首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manganese (Mn) is an essential metal nutrient for plants. Recently, some of the genes responsible for transition metal transport in plants have been identified; however, only relatively recently have Mn2+ transport pathways begun to be identified at the molecular level. These include transporters responsible for Mn accumulation into the cell and release from various organelles, and for active sequestration into endomembrane compartments, particularly the vacuole and the endoplasmic reticulum. Several transporter gene families have been implicated in Mn2+ transport, including cation/H+ antiporters, natural resistance-associated macrophage protein (Nramp) transporters, zinc-regulated transporter/iron-regulated transporter (ZRT/IRT1)-related protein (ZIP) transporters, the cation diffusion facilitator (CDF) transporter family, and P-type ATPases. The identification of mutants with altered Mn phenotypes can allow the identification of novel components in Mn homeostasis. In addition, the characterization of Mn hyperaccumulator plants can increase our understanding of how plants can adapt to excess Mn, and ultimately allow the identification of genes that confer this stress tolerance. The identification of genes responsible for Mn2+ transport has substantially improved our understanding of plant Mn homeostasis.  相似文献   

2.
3.
Recent studies indicate that the deposition of β-amyloid peptide (Aβ) is related to the pathogenesis of Alzheimer disease (AD); however, the underlying mechanism is still not clear. The abnormal interactions of Aβ with metal ions such as iron are implicated in the process of Aβ deposition and oxidative stress in AD brains. In this study, we observed that Aβ increased the levels of iron content and oxidative stress in SH-SY5Y cells overexpressing the Swedish mutant form of human β-amyloid precursor protein (APPsw) and in Caenorhabditis elegans Aβ-expressing strain CL2006. Intracellular iron and calcium levels and reactive oxygen species and nitric oxide generation significantly increased in APPsw cells compared to control cells. The activity of superoxide dismutase and the antioxidant levels of APPsw cells were significantly lower than those of control cells. Moreover, iron treatment decreased cell viability and mitochondrial membrane potential and aggravated oxidative stress damage as well as the release of Aβ1-40 from the APPsw cells. The iron homeostasis disruption in APPsw cells is very probably associated with elevated expression of the iron transporter divalent metal transporter 1, but not transferrin receptor. Furthermore, the C. elegans with Aβ-expression had increased iron accumulation. In aggregate, these results demonstrate that Aβ accumulation in neuronal cells correlated with neuronal iron homeostasis disruption and probably contributed to the pathogenesis of AD.  相似文献   

4.
Aluminium (Al) is highly abundant in the environment and can elicit a variety of toxic responses in biological systems. Here we characterize the effects of Al on Caenorhabditis elegans by identifying phenotypic abnormalities and disruption in whole-body metal homeostasis (metallostasis) following Al exposure in food. Widespread changes to the elemental content of adult nematodes were observed when chronically exposed to Al from the first larval stage (L1). Specifically, we saw increased barium, chromium, copper and iron content, and a reduction in calcium levels. Lifespan was decreased in worms exposed to low levels of Al, but unexpectedly increased when the Al concentration reached higher levels (4.8 mM). This bi-phasic phenotype was only observed when Al exposure occurred during development, as lifespan was unaffected by Al exposure during adulthood. Lower levels of Al slowed C. elegans developmental progression, and reduced hermaphrodite self-fertility and adult body size. Significant developmental delay was observed even when Al exposure was restricted to embryogenesis. Similar changes in Al have been noted in association with Al toxicity in humans and other mammals, suggesting that C. elegans may be of use as a model for understanding the mechanisms of Al toxicity in mammalian systems.  相似文献   

5.
Tseng YY  Yu CW  Liao VH 《The FEBS journal》2007,274(10):2566-2572
Because arsenic is the most prevalent environmental toxin, it is imperative that we understand the mechanisms of metalloid detoxification. In prokaryotes, arsenic detoxification is accomplished by chromosomal and plasmid-borne operon-encoded efflux systems. Bacterial ArsA ATPase is the catalytic component of an oxyanion pump that is responsible for resistance to arsenite (As(III)) and antimonite (Sb(III)). Here, we describe the identification of a Caenorhabditis elegans homolog (asna-1) that encodes the ATPase component of the Escherichia coli As(III) and Sb(III) transporter. We evaluated the responses of wild-type and asna-1-mutant nematodes to various metal ions and found that asna-1-mutant nematodes are more sensitive to As(III) and Sb(III) toxicity than are wild-type animals. These results provide evidence that ASNA-1 is required for C. elegans' defense against As(III) and Sb(III) toxicity. A purified maltose-binding protein (MBP)-ASNA-1 fusion protein was biochemically characterized, and its properties compared with those of ArsAs. The ATPase activity of the ASNA-1 protein was dependent on the presence of As(III) or Sb(III). As(III) stimulated ATPase activity by 2 +/- 0.2-fold, whereas Sb(III) stimulated it by 4.6 +/- 0.15-fold. The results indicate that As(III)- and Sb(III)-stimulated ArsA ATPase activities are not restricted to bacteria, but extend to animals, by demonstrating that the asna-1 gene from the nematode, C. elegans, encodes a functional ArsA ATPase whose activity is stimulated by As(III) and Sb(III) and which is critical for As(III) and Sb(III) tolerance in the intact organism.  相似文献   

6.
Metal homeostasis is critical for the survival of living organisms, and metal transporters play central roles in maintaining metal homeostasis in the living cells. We have investigated the function of a metal transporter of the NRAMP family, AtNRAMP3, in Arabidopsis thaliana. A previous study showed that AtNRAMP3 expression is upregulated by iron (Fe) starvation and that AtNRAMP3 protein can transport Fe. In the present study, we used AtNRAMP3 promoter beta-glucoronidase (GUS) fusions to show that AtNRAMP3 is expressed in the vascular bundles of roots, stems, and leaves under Fe-sufficient conditions. This suggests a function in long-distance metal transport within the plant. Under Fe-starvation conditions, the GUS activity driven by the AtNRAMP3 promoter is upregulated without any change in the expression pattern. We analyze the impact of AtNRAMP3 disruption and overexpression on metal accumulation in plants. Under Fe-sufficient conditions, AtNRAMP3 overexpression or disruption does not lead to any change in the plant metal content. Upon Fe starvation, AtNRAMP3 disruption leads to increased accumulation of manganese (Mn) and zinc (Zn) in the roots, whereas AtNRAMP3 overexpression downregulates Mn accumulation. In addition, overexpression of AtNRAMP3 downregulates the expression of the primary Fe uptake transporter IRT1 and of the root ferric chelate reductase FRO2. Expression of AtNRAMP3::GFP fusion protein in onion cells or Arabidopsis protoplasts shows that AtNRAMP3 protein localizes to the vacuolar membrane. To account for the results presented, we propose that AtNRAMP3 influences metal accumulation and IRT1 and FRO2 gene expression by mobilizing vacuolar metal pools to the cytosol.  相似文献   

7.
In the bakers' yeast Saccharomyces cerevisiae, high affinity manganese uptake and intracellular distribution involve two members of the Nramp family of genes, SMF1 and SMF2. In a search for other genes involved in manganese homeostasis, PHO84 was identified. The PHO84 gene encodes a high affinity inorganic phosphate transporter, and we find that its disruption results in a manganese-resistant phenotype. Resistance to zinc, cobalt, and copper ions was also demonstrated for pho84Delta yeast. When challenged with high concentrations of metals, pho84Delta yeast have reduced metal ion accumulation, suggesting that resistance is due to reduced uptake of metal ions. Pho84p accounted for virtually all the manganese accumulated under metal surplus conditions, demonstrating that this transporter is the major source of excess manganese accumulation. The manganese taken in via Pho84p is indeed biologically active and can not only cause toxicity but can also be incorporated into manganese-requiring enzymes. Pho84p is essential for activating manganese enzymes in smf2Delta mutants that rely on low affinity manganese transport systems. A role for Pho84p in manganese accumulation was also identified in a standard laboratory growth medium when high affinity manganese uptake is active. Under these conditions, cells lacking both Pho84p and the high affinity Smf1p transporter accumulated low levels of manganese, although there was no major effect on activity of manganese-requiring enzymes. We conclude that Pho84p plays a role in manganese homeostasis predominantly under manganese surplus conditions and appears to be functioning as a low affinity metal transporter.  相似文献   

8.
《遗传学报》2020,47(3):145-156
Arginine catabolism involves enzyme-dependent reactions in both mitochondria and the cytosol,defects in which may lead to hyperargininemia,a devastating developmental disorder.It is largely unknown if defective arginine catabolism has any effects on mitochondria.Here we report that normal arginine catabolism is essential for mitochondrial homeostasis in Caenorhabditis elegans.Mutations of the arginase gene argn-1 lead to abnormal mitochondrial enlargement and reduced adenosine triphosphate(ATP) production in C elegans hypodermal cells.ARGN-1 localizes to mitochondria and its loss causes arginine accumulation,which disrupts mitochondrial dynamics.Heterologous expression of human ARGl or ARG2 rescued the mitochondrial defects of argn-1 mutants.Importantly,genetic inactivation of the mitochondrial basic amino acid transporter SLC-25A29 or the mitochondrial glutamate transporter SLC-25A18.1 fully suppressed the mitochondrial defects caused by argn-1 mutations.These findings suggest that mitochondrial damage probably contributes to the pathogenesis of hyperargininemia and provide clues for developing therapeutic treatments for hyperargininemia.  相似文献   

9.
Manganese (Mn) is an essential micronutrient throughout all stages of plant development. Mn plays an important role in many metabolic processes in plants. It is of particular importance to photosynthetic organisms in the chloroplast of which a cluster of Mn atoms at the catalytic centre function in the light-induced water oxidation by photosystem II, and also function as a cofactor for a variety of enzymes, such as Mn-SOD. But excessive Mn is toxic to plants which is one of the most toxic metals in acid soils. The knowledge of Mn(2+) uptake and transport mechanisms, especially the genes responsible for transition metal transport, could facilitate the understanding of both Mn tolerance and toxicity in plants. Recently, several plant genes were identified to encode transporters with Mn(2+) transport activity, such as zinc-regulated transporter/iron-regulated transporter (ZRT/IRT1)-related protein (ZIP) transporters, natural resistance-associated macrophage protein (Nramp) transporters, cation/H(+) antiporters, the cation diffusion facilitator (CDF) transporter family, and P-type ATPase. In addition, excessive Mn frequently induces oxidative stress, then several defense enzymes and antioxidants are stimulated to scavenge the superoxide and hydrogen peroxide formed under stress. Mn-induced oxidative stress and anti-oxidative reaction are very important mechanisms of Mn toxicity and Mn tolerance respectively in plants. This article reviewed the transporters identified as or proposed to be functioning in Mn(2+) transport, Mn toxicity-induced oxidative stress, and the response of antioxidants and antioxidant enzymes in plants to excessive Mn to facilitate further study. Meanwhile, basing on our research results, new problems and views are brought forward.  相似文献   

10.
Cho JH  Ko KM  Singaravelu G  Ahnn J 《FEBS letters》2005,579(3):778-782
The Caenorhabditis elegans PMR1, a P-type Ca2+/Mn2+ ATPase, is expressed in hypodermal seam cells, intestinal cells and spermatheca; localized in Golgi complex. Knock down of pmr-1 as well as overexpression of truncated Caenorhabditis elegans PMR1, which mimics dominant mutations observed in human Hailey-Hailey disease, renders the worm highly sensitive to EGTA and Mn2+. Interestingly, pmr-1 knock down not only causes animals to become resistant to oxidative stress but also suppresses high reactive oxygen species sensitivity of smf-3 RNA-mediated interference and daf-16 worms. These findings suggest that C. elegans PMR1 has important roles in Ca2+ and Mn2+ homeostasis and oxidative stress response.  相似文献   

11.
Environmental manganese (Mn) toxicity causes an extrapyramidal, parkinsonian-type movement disorder with characteristic magnetic resonance images of Mn accumulation in the basal ganglia. We have recently reported a suspected autosomal recessively inherited syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia in cases without environmental Mn exposure. Whole-genome mapping of two consanguineous families identified SLC30A10 as the affected gene in this inherited type of hypermanganesemia. This gene was subsequently sequenced in eight families, and homozygous sequence changes were identified in all affected individuals. The function of the wild-type protein and the effect of sequence changes were studied in the manganese-sensitive yeast strain Δpmr1. Expressing human wild-type SLC30A10 in the Δpmr1 yeast strain rescued growth in high Mn conditions, confirming its role in Mn transport. The presence of missense (c.266T>C [p.Leu89Pro]) and nonsense (c.585del [p.Thr196Profs17]) mutations in SLC30A10 failed to restore Mn resistance. Previously, SLC30A10 had been presumed to be a zinc transporter. However, this work has confirmed that SLC30A10 functions as a Mn transporter in humans that, when defective, causes Mn accumulation in liver and brain. This is an important step toward understanding Mn transport and its role in neurodegenerative processes.  相似文献   

12.
GABA functions as an inhibitory neurotransmitter in body muscles and as an excitatory neurotransmitter in enteric muscles in Caenorhabditis elegans. Whereas many of the components of the GABA-ergic neurotransmission in this organism have been identified at the molecular and functional levels, no transporter specific for this neurotransmitter has been identified to date. Here we report on the cloning and functional characterization of a GABA transporter from C. elegans (ceGAT-1) and on the functional relevance of the transporter to the biology of body muscles and enteric muscles. ceGAT-1 is coded by snf-11 gene, a member of the sodium-dependent neurotransmitter symporter gene family in C. elegans. The cloned ceGAT-1 functions as a Na(+)/Cl(-)-coupled high-affinity transporter selective for GABA with a K(t) of approximately 15 microm. The Na(+):Cl(-):GABA stoichiometry for ceGAT-1-mediated transport process is 2:1:1. The transport process is electrogenic as evidenced from GABA-induced inward currents in Xenopus laevis oocytes that express ceGAT-1 heterologously. The transporter is expressed exclusively in GABA-ergic neurons and in two other additional neurons. We also investigated the functional relevance of ceGAT-1 to the biology of body muscles and enteric muscles by ceGAT-1-specific RNA interference (RNAi) in rrf-3 mutant, a strain of C. elegans in which neurons are not refractory to RNAi as in the wild type strain. The down-regulation of ceGAT-1 by RNAi leads to an interesting phenotype associated with altered function of body muscles (as evident from changes in thrashing frequency) and enteric muscles (as evident from the rates of defecation failure) and also with altered sensitivity to aldicarb-induced paralysis. These findings provide unequivocal evidence for a modulatory role of GABA and ceGAT-1 in the biology of cholinergic neurons and in the function of body muscles and enteric muscles in this organism.  相似文献   

13.
Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.  相似文献   

14.
OsYSL6 is involved in the detoxification of excess manganese in rice   总被引:2,自引:0,他引:2  
Sasaki A  Yamaji N  Xia J  Ma JF 《Plant physiology》2011,157(4):1832-1840
Yellow Stripe-Like (YSL) proteins belong to the oligopeptide transporter family and have been implicated in metal transport and homeostasis in different plant species. Here, we functionally characterized a rice (Oryza sativa) YSL member, OsYSL6. Knockout of OsYSL6 resulted in decreased growth of both roots and shoots only in the high-manganese (Mn) condition. There was no difference in the concentration of total Mn and other essential metals between the wild-type rice and the knockout line, but the knockout line showed a higher Mn concentration in the leaf apoplastic solution and a lower Mn concentration in the symplastic solution than wild-type rice. OsYSL6 was constitutively expressed in both the shoots and roots, and the expression level was not affected by either deficiency or toxicity of various metals. Furthermore, the expression level increased with leaf age. Analysis with OsYSL6 promoter-green fluorescent protein transgenic rice revealed that OsYSL6 was expressed in all cells of both the roots and shoots. Heterogolous expression of OsYSL6 in yeast showed transport activity for the Mn-nicotianamine complex but not for the Mn-mugineic acid complex. Taken together, our results suggest that OsYSL6 is a Mn-nicotianamine transporter that is required for the detoxification of excess Mn in rice.  相似文献   

15.
Phytochelatins (PCs), (gamma-Glu-Cys)n Gly polymers that were formerly considered to be restricted to plants and some fungal systems, are now known to play a critical role in heavy metal (notably Cd2+) detoxification in Caenorhabditis elegans. In view of the functional equivalence of the gene encoding C. elegans PC synthase 1, ce-pcs-1, to its homologs from plant and fungal sources, we have gone on to explore processes downstream of PC fabrication in this organism. Here we describe the identification of a half-molecule ATP-binding cassette transporter, CeHMT-1, from C. elegans with an equivalent topology to that of the putative PC transporter SpHMT-1 from Schizosaccharomyces pombe. At one level, CeHMT-1 satisfies the requirements of a Cd2+ tolerance factor involved in the sequestration and/or elimination of Cd x PC complexes. Heterologous expression of cehmt-1 in S. pombe alleviates the Cd2+-hypersensitivity of hmt- mutants concomitant with the localization of CeHMT-1 to the vacuolar membrane. Suppression of the expression of ce-hmt-1 in intact worms by RNA interference (RNAi) confers a Cd2+-hypersensitive phenotype similar to but more pronounced than that exhibited by ce-pcs-1 RNAi worms. At another level, it is evident from comparisons of the cell morphology of ce-hmt-1 and cepcs-1 single and double RNAi mutants that CeHMT-1 also contributes to Cd2+ tolerance in other ways. Whereas the intestinal epithelial cells of ce-pcs-1 RNAi worms undergo necrosis upon exposure to toxic levels of Cd2+, the corresponding cells of ce-hmt-1 RNAi worms instead elaborate punctate refractive inclusions within the vicinity of the nucleus. Moreover, a deficiency in CeHMT-1 does not interfere with the phenotype associated with CePCS-1 deficiency and vice versa. Double ce-hmt-1; ce-pcs-1 RNAi mutants exhibit both cell morphologies when exposed to Cd2+. These results and those from our previous investigations of the requirement for PC synthase for heavy metal tolerance in C. elegans demonstrate PC-dependent, HMT-1-mediated heavy metal detoxification not only in S. pombe but also in some invertebrates while at the same time indicating that the action of CeHMT-1 does not depend exclusively on PC synthesis.  相似文献   

16.
We have cloned and functionally characterized a novel, neuron-specific, H(+)-coupled oligopeptide transporter (OPT3) from Caenorhabditis elegans that functions predominantly as a H(+) channel. The opt3 gene is approximately 4.4 kilobases long and consists of 13 exons. The cDNA codes for a protein of 701 amino acids with 11 putative transmembrane domains. When expressed in mammalian cells and in Xenopus laevis oocytes, OPT3 cDNA induces H(+)-coupled transport of the dipeptide glycylsarcosine. Electrophysiological studies of the transport function of OPT3 in Xenopus oocytes show that this transporter, although capable of mediating H(+)-coupled peptide transport, functions predominantly as a H(+) channel. The H(+) channel activity of OPT3 is approximately 3-4-fold greater than the H(+)/peptide cotransport activity as determined by measurements of H(+) gradient-induced inward currents in the absence and presence of the dipeptide using the two-microelectrode voltage clamp technique. A downhill influx of H(+) was accompanied by a large intracellular acidification as evidenced from the changes in intracellular pH using an ion-selective microelectrode. The H(+) channel activity exhibits a K(0.5)(H) of 1.0 microM at a membrane potential of -50 mV. At the level of primary structure, OPT3 has moderate homology with OPT1 and OPT2, two other H(+)-coupled oligopeptide transporters previously cloned from C. elegans. Expression studies using the opt3::gfp fusion constructs in transgenic C. elegans demonstrate that opt3 gene is exclusively expressed in neurons. OPT3 may play an important physiological role as a pH balancer in the maintenance of H(+) homeostasis in C. elegans.  相似文献   

17.
18.
Chronic exposure to manganese (Mn) can cause manganism, a neurodegenerative disorder similar to Parkinson's disease. The toxicity of Mn includes impairment of astrocytic glutamate transporters. 17β-Estradiol (E2) has been shown to be neuroprotective in various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease, and some selective estrogen receptor modulators, including tamoxifen (TX), also possess neuroprotective properties. We have tested our hypothesis that E2 and TX reverse Mn-induced glutamate transporter impairment in astrocytes. The results established that E2 and TX increased glutamate transporter function and reversed Mn-induced glutamate uptake inhibition, primarily via the up-regulation of glutamate/aspartate transporter (GLAST). E2 and TX also increased astrocytic GLAST mRNA levels and attenuated the Mn-induced inhibition of GLAST mRNA expression. In addition, E2 and TX effectively increased the expression of transforming growth factor β1, a potential modulator of the stimulatory effects of E2/TX on glutamate transporter function. This effect was mediated by the activation of MAPK/extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways. These novel findings suggest, for the first time, that E2 and TX enhance astrocytic glutamate transporter expression via increased transforming growth factor β1 expression. Furthermore, the present study is the first to show that both E2 and TX effectively reverse Mn-induced glutamate transport inhibition by restoring its expression and activity, thus offering a potential therapeutic modality in neurodegenerative disorders characterized by altered glutamate homeostasis.  相似文献   

19.
Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity. Here we demonstrate that mutations of the C. elegans histidine ammonia lyase (haly-1) gene promote zinc tolerance. C. elegans haly-1 encodes a protein that is homologous to vertebrate HAL, an enzyme that converts histidine to urocanic acid. haly-1 mutant animals displayed elevated levels of histidine, indicating that C. elegans HALY-1 protein is an enzyme involved in histidine catabolism. These results suggest the model that elevated histidine chelates zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we demonstrated that dietary histidine promotes zinc tolerance. Nickel is another metal that binds histidine with high affinity. We demonstrated that haly-1 mutant animals are resistant to nickel toxicity and dietary histidine promotes nickel tolerance in wild-type animals. These studies identify a novel role for haly-1 and histidine in zinc metabolism and may be relevant for other animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号