBP4 levels are therefore linked to Vis adiposity, and Vis fat may be a major source of RBP4 in insulin-resistant states.  相似文献   

15.
Meat-quality traits play an essential role in meat poultry production. To determine the genetic mechanisms of meat quality in Pekin ducks, we performed a large-scale GWAS to identify quantitative trait loci affecting meat quality in Pekin ducks. We measured 10 traits in 542 Pekin ducks and genotyped each duck using genotyping-by-sequencing. The genetic parameters (genomic heritability, genetic correlation) for 10 meat-quality related traits were evaluated. Based on the large genotype–phenotype dataset, we performed GWASs for all of these traits. A total of 33 significant QTL (P < 3.03 × 10−5) across 13 chromosomes were identified by loci-based analysis. Some newly identified candidate genes were discovered for fat-deposition and meat-quality traits, including PAG1 for body weight and eviscerated weight, INTU and NUP35 for abdominal fat weight and ratio, NUP3 and ARHGDIB for skin fat weight and ratio, GOLGA5 for breast muscle toughness and breast tenderness, and CTDSPL and PKP1 for breast muscle thickness. The current study is the first systematic report regarding duck meat quality.  相似文献   

16.
Beta-2 microglobulin (B2M) is a component of the major histocompatibility complex (MHC) class I molecule and has been studied as a biomarker of kidney function, cardiovascular diseases and mortality. Little is known about the genes influencing its levels directly or through glomerular filtration rate (GFR). We conducted a genome-wide association study of plasma B2M levels in 6738 European Americans from the Atherosclerosis Risk in Communities study to identify novel loci for B2M and assessed its association with known estimated GFR (eGFR) loci. We identified 2 genome-wide significant loci. One was in the human leukocyte antigen (HLA) region on chromosome 6 (lowest p value = 1.8 × 10?23 for rs9264638). At this locus, 6 index SNPs accounted for 3.2 % of log(B2M) variance, and their association with B2M could largely be explained by imputed classical alleles of the MHC class I genes: HLA-A, HLA-B, or HLA-C. The index SNPs at this locus were not associated with eGFR based on serum creatinine (eGFRcr). The other locus of B2M was on chromosome 12 (rs3184504 at SH2B3, beta = 0.02, p value = 3.1 × 10?8), which was previously implicated as an eGFR locus. In conclusion, although B2M is known to be a component of MHC class I molecule, the association between HLA class I alleles and plasma B2M levels in a community-based population is novel. The identification of the two novel loci for B2M extends our understanding of its metabolism and informs its use as a kidney filtration biomarker.  相似文献   

17.
18.
Whereas truncal (central) adiposity is strongly associated with the insulin resistant metabolic syndrome, it is uncertain whether this is accounted for principally by visceral adiposity (VAT). Several recent studies find as strong or stronger association between subcutaneous abdominal adiposity (SAT) and insulin resistance. To reexamine the issue of truncal adipose tissue depots, we performed cross-sectional abdominal computed tomography, and we undertook the novel approach of partitioning SAT into the plane superficial to the fascia within subcutaneous adipose tissue (superficial SAT) and that below this fascia (deep SAT), as well as measurement of VAT. Among 47 lean and obese glucose-tolerant men and women, insulin-stimulated glucose utilization, measured by euglycemic clamp, was strongly correlated with both VAT and deep SAT (r = -0.61 and -0.64, respectively; both P < 0.001), but not with superficial SAT (r = -0.29, not significant). Also, VAT and deep SAT followed a highly congruent pattern of associations with glucose and insulin area under the curve (75-g oral glucose tolerance test), mean arterial blood pressure, apoprotein-B, high-density lipoprotein cholesterol, and triglyceride. Superficial SAT had markedly weaker association with all these parameters and instead followed the pattern observed for thigh subcutaneous adiposity. We conclude that there are two functionally distinct compartments of adipose tissue within abdominal subcutaneous fat and that the deep SAT has a strong relation to insulin resistance.  相似文献   

19.
Differential gene expression between visceral and subcutaneous fat depots.   总被引:5,自引:0,他引:5  
Abdominal obesity has been linked to the development of insulin resistance and Type 2 diabetes mellitus (DM2). By surgical removal of visceral fat (VF) in a variety of rodent models, we prevented insulin resistance and glucose intolerance, establishing a cause-effect relationship between VF and the metabolic syndrome. To characterize the biological differences between visceral and peripheral fat depots, we obtained perirenal visceral (VF) and subcutaneous (SC) fat from 5 young rats. We extracted mRNA from the fat tissue and performed gene array hybridization using Affymetrix technology with a platform containing 9 000 genes. Out of the 1 660 genes that were expressed in fat tissue, 297 (17.9 %) genes show a two-fold or higher difference in their expression between the two tissues. We present the 20 genes whose expression is higher in VF fat (by 3 - 7 fold) and the 20 genes whose expression is higher in SC fat (by 3 - 150 fold), many of which are predominantly involved in glucose homeostasis, insulin action, and lipid metabolism. We confirmed the findings of gene array expression and quantified the changes in expression in VF of genes involved in insulin resistance (PPARgamma leptin) and its syndrome (angiotensinogen and plasminogen activating inhibitor-1, PAI-1) by real-time PCR (qRT-PCR) technology. Finally, we demonstrated increased expression of resistin in VF by around 12-fold and adiponectin by around 4-fold, peptides that were not part of the gene expression platform. These results indicate that visceral fat and subcutaneous fat are biologically distinct.  相似文献   

20.
Adipose tissue represents a complex tissue both in terms of its cellular composition, as it includes mature adipocytes and the various cell types comprising the stromal‐vascular fraction (SVF), and in relation to the distinct biochemical, morphological and functional characteristics according to its anatomical location. Herein, we have characterized the proteomic profile of both mature adipocyte and SVF from human visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) fat depots in order to unveil differences in the expression of proteins which may underlie the distinct association of VAT and SAT to several pathologies. Specifically, 24 proteins were observed to be differentially expressed between SAT SVF versus VAT SVF from lean individuals. Immunoblotting and RT‐PCR analysis confirmed the differential regulation of the nuclear envelope proteins lamin A/C, the membrane‐cytoskeletal linker ezrin and the enzyme involved in retinoic acid production, aldehyde dehydrogenase 1A2, in the two fat depots. In sum, the observation that proteins with important cell functions are differentially distributed between VAT and SAT and their characterization as components of SVF or mature adipocytes pave the way for future research on the molecular basis underlying diverse adipose tissue‐related pathologies such as metabolic syndrome or lipodystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号