首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
When cells of Saccharomyces cerevisiae were grown aerobically under glucose-repressed conditions, ethanol production displayed a hyperbolic relationship over a limited range of magnesium concentrations up to around 0.5 mM. A similar relationship existed between available Mg2+ and ethanol yield, but over a narrower range of Mg2+ concentrations. Cellular demand for Mg2+ during fermentation was reflected in the accumulation patterns of Mg2+ by yeast cells from the growth medium. Entry of cells into the stationary growth phase and the time of maximum ethanol and minimum sugar concentration correlated with a period of maximum Mg2+ transport by yeast cells. The timing of Mg2+ transport fluxes by S. cerevisiae is potentially useful when conditioning yeast seed inocula prior to alcohol fermentations. Received 04 March 1996/ Accepted in revised form 21 August 1996  相似文献   

3.
4.
We demonstrate that the DAL5 gene, encoding a necessary component of the allantoate transport system, is constitutively expressed in Saccharomyces cerevisiae. Its relatively high basal level of expression did not increase further upon addition of allantoin pathway intermediates. However, steady-state DAL5 mRNA levels dropped precipitously when a repressive nitrogen source was provided. These control characteristics of DAL5 expression make this gene a good model with which to unravel the mechanism of nitrogen catabolite repression. Its particular advantage relative to other potentially useful genes derives from its lack of control by induction and hence the complicating effects of inducer exclusion.  相似文献   

5.
We had previously isolated the temperature-sensitive erg26-1 mutant and characterized the sterol defects in erg26-1 cells (Baudry, K., Swain, E., Rahier, A., Germann, M., Batta, A., Rondet, S., Mandala, S., Henry, K., Tint, G. S., Edlind, T., Kurtz, M., and Nickels, J. T., Jr. (2001) J. Biol. Chem. 276, 12702-12711). We have now determined the defects in sphingolipid metabolism in erg26-1 cells, examined their effects on cell growth, and initiated studies designed to elucidate how might changes in sterol levels coordinately regulate sphingolipid metabolism in Saccharomyces cerevisiae. Using [(3)H]inositol radiolabeling studies, we found that the biosynthetic rate and steady-state levels of specific hydroxylated forms of inositolphosphorylceramides were decreased in erg26-1 cells when compared with wild type cells. [(3)H]Dihydrosphingosine radiolabeling studies demonstrated that erg26-1 cells had decreased levels of the phytosphingosine-derived ceramides that are the direct precursors of the specific hydroxylated inositol phosphorylceramides found to be lower in these cells. Gene dosage experiments using the sphingolipid long chain sphingoid base (LCB) hydroxylase gene, SUR2, suggest that erg26-1 cells may accumulate LCB, thus placing one point of sterol regulation of sphingolipid synthesis possibly at the level of ceramide metabolism. The results from additional genetic studies using the sphingolipid hydroxylase and copper transporter genes, SCS7 and CCC2, respectively, suggest a second possible point of sterol regulation at the level of complex sphingolipid hydroxylation. In addition, [(3)H]inositol radiolabeling of sterol biosynthesis inhibitor-treated wild type cells and late sterol pathway mutants showed that additional blocks in sterol biosynthesis have profound effects on sphingolipid metabolism, particularly sphingolipid hydroxylation state. Finally, our genetic studies in erg26-1 cells using the LCB phosphate phosphatase gene, LBP1, suggest that increasing the levels of the LCB sphingoid base phosphate can remediate the temperature-sensitive phenotype of erg26-1 cells.  相似文献   

6.
The Saccharomyces cerevisiae strains widely used for industrial fuel-ethanol production have been developed by selection, but their underlying beneficial genetic polymorphisms remain unknown. Here, we report the draft whole-genome sequence of the S. cerevisiae strain CAT-1, which is a dominant fuel-ethanol fermentative strain from the sugarcane industry in Brazil. Our results indicate that strain CAT-1 is a highly heterozygous diploid yeast strain, and the ~12-Mb genome of CAT-1, when compared with the reference S228c genome, contains ~36,000 homozygous and ~30,000 heterozygous single nucleotide polymorphisms, exhibiting an uneven distribution among chromosomes due to large genomic regions of loss of heterozygosity (LOH). In total, 58 % of the 6,652 predicted protein-coding genes of the CAT-1 genome constitute different alleles when compared with the genes present in the reference S288c genome. The CAT-1 genome contains a reduced number of transposable elements, as well as several gene deletions and duplications, especially at telomeric regions, some correlated with several of the physiological characteristics of this industrial fuel-ethanol strain. Phylogenetic analyses revealed that some genes were likely associated with traits important for bioethanol production. Identifying and characterizing the allelic variations controlling traits relevant to industrial fermentation should provide the basis for a forward genetics approach for developing better fermenting yeast strains.  相似文献   

7.
Transcriptional regulation of the MET3 gene of Saccharomyces cerevisiae   总被引:8,自引:0,他引:8  
H Cherest  N T Nguyen  Y Surdin-Kerjan 《Gene》1985,34(2-3):269-281
  相似文献   

8.
9.
In the highly competitive market of commercial bakers' yeast, fermentations are operated for maximum efficiency and minimum production cost. In order to maintain competitiveness, the fermentations must be highly consistent with minimum variation in yeast performance, maximum yield on raw materials, and minimum production of undesirable side products. The use of advanced instrumentation is of critical importance to achieving these goals by the production engineer. An in situ optical density probe was used to determine the yeast cell density in full-scale commercial bakers' yeast fermentations. The optical density probe results were compared with oxygen uptake rate analyses, packed cell volume, and off-line measured cell dry weights. The most accurate measurement of cell density was found to be the optical density probe. This instrument allowed the on-line determination of cell density with highly consistent results from fermentation batch to batch and with out the need for intermittent recalibration. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
11.
Saccharomyces cerevisiae strain with excellent xylose-fermenting capacity and inhibitor tolerance is crucial for lignocellulosic ethanol production. In this study, a combined strategy including site-directed mutagenesis, mating, evolutionary engineering, and haploidization was applied to obtain strains with ideal xylose fermentabilities. Haploid industrial strain KFG4-6B was engineered to overexpress endogenous xylulokinase (XK) and heterologous native or mutated xylose reductase (XR) and xylitol dehydrogenase (XDH) from Scheffersomyces stipitis. The XR-mutated strain HX57D showed over 12% increase in both xylose consumption rate and ethanol yield compared with the XR-native strain. To improve the xylose uptake, the HX57D-derived diploids were subjected to evolutionary engineering. In comparison with HX57D, evolved diploid Z4X-21-18 achieved 4.5-fold increases in rates of xylose consumption and ethanol production when fermenting xylose. When fermenting mixed sugars, the glucose and xylose uptake rates were 1.4-fold and 8.3-fold, respectively, higher. H18s28, a haploid of Z4X-21-18, enabled a further 10% increase in xylose consumption rate when fermenting xylose only. However, it was inferior to its diploid parent when fermenting mixed sugars. In the presaccharification-simultaneous saccharification and fermentation (P-SSF) of the whole pretreated wheat straw slurry with high contents of multiple inhibitors, Z4X-21-18 produced approximately 42 g/L ethanol with a yield of 0.38 g/g total sugars.  相似文献   

12.
13.
Growth and metabolism of mannitol by strains of Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Of 40 polyploid strains of Saccharomyces cerevisiae screened for growth on D-mannitol (5%, w/v), half grew well (5-20 mg dry biomass ml-1). Certain of these strains were unable to grow on low concentrations of mannitol (1-2%, w/v) and others, initially unable to grow on mannitol, exhibited long-term adaptation to growth. An NAD+-dependent D-mannitol dehydrogenase (EC 1.1.1.67) was detected in mannitol-grown yeast. Growth was dependent on mitochondrial function and was obligately aerobic. Measurement of products of metabolism and respiratory activity indicated that growth on mannitol allows catabolite derepression.  相似文献   

14.
15.
16.
17.

Background  

Fermentation of lignocellulosic biomass is an attractive alternative for the production of bioethanol. Traditionally, the yeast Saccharomyces cerevisiae is used in industrial ethanol fermentations. However, S. cerevisiae is naturally not able to ferment the pentose sugars D-xylose and L-arabinose, which are present in high amounts in lignocellulosic raw materials.  相似文献   

18.
The current study was undertaken to correlate post‐translational protein modification by methylation with the functionality of enzymes involved in trehalose metabolism in Saccharomyces cerevisiae. Trehalose is an economically important disaccharide providing protection against various kinds of stresses. It also acts as a source of cellular energy by storing glucose. Methyl group donor S‐adenosyl L ‐methionine (AdoMet) and methylation inhibitor‐oxidized adenosine (AdOx) were used for the methylation study. AdoMet delayed initial growth of the cells but the overall growth rate remained same suggesting its interference in G1 phase of the cell cycle. Metabolic‐altered enzyme activities of acid trehalase (AT), neutral trehalase (NT), and trehalose‐6‐phosphate synthase (TPS) were observed when treated with AdOx and AdoMet separately. A positive effect of methylation was observed in TPS, hence, it was purified in three different conditions, using AdoMet, AdOx, and control. Differences in mobility of methylated, methylation‐inhibited, and control TPS during acidic native gel electrophoresis confirmed the occurrence of induced methylation. Hydrolysis under alkaline pH conditions revealed that methylation of TPS was different than O‐methylation. MALDI‐TOF analysis of trypsin‐digested samples of purified methylated, methylation‐inhibited, and control TPS revealed that an increase of 18 Da mass in methylated peptides suggesting the introduction of methyl ester in TPS. Results of amino acid analysis corroborated the presence of methyl cysteine. The data presented here strongly suggests that trehalose production was enhanced due to methylation of TPS arising from carboxymethylation of cysteine residues. J. Cell. Physiol. 226: 158–164, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号