首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Refined structure of southern bean mosaic virus at 2.9 A resolution   总被引:2,自引:0,他引:2  
The T = 3 capsid of southern bean mosaic virus is analyzed in detail. The beta-sheets of the beta-barrel folding motif that form the subunits show a high degree of twist, generated by several beta-bulges. Only 34 water molecules were identified in association with the three quasi-equivalent subunits, most of them on the external viral surface. Subunit contacts related by quasi-3-fold axes are similar, are dominated by polar interactions and have almost identical calcium binding sites. There is no metal ion on the quasi-3-fold axis, as previously reported. Subunits related by quasi-2-fold and icosahedral 2-fold axes have different contacts but nevertheless display almost identical interactions between the antiparallel helices alpha A. A dipole-dipole type interaction between these helices may produce an energetically stable hinge that allows two types of dimers in a T = 3 assembly. The temperature factor distribution, the hydrogen-bonding pattern, and the contacts across the icosahedral 2-fold axes suggest that one of the dimer types is present in the intact virion and probably also in solution; the other is produced only during capsid assembly. Interactions along the 5-fold axes are mainly polar and possibly form an ion channel. The beta-sheet structures of the three subunits can be superimposed with considerable precision. Significant relative distortions between quasi-equivalent subunits occur mainly in helices and loops. The two dimeric forms and the subunit distortions are the consequence of the non-equivalent subunit environments in the capsid.  相似文献   

2.
The structure of the Leviviridae bacteriophage φCb5 virus-like particle has been determined at 2.9 Å resolution and the structure of the native bacteriophage φCb5 at 3.6 Å. The structures of the coat protein shell appear to be identical, while differences are found in the organization of the density corresponding to the RNA. The capsid is built of coat protein dimers and in shape corresponds to a truncated icosahedron with T = 3 quasi-symmetry. The capsid is stabilized by four calcium ions per icosahedral asymmetric unit. One is located at the symmetry axis relating the quasi-3-fold related subunits and is part of an elaborate network of hydrogen bonds stabilizing the interface. The remaining calcium ions stabilize the contacts within the coat protein dimer. The stability of the φCb5 particles decreases when calcium ions are chelated with EDTA. In contrast to other leviviruses, φCb5 particles are destabilized in solution with elevated salt concentration. The model of the φCb5 capsid provides an explanation of the salt-induced destabilization of φCb5, since hydrogen bonds, salt bridges and calcium ions have important roles in the intersubunit interactions.Electron density of three putative RNA nucleotides per icosahedral asymmetric unit has been observed in the φCb5 structure. The nucleotides mediate contacts between the two subunits forming a dimer and a third subunit in another dimer. We suggest a model for φCb5 capsid assembly in which addition of coat protein dimers to the forming capsid is facilitated by interaction with the RNA genome. The φCb5 structure is the first example in the levivirus family that provides insight into the mechanism by which the genome-coat protein interaction may accelerate the capsid assembly and increase capsid stability.  相似文献   

3.
The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.  相似文献   

4.
S. Marston  R.T. Tregear 《BBA》1974,347(2):311-318
A new method has been used to measure calcium binding in intact glycerol extracted muscle fibres; results with rabbit psoas muscle are in agreement with previous work. Lethocerus cordofanus flight muscle bound up to 140 μM calcium at high affinity in the presence of ATP; removal of the ATP increased the maximum amount bound to 210 μM and the affinity approx. 3-fold. Calcium binding in the presence of ATP correlated with calcium activation of the ATPase but no changes in calcium binding occurred when the muscle was further activated by stretching.  相似文献   

5.
Adeno-associated virus (AAV) capsid assembly requires expression of the assembly-activating protein (AAP) together with capsid proteins VP1, VP2, and VP3. AAP is encoded by an alternative open reading frame of the cap gene. Sequence analysis and site-directed mutagenesis revealed that AAP contains two hydrophobic domains in the N-terminal part of the molecule that are essential for its assembly-promoting activity. Mutation of these sequences reduced the interaction of AAP with the capsid proteins. Deletions and a point mutation in the capsid protein C terminus also abolished capsid assembly and strongly reduced the interaction with AAP. Interpretation of these observations on a structural basis suggests an interaction of AAP with the VP C terminus, which forms the capsid protein interface at the 2-fold symmetry axis. This interpretation is supported by a decrease in the interaction of monoclonal antibody B1 with VP3 under nondenaturing conditions in the presence of AAP, indicative of steric hindrance of B1 binding to its C-terminal epitope by AAP. In addition, AAP forms high-molecular-weight oligomers and changes the conformation of nonassembled VP molecules as detected by conformation-sensitive monoclonal antibodies A20 and C37. Combined, these observations suggest a possible scaffolding activity of AAP in the AAV capsid assembly reaction.  相似文献   

6.
Junonia coenia densovirus (JcDNV) belongs to the densovirus genus of the Parvoviridae family and infects the larvae of the Common Buckeye butterfly. Its capsid is icosahedral and consists of viral proteins VP1 (88 kDa), VP2 (58 kDa), VP3 (52 kDa) and VP4 (47 kDa). Each viral protein has the same C terminus but differs in the length of its N-terminal extension. Virus-like-particles (VLPs) assemble spontaneously when the individual viral proteins are expressed by a recombinant baculovirus. We present here the structure of native JcDNV at 8.7A resolution and of the two VLPs formed essentially from VP2 and VP4 at 17 A resolution, as determined by cryo-electron microscopy. The capsid displays a remarkably smooth surface, with only two very small spikes that define a pentagonal plateau on the 5-fold axes. JcDNV is very closely related to Galleria mellonella densovirus (GmDNV), whose structure is known (94% sequence identity with VP4 and 96% similarity). We compare these structures in order to locate the structural changes and mutations that may be involved in the species shift of these densoviruses. A single mutation at the tip of one of the two small spikes is a strong candidate as a species shift determinant. Difference imaging reveals that the 21 disordered amino acid residues at the N terminus of the capsid protein VP4 are located inside the capsid at the 5-fold axis, but the additional 94 amino acid residue extension of VP2 is not visible, suggesting that it is highly disordered. There is strong evidence of DNA ordering associated with the 3-fold axes of the capsid.  相似文献   

7.
The human rhinovirus 14 (HRV14) protomer, with or without the antiviral compound WIN 52084s, was simulated using molecular dynamics and rotational symmetry boundary conditions to model the effect of the entire icosahedral capsid. The protein asymmetrical unit, comprising four capsid proteins (VP1, VP2, VP3, and VP4) and two calcium ions, was solvated both on the exterior and the interior to fill the inside of the capsid. The stability of the simulations of this large system (~800 residues and 6,650 water molecules) is comparable to more conventional globular protein simulations. The influence of the antiviral compound on compressibility and positional fluctuations is reported. The compressibility, estimated from the density fluctuations in the region of the binding pocket, was found to be greater with WIN 52084s bound than without the drug, substantiating previous computations on reduced viral systems. An increase in compressibility correlates with an entropically more favorable system. In contrast to the increase in density fluctuations and compressibility, the positional fluctuations decreased dramatically for the external loops of VP1 and the N-terminus of VP3 when WIN 52084s is bound. Most of these VP1 and VP3 loops are found near the fivefold axis, a region whose mobility was not considered in reduced systems, but can be observed with this simulation of the full viral protomer. Altered loop flexibility is consistent with changes in proteolytic sensitivity observed experimentally. Moreover, decreased flexibility in these intraprotomeric loops is noteworthy since the externalization of VP4, part of VP1, and RNA during the uncoating process is thought to involve areas near the fivefold axis. Both the decrease in positional fluctuations at the fivefold axis and the increase in compressibility near the WIN pocket are discussed in relationship to the antiviral activity of stabilizing the virus against uncoating.  相似文献   

8.
Electrostatic properties of cowpea chlorotic mottle virus (CCMV) and cucumber mosaic virus (CMV) were investigated using numerical solutions to the Poisson-Boltzmann equation. Experimentally, it has been shown that CCMV particles swell in the absence of divalent cations when the pH is raised from 5 to 7. CMV, although structurally homologous, does not undergo this transition. An analysis of the calculated electrostatic potential confirms that a strong electrostatic repulsion at the calcium-binding sites in the CCMV capsid is most likely the driving force for the capsid swelling process during the release of calcium. The binding interaction between the encapsulated genome material (RNA) inside of the capsid and the inner capsid shell is weakened during the swelling transition. This probably aids in the RNA release process, but it is unlikely that the RNA is released through capsid openings due to unfavorable electrostatic interaction between the RNA and capsid inner shell residues at these openings. Calculations of the calcium binding energies show that Ca(2+) can bind both to the native and swollen forms of the CCMV virion. Favorable binding to the swollen form suggests that Ca(2+) ions can induce the capsid contraction and stabilize the native form.  相似文献   

9.
Hewat EA  Blaas D 《Journal of virology》2004,78(6):2935-2942
Release of the human rhinovirus (HRV) genome into the cytoplasm of the cell involves a concerted structural modification of the viral capsid. The intracellular adhesion molecule 1 (ICAM-1) cellular receptor of the major-group HRVs and the low-density lipoprotein (LDL) receptor of the minor-group HRVs have different nonoverlapping binding sites. While ICAM-1 binding catalyzes uncoating, LDL receptor binding does not. Uncoating of minor-group HRVs is initiated by the low pH of late endosomes. We have studied the conformational changes concomitant with uncoating in the major-group HRV14 and compared them with previous results for the minor-group HRV2. The structure of empty HRV14 was determined by cryoelectron microscopy, and the atomic structure of native HRV14 was used to examine the conformational changes of the capsid and its constituent viral proteins. For both HRV2 and HRV14, the transformation from full to empty capsid involves an overall 4% expansion and an iris type of movement of viral protein VP1 to open up a 10-A-diameter channel on the fivefold axis to allow exit of the RNA genome. The beta-cylinders formed by the N termini of the VP3 molecules inside the capsid on the fivefold axis all open up in HRV2, but we propose that only one opens up in HRV14. The release of VP4 is less efficient in HRV14 than in HRV2, and the N termini of VP1 may exit at different points. The N-terminal loop of VP2 is modified in both viruses, probably to detach the RNA, but it bends only inwards in HRV2.  相似文献   

10.
Delivery of the rhinovirus genome into the cytoplasm involves a cooperative structural modification of the viral capsid. We have studied this phenomenon for human rhinovirus serotype 2 (HRV2). The structure of the empty capsid has been determined to a resolution of better than 15 A by cryo-electron microscopy, and the atomic structure of native HRV2 was used to examine conformational changes of the capsid. The two proteins around the 5-fold axes make an iris type of movement to open a 10 A diameter channel which allows the RNA genome to exit, and the N terminus of VP1 exits the capsid at the pseudo 3-fold axis. A remarkable modification occurs at the 2-fold axes where the N-terminal loop of VP2 bends inward, probably to detach the RNA.  相似文献   

11.
S A Khan  G A Griess    P Serwer 《Biophysical journal》1992,63(5):1286-1292
To detect changes in capsid structure that occur when a preassembled bacteriophage T7 capsid both packages and cleaves to mature-size longer (concatameric) DNA, the kinetics and thermodynamics are determined here for the binding of the protein-specific probe, 1,1'-bi(4-anilino)naphthalene-5,5'-di-sulfonic acid (bis-ANS), to bacteriophage T7, a T7 DNA deletion (8.4%) mutant, and a DNA-free T7 capsid (metrizamide low density capsid II) known to be a DNA packaging intermediate that has a permeability barrier not present in a related capsid (metrizamide high density capsid II). Initially, some binding to either bacteriophage or metrizamide low density capsid II occurs too rapidly to quantify (phase 1, duration < 10 s). Subsequent binding (phase 2) occurs with first-order kinetics. Only the phase 1 binding occurs for metrizamide high density capsid II. These observations, together with both the kinetics of the quenching by ethidium of bound bis-ANS fluorescence and the nature of bis-ANS-induced protein alterations, are explained by the hypothesis that the phase 2 binding occurs at internal sites. The number of these internal sites increases as the density of the packaged DNA decreases. The accompanying change in structure is potentially the signal for initiating cleavage of a concatemer. Evidence for the following was also obtained: (a) a previously undetected packaging-associated change in the conformation of the major protein of the outer capsid shell and (b) partitioning by a permeability barrier of the interior of the T7 capsid.  相似文献   

12.
The simian virus 40 capsid is composed of 72 pentamers of VP1 protein. Although the capsid is known to dissociate to pentamers in vitro following simultaneous treatment with reducing and chelating agents, the functional roles of disulfide linkage and calcium ion-mediated interactions are not clear. To elucidate the roles of these interactions, we introduced amino acid substitutions in VP1 at cysteine residues and at residues involved in calcium binding. We expressed the mutant proteins in a baculovirus system and analyzed both their assembly into virus-like particles (VLPs) in insect cells and the disassembly of those VLPs in vitro. We found that disulfide linkages at both Cys-9 and Cys-104 conferred resistance to proteinase K digestion on VLPs, although neither linkage was essential for the formation of VLPs in insect cells. In particular, reduction of the disulfide linkage at Cys-9 was found to be critical for VLP dissociation to VP1 pentamers in the absence of calcium ions, indicating that disulfide linkage at Cys-9 prevents VLP dissociation, probably by increasing the stability of calcium ion binding. We found that amino acid substitutions at carboxy-terminal calcium ion binding sites (Glu-329, Glu-330, and Asp-345) resulted in the frequent formation of unusual tubular particles as well as VLPs in insect cells, indicating that these residues affect the accuracy of capsid assembly. In addition, unexpectedly, amino acid substitutions at any of the calcium ion binding sites tested, especially at Glu-157, resulted in increased stability of VLPs in the absence of calcium ions in vitro. These results suggest that appropriate affinities of calcium ion binding are responsible for both assembly and disassembly of the capsid.  相似文献   

13.
The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.  相似文献   

14.
The structural protein VP6 of rotavirus, an important pathogen responsible for severe gastroenteritis in children, forms the middle layer in the triple-layered viral capsid. Here we present the crystal structure of VP6 determined to 2 A resolution and describe its interactions with other capsid proteins by fitting the atomic model into electron cryomicroscopic reconstructions of viral particles. VP6, which forms a tight trimer, has two distinct domains: a distal beta-barrel domain and a proximal alpha-helical domain, which interact with the outer and inner layer of the virion, respectively. The overall fold is similar to that of protein VP7 from bluetongue virus, with the subunits wrapping about a central 3-fold axis. A distinguishing feature of the VP6 trimer is a central Zn(2+) ion located on the 3-fold molecular axis. The crude atomic model of the middle layer derived from the fit shows that quasi-equivalence is only partially obeyed by VP6 in the T = 13 middle layer and suggests a model for the assembly of the 260 VP6 trimers onto the T = 1 viral inner layer.  相似文献   

15.
A characteristic of virus assembly is the use of symmetry to construct a complex capsid from a limited number of different proteins. Many spherical viruses display not only icosahedral symmetry, but also local symmetries, which further increase the redundancy of their structural proteins. We have developed a computational procedure for evaluating the quality of these local symmetries that allows us to probe the extent of local structural variations among subunits. This type of analysis can also provide orientation parameters for carrying out non-icosahedral averaging of quasi-equivalent subunits during three-dimensional structural determination. We have used this procedure to analyze the three types of hexon (P, E and C) in the 8.5 A resolution map of the herpes simplex virus type 1 (HSV-1) B capsid, determined by electron cryomicroscopy. The comparison of the three hexons showed that they have good overall 6-fold symmetry and are almost identical throughout most of their lengths. The largest difference among the three lies near the inner surface in a region of about 34 A in thickness. In this region, the P hexon displays slightly lower 6-fold symmetry than the C and E hexons. More detailed analysis showed that parts of two of the P hexon subunits are displaced counterclockwise with respect to their expected 6-fold positions. The most highly displaced subunit interacts with a subunit from an adjacent P hexon (P'). Using the local 6-fold symmetry axis of the P hexon as a rotation axis, we examined the geometrical relationships among the local symmetry axes of the surrounding capsomeres. Deviations from exact symmetry are also found among these local symmetry axes. The relevance of these findings to the process of capsid assembly is considered.  相似文献   

16.
Parvovirus capsids are assembled from multiple forms of a single protein and are quite stable structurally. However, in order to infect cells, conformational plasticity of the capsid is required and this likely involves the exposure of structures that are buried within the structural models. The presence of functional asymmetry in the otherwise icosahedral capsid has also been proposed. Here we examined the protein composition of canine parvovirus capsids and evaluated their structural variation and permeability by protease sensitivity, spectrofluorometry, and negative staining electron microscopy. Additional protein forms identified included an apparent smaller variant of the virus protein 1 (VP1) and a small proportion of a cleaved form of VP2. Only a small percentage of the proteins in intact capsids were cleaved by any of the proteases tested. The capsid susceptibility to proteolysis varied with temperature but new cleavages were not revealed. No global change in the capsid structure was observed by analysis of Trp fluorescence when capsids were heated between 40 degrees C and 60 degrees C. However, increased polarity of empty capsids was indicated by bis-ANS binding, something not seen for DNA-containing capsids. Removal of calcium with EGTA or exposure to pHs as low as 5.0 had little effect on the structure, but at pH 4.0 changes were revealed by proteinase K digestion. Exposure of viral DNA to the external environment started above 50 degrees C. Some negative stains showed increased permeability of empty capsids at higher temperatures, but no effects were seen after EGTA treatment.  相似文献   

17.
P D Wagner  D B Stone 《Biochemistry》1983,22(6):1334-1342
Sedimentation in a preparative ultracentrifuge was used to determine the affinity of heavy meromyosin, HMM, for regulated actin, F-actin plus troponin-tropomyosin, in the presence of MgATP at pH 7.0, 20 degrees C, and mu = 18 mM. HMM was prepared from vertebrate striated muscle myosin by a mild chymotryptic digestion. This HMM contained 85-90% intact 19 000-dalton light chains, LC2. In the presence of calcium, 90% of the HMM bound to regulated actin with an association constant of (2-4) X 10(4) M-1. In the absence of calcium, while one-third of the HMM bound with an affinity similar to that observed in the presence of calcium, the rest bound much more weakly. It was not possible to accurately determine the association constant for this weakly binding HMM, but a 20-fold reduction in affinity is consistent with the binding data. The binding of single-headed heavy meromyosin to regulated actin was similarly sensitive to the calcium concentration. Since removal of calcium inhibits the regulated actin-activated ATPase of HMM greater than 20-fold, troponin-tropomyosin must be capable of inhibiting both the binding of HMM to regulated actin and a step which occurs after binding but prior to product release. Removal of LC2 increased the fraction of HMM with calcium-insensitive binding, and adding LC2 back to this depleted HMM restored most of the calcium sensitivity. Chymotryptic cleavage of LC2 to a 17 000-dalton fragment destroyed the calcium-sensitive binding of HMM to regulated actin. Phosphorylation of LC2, however, had no detectable effect on this binding. Thus, the calcium-sensitive binding of HMM to regulated actin requires that both the head-tail junction and the N-terminal part of LC2 be intact. Binding studies with cross-linked regulated actins and kinetic measurements of the rates of change in turbidity demonstrate that this calcium sensitivity is due to calcium binding to troponin and not to LC2.  相似文献   

18.
Although quasiequivalence is not needed to explain the assembly of the T = 1 canine parvovirus capsid, the interactions of the 60-fold symmetrical capsid protein with less symmetrical viral components illustrate the elements of plasticity and promiscuity of interactions that are embodied in quasiequivalence. The current analysis is based on interactions of fivefold related proteins with a single peptide running along the fivefold axis, and on interactions of the capsid protein with various fragments of the genomic DNA, each having a different sequence and exposing the protein to interactions with different types of nucleotide base.  相似文献   

19.
Bacteriophage T4 capsid is a prolate icosahedron composed of the major capsid protein gp23*, the vertex protein gp24*, and the portal protein gp20. Assembled on its surface are 810 molecules of the non-essential small outer capsid protein, Soc (10 kDa), and 155 molecules of the highly antigenic outer capsid protein, Hoc (39 kDa). In this study Soc, a "triplex" protein that stabilizes T4 capsid, is targeted for molecular engineering of T4 particle surface. Using a defined in vitro assembly system, anthrax toxins, protective antigen, lethal factor and their domains, fused to Soc were efficiently displayed on the capsid. Both the N and C termini of the 80 amino acid Soc polypeptide can be simultaneously used to display antigens. Proteins as large as 93 kDa can be stably anchored on the capsid through Soc-capsid interactions. Using both Soc and Hoc, up to 1662 anthrax toxin molecules are assembled on the phage T4 capsid under controlled conditions. We infer from the binding data that a relatively high affinity capsid binding site is located in the middle of the rod-shaped Soc, with the N and C termini facing the 2- and 3-fold symmetry axes of the capsid, respectively. Soc subunits interact at these interfaces, gluing the adjacent capsid protein hexamers and generating a cage-like outer scaffold. Antigen fusion does interfere with the inter-subunit interactions, but these interactions are not essential for capsid binding and antigen display. These features make the T4-Soc platform the most robust phage display system reported to date. The study offers insights into the architectural design of bacteriophage T4 virion, one of the most stable viruses known, and how its capsid surface can be engineered for novel applications in basic molecular biology and biotechnology.  相似文献   

20.
Mutations were made at 64 positions on the external surface of the adeno-associated virus type 2 (AAV-2) capsid in regions expected to bind antibodies. The 127 mutations included 57 single alanine substitutions, 41 single nonalanine substitutions, 27 multiple mutations, and 2 insertions. Mutants were assayed for capsid synthesis, heparin binding, in vitro transduction, and binding and neutralization by murine monoclonal and human polyclonal antibodies. All mutants made capsid proteins within a level about 20-fold of that made by the wild type. All but seven mutants bound heparin as well as the wild type. Forty-two mutants transduced human cells at least as well as the wild type, and 10 mutants increased transducing activity up to ninefold more than the wild type. Eighteen adjacent alanine substitutions diminished transduction from 10- to 100,000-fold but had no effect on heparin binding and define an area (dead zone) required for transduction that is distinct from the previously characterized heparin receptor binding site. Mutations that reduced binding and neutralization by a murine monoclonal antibody (A20) were localized, while mutations that reduced neutralization by individual human sera or by pooled human, intravenous immunoglobulin G (IVIG) were dispersed over a larger area. Mutations that reduced binding by A20 also reduced neutralization. However, a mutation that reduced the binding of IVIG by 90% did not reduce neutralization, and mutations that reduced neutralization by IVIG did not reduce its binding. Combinations of mutations did not significantly increase transduction or resistance to neutralization by IVIG. These mutations define areas on the surface of the AAV-2 capsid that are important determinants of transduction and antibody neutralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号