首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protonophores carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) stimulated the synthesis of 14C-catecholamines from [14C]tyrosine in cultured bovine adrenal medullary cells. The stimulatory effect of CCCP but not of FCCP was partially dependent on extracellular Ca2+. CCCP but not FCCP increased the influx of 45Ca2+ to the cells. When cells were incubated with either CCCP or FCCP (0.01-0.2 microgram/ml), the intracellular pH fell from 7.2 to 6.3-6.5 and catecholamine synthesis increased. Tyrosine hydroxylase activity in a soluble fraction prepared from cultured adrenal medullary cells was measured after incubation of the cells with FCCP or CCCP. Although FCCP did not affect the activity of the enzyme, CCCP caused a stable activation of it which was dependent on extracellular Ca2+. Since the optimal pH of soluble tyrosine hydroxylase is around 6.0 in adrenal medullary cells, FCCP may increase the synthesis of catecholamines by shifting the intracellular pH toward it. In addition to this mechanism, CCCP may enhance the synthesis of catecholamines by a Ca2+-dependent mechanism.  相似文献   

2.
Incubation of cultured bovine adrenal medullary cells with p-chloromercuribenzoate (50-500 microM), a sulfhydryl-reacting agent, caused an increase in the secretion of catecholamines, p-Chloromercuriphenyl sulfonate, a p-chloromercuribenzoate analogue that poorly penetrates the cell membrane, caused a similar increase in catecholamine secretion. In both cases, catecholamine secretion was dependent on extracellular Ca2+. Furthermore, p-chloromercuribenzoate caused both 45Ca2+ influx into the cells and an increase in the intracellular free Ca2+ concentration. The increases in catecholamine secretion and 45Ca2+ influx behaved similarly in relation to p-chloromercuribenzoate concentration. The time courses of the increased secretion, 45Ca2+ influx, and intracellular free Ca2+ concentration by p-chloromercuribenzoate were also quite similar. The stimulation of catecholamine secretion by p-chloromercuribenzoate was reversed by washing the cells with dithiothreitol-containing medium, but not by dithiothreitol-free medium. When the cells were treated with p-chloromercuribenzoate, dopamine-beta-hydroxylase, an enzyme present in the chromaffin granules along with catecholamines, was also released. However, p-chloromercuribenzoate did not cause release of phenylethanolamine-N-methyltransferase, an enzyme present in the cytoplasm. These results indicate that catecholamine secretion due to p-chloromercuribenzoate occurs by Ca2+-dependent exocytosis.  相似文献   

3.
Lead buffers (citrate and Tiron) were used to investigate the effects of low concentrations (0.1-6 microM) of Pb2+ on stimulus-secretion coupling in isolated bovine chromaffin cells. Nicotinic agonists and high K elicit secretion by enhancing Ca2+ influx into chromaffin cells. Pb2+ inhibited the catecholamine secretion in response to 500 microM carbachol and 77 mM K+ depolarization but was without significant effect on basal secretion. Pb2+ also inhibited the influx of 45Ca occurring in response to these agents. The K0.5 values for inhibition suggest that the carbachol-evoked flux is more sensitive to Pb2+ than influx in response to a direct depolarization. When extracellular calcium was lowered in the absence of Pb2+, both secretion and 45Ca entry were reduced. The effects of Pb2+ were comparable to those of lowered Ca2+. 22Na influx through nicotinic receptor-mediated channels, measured in the presence of tetrodotoxin (2 microM) and ouabain (50 microM), was inhibited by Pb2+. The results suggest that Pb2+ inhibits exocytotic catecholamine secretion by inhibiting Ca2+ influx. The differential sensitivity to Pb2+ of K- and carbachol-evoked 45Ca flux, coupled with the 22Na measurements, indicates that Pb2+ inhibits the movement of ions through acetylcholine-induced channels as well as through voltage-sensitive calcium channels.  相似文献   

4.
125I-Porcine brain natriuretic peptide (125I-pBNP) bound to mouse astrocytes in primary culture in a time-dependent manner (t1/2 = 4.5 min), similar to 125I-human atrial natriuretic peptide (125I-hANP) (t1/2 = 5 min). Binding was saturable and reached equilibrium after 90 min at 22 degrees C for both radioligands. Scatchard analysis suggested a single class of binding sites for pBNP with a binding affinity and capacity (KD = 0.08 nM; Bmax = 78.3 fmol/mg of protein) similar to those of hANP1-28 (KD = 0.1 nM; Bmax = 90.3 fmol/mg of protein). In competition binding studies, pBNP or human/rat atrial natriuretic peptide (ANP) analogues [hANP1-28, rat ANP1-28 (rANP1-28), and rANP5-28] displaced 125I-hANP, 125I-pBNP, and 125I-rANP1-28 completely, all with IC50 values of less than nM (0.14-0.83 nM). All four peptides maximally stimulated cyclic GMP (cGMP) production by 10 min at 22 degrees C at concentrations of 1 microM with EC50 values ranging from 50 to 100 nM. However, maximal cGMP induction by brain natriuretic peptide (BNP) (25.9 +/- 2.1 pmol/mg of protein) was significantly greater than that by hANP1-28 (11.5 +/- 2.2 pmol/mg of protein), rANP1-28 (16.5 +/- 2.0 pmol/mg of protein), and rANP5-28 (15.8 +/- 2.2 pmol/mg of protein). These studies indicate that BNP and ANPs act on the same binding sites and with similar affinities in cultured mouse astrocytes. BNP, however, exerts a greater effect on cGMP production. The difference in both affinity and selectivity between binding and cGMP production may indicate the existence of receptor subtypes that respond differentially to natriuretic peptides despite similar binding characteristics.  相似文献   

5.
We have tested the hypothesis that exocytosis is a possible export route for calcium from bovine adrenal medullary cells. After prelabelling cells in primary tissue culture with 45Ca, evoked 45Ca export and catecholamine secretion show the same time course, a similar fraction of the total pool of 45Ca and catecholamine is released, and the same concentrations of carbamylcholine or KCl are required for half-maximal triggered release. Increasing the osmolarity of the extracellular medium or treating the cells with botulinum toxin type D inhibits both evoked catecholamine secretion and 45Ca export to the same extent without inhibiting 45Ca influx. Incorporation of 45Ca into chromaffin granules is very slow, however, and incorporated 45Ca is not immediately releasable. 45Ca entering the cell during short-term stimulation is not found in the releasable pool during a second period of triggered secretion. Our data suggest that chromaffin granules are the largest pool of intracellular calcium in bovine adrenal medullary cells and that most of the calcium in chromaffin granules does not rapidly exchange with cytoplasmic Ca, but can be released directly by exocytosis. Exocytosis does not appear to play a major role in exporting Ca that enters the cell during short-term stimulation.  相似文献   

6.
Methacholine, atrial natriuretic peptide (ANP), nitroprusside (nitric oxide), angiotensin II, and bradykinin raised cyclic GMP (cGMP) levels in cultured bovine adrenal chromaffin cells. The role of cGMP in secretion from chromaffin cells was examined using 8-bromo-cGMP. This analogue had no effect on basal secretion or secretion due to angiotensin II, bradykinin, or a high K+ level but potentiated secretion due to low doses of nicotine. At supramaximal doses of nicotine, 8-bromo-cGMP inhibited secretion. These effects of 8-bromo-cGMP were not due to changes in the nicotine-induced rise in cytosolic calcium concentration. A potentiation of secretion due to low doses of nicotine was also found following simultaneous addition of ANP or nitroprusside, a result suggesting that ANP and nitric oxide (endothelium-derived relaxing factor) could be important regulators of secretion from adrenal chromaffin cells.  相似文献   

7.
Secretion of adenosine(5')tetraphospho(5')adenosine (Ap4A) and ATP from perfused bovine adrenal glands stimulated with acetylcholine or elevated potassium levels was measured and compared with that of catecholamines. We have found a close correlation between the release of Ap4A and catecholamines elicited with all the secretagogues used in the presence of either Ca2+ or Ba2+, suggesting co-release of both constituents from the chromaffin granules. By contrast, ATP secretion, as measured with luciferase, showed a significantly different time course regardless of the secretagogue used. ATP secretion consistently decreased after 1-2 min of stimulation at a time when Ap4A and catecholamine secretions were still increasing. Measures of degradation of injected [3H]ATP to the gland during stimulation showed little difference in the level of uptake or decomposition of ATP throughout the pulse. However, a reexamination of ATP secretion by monitoring its products of degradation (AMP, adenosine, and inosine) by HPLC techniques showed that Ap4A, ATP, and catecholamines are indeed secreted in parallel from the perfused adrenal gland.  相似文献   

8.
A procedure is described for the establishment of stable primary cultures of bovine chromaffin cells on microcarrier beads. The cells flatten and send out processes with varicosities over a few days and maintain their catecholamine content for 2 weeks. The beads may be incorporated into a superfusion apparatus with a chamber volume of about 150 microliters, enabling the efficient perfusion of a high density of cells. The response to the introduction of nicotine and high potassium into the perfusing medium is shown to be more rapid and more transient than hitherto described, with each secretagogue producing a different degree of preferential stimulation of noradrenaline-secreting cells.  相似文献   

9.
Incubation of cultured bovine adrenal medullary cells in Na+-free sucrose medium or in Na+-free Cs+ medium enhanced the synthesis of 14C-catecholamines from [14C]tyrosine about two- to threefold or sixfold, respectively. The increment of 14C-catecholamine synthesis produced by Na+-free medium was partially dependent on the presence of Ca2+ in the medium. Dibutyryl cyclic AMP also stimulated the synthesis of 14C-catecholamines in adrenal medullary cells, and the effects of Na+ removal and dibutyryl cyclic AMP (5 mM) on the synthesis were almost additive. The intracellular pH measured by using a weak acid 5,5-dimethyloxazolidine-2,4-dione was 7.14 in control cells and when Na+ was replaced by sucrose or Cs+, it shifted down to 6.56 or 5.66, respectively. The fall in intracellular pH and the stimulation of 14C-catecholamine synthesis were similarly dependent on the concentration of Na+ in the medium. The optimal pH of soluble tyrosine hydroxylase was 5.5-6.0 both in control cells and in cells incubated in Na+-free medium. These results suggest that removal of extracellular Na+ increases the synthesis of catecholamines, at least in part, by shifting the intracellular pH toward the optimal pH of tyrosine hydroxylase.  相似文献   

10.
Cultured bovine adrenal chromaffin cells contain a pool of ATP sequestered within the chromaffin vesicles and an extravesicular pool of ATP. In a previous study it was shown that the turnover of ATP in the extravesicular pool was biphasic. One phase occurred with a t1/2 of 3.5-4.5 h whereas the second phase occurred with a t1/2 of several days. The studies described here were undertaken to characterize further the vesicular and extravesicular pools of ATP by examining the effects of metabolic inhibitors, adenosine, and digitonin on ATP utilization and subcellular localization immediately after and 48 h after labeling with [3H]adenosine and 32Pi. Immediately after labeling a combination of cyanide, 2-deoxy-D-glucose, the beta-glucono-1,5-lactone resulted in a 90-95% depletion of the labeled ATP but only a 25% depletion of the endogenous ATP within 30 min. Forty-eight hours after labeling, addition of the inhibitors resulted in a 70% depletion of the [3H]ATP but only a 25% depletion of the [32P]ATP and endogenous ATP. Addition of 10 microM adenosine to the media resulted in a similar loss of [3H]ATP in cells examined immediately after or 48 h after labeling. Adenosine increased the amounts of [32P]ATP when added immediately after labeling but had no effect on the [32P]ATP content when added 48 h after labeling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Sodium/Proton Exchange in Cultured Bovine Adrenal Medullary Cells   总被引:2,自引:1,他引:1  
We investigated the presence of Na+/H+ exchange in cultured bovine adrenal medullary cells. The intracellular pH in control cells measured by 5,5-dimethyl[2-14C]oxazolidine-2,4-dione was 7.13 +/- 0.02 (n = 6). Removal of Na+ from the incubation medium shifted the intracellular pH down to 6.67 +/- 0.12 (n = 6). Reintroduction of Na+ to the medium caused a rapid recovery in intracellular pH to 7.20-7.30 that was associated with an increase in uptake of 22Na+ by the cells. Both increases in intracellular pH and uptake of 22Na+ were inhibited by amiloride, an inhibitor of Na+/H+ exchange. The recovery of intracellular pH by addition of Na+ was partially inhibited by quinidine, another inhibitor of Na+/H+ exchange, but not by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, an anion-exchange (Cl-/HCO3-) inhibitor. Li+ could substitute for Na+ in the recovery of intracellular pH. Carbachol caused an increase in intracellular pH from 7.12 +/- 0.01 to 7.21 +/- 0.02 (n = 10). This increase in intracellular pH caused by carbachol was inhibited by amiloride. These results suggest the existence of an amiloride-sensitive Na+/H+ exchange that regulates the intracellular pH in adrenal medullary cells.  相似文献   

12.
Abstract: Both the Ca2+/phospholipid-dependent protein kinases (protein kinases C, PKCs) and mitogen-activated protein kinases (MAPKs) have been implicated as participants in the secretory response of bovine adrenomedullary chromaffin cells. To investigate a possible role for these kinases in exocytosis and the relationship of these kinases to one another, intact chromaffin cells were treated with agents that inhibited each of the kinases and analyzed for catecholamine release and MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)/MAPK activation after stimulation with secretagogues of differential efficacy. Of the three secretagogues tested, inactivation of PKCs by long-term phorbol 12-myristate 13-acetate (PMA) treatment or incubation with GF109203X had the greatest inhibitory effect on nicotine-induced catecholamine release and MEK/MAPK activation, a moderate effect on KCl-induced events, and little, if any, effect on Ca2+ ionophore-elicited exocytosis and MEK/MAPK activation. These results indicate that PKC plays a significant role in events induced by the optimal secretagogue nicotine and a lesser role in exocytosis elicited by the suboptimal secretagogues KCl and Ca2+ ionophore. Treatment of cells with the MEK-activation inhibitor PD098059 completely inhibited MEK/MAPK activation (IC50 1–5 µM) and partially inhibited catecholamine release induced by all secretagogues. However, PD098059 was more effective at inhibiting exocytosis induced by suboptimal secretagogues (IC50~10 µM) than that induced by nicotine (IC50~30 µM). These results suggest a more prominent role for MEK/MAPK in basic secretory events activated by suboptimal secretagogues than in those activated by the optimal secretagogue nicotine. However, PD098059 also partially blocked secretion potentiated by short-term PMA treatment, suggesting that PKC can function in part by signaling through MEK/MAPK to enhance secretion. Taken together, these results provide evidence for the preferential involvement of MEK/MAPK in basic secretory events activated by the suboptimal secretagogues KCl and Ca2+ ionophore and the participation of both PKC and MEK/MAPK in optimal secretion induced by nicotine.  相似文献   

13.
Vatta, M. S., M. F. Presas, L. G. Bianciotti, M. Rodriguez–fermepin, R. Ambros and B. E. Fernandez. B and C types natriuretic peptides modify norepinephrine uptake and release in the rat adrenal medulla. Peptides 18(10) 1483–1489, 1997.—We have previously reported that atrial natriuretic factor (ANF) modulates adrenomedullar norepinephrine (NE) metabolism. On this basis, the aim of the present work was to study the effects of B and C types natriuretic peptides (BNP and CNP) on the uptake, intracellular distribution and release of 3H-NE. Experiments were carried out in rat adrenal medulla slices incubated “in vitro.” Results showed that 100 nM of both, CNP and BNP, enhanced total and neuronal NE uptake. Both peptides (100 nM) caused a rapid increase in NE uptake during the first minute, which was sustained for 60 min. NE intracellular distribution was only modified by CNP (100 nM), which increased the granular fraction and decreased the cytosolic pool. On the other hand, spontaneous as well as evoked (KCl) NE release, was decreased by BNP and CNP (50 and 100 nM for spontaneous release and 1, 10, 50 and 100 nM for evoked output). The present results suggest that BNP and CNP may regulate catecholamine secretion and modulate adrenomedullary biological actions mediated by catecholamines, such as blood arterial pressure, smooth muscle tone, and metabolic activities.  相似文献   

14.
Abstract: "Synaptic-like microvesicles" are present in all neuroendocrine cells and cell lines. Despite their resemblance to small synaptic vesicles of the CNS. a thorough biochemical characterization is lacking. Moreover, the subcellular distribution of synaptophysin, the most abundant integral membrane protein of small synaptic vesicles, in adrenal medulla is still controversial. Using gradient centrifugation. we were able to compare the distribution of several markers for small synaptic vesicles and chromaffin granules. Synaptophysin was found at a high density (1.16 g/ml), purifying away from dopamine β-hydroxylase and cytochrome b561. Both noradrenaline and adrenaline showed a parallel distribution with synaptophysin, suggesting their presence in synaptic-like microvesicles. Experiments in the presence of tetrabenazine did not influence the catecholamine content. Additionally, tetrabenazine binding showed a consistent shoulder in the region of synaptophysin. [3H]-Noradrenaline uptake was blocked by tetrabenazine, but not by desipramine. Also chromogranin A parallels the distribution of synaptophysin: however, a localization in the Golgi cannot be ruled out. Synaptophysin was shown to undergo very fast phosphorylation, together with another triplet protein of ∼ 18 kDa. In contrast, the latter showed a rather bimodal distribution coinciding with synaptophysin and dopamine β-hydroxylase. Immunoelectron microscopy of synaptic-like microvesicle fractions showed an intense labeling for synaptophysin on 60-90-nm organelles. Whereas abundant gold labeling for cytochrome b561 was found over the entire surface of chromaffin granules, synaptophysin labeling was encountered mostly on vesicles adsorbed to granules. We conclude that catecholamines might be stored in synaptic-like microvesicles of the chromaffin cell.  相似文献   

15.
Abstract: Secretion of both epinephrine and norepinephrine by cultured chromaffin cells was studied at temperatures ranging from 0°C to 37°C. The percentage of epinephrine secreted was always lower than that of norepinephrine when the cells were stimulated with either acetylcholine or high K+ at any temperature. When the cells were stimulated with acetylcholine or carbachol the percentage of catecholamine secreted at 10 min increased with temperature from 4°C to 24°C and then decreased from 24°C to 37°C. Potassium-stimulated cells secreted increasing amounts of catecholamine as the temperature was increased to 37°C. We found, however, that the initial rates of secretion increased continuously as temperature increased throughout the range for both carbachol-and K+-stimulated cells. The temperature maximum of acetylcholine-stimulated secretion is caused by a faster shut-off of secretion at higher temperature. The Arrhenius plots of initial rates show an inflection point at approximately 17°C for carbachol-stimulated cells. The plot for K+-stimulated cells is a straight line over the entire temperature range. The transition could be caused by a conformational change in the cholinergic receptor/ion channel molecule.  相似文献   

16.
Histamine activation of H1 receptors stimulates 3H release from cultured bovine adrenal chromaffin cells preloaded with [3H]noradrenaline. The initial (1-min) release induced by a high concentration of histamine was unaffected by the removal of extracellular Ca2+, whereas the more sustained response (10 min) was largely inhibited. In contrast, release induced by nicotine was dependent on extracellular Ca2+ at all times. The protein kinase inhibitor staurosporine inhibited both the initial and sustained (10-min) phases of histamine-induced release (IC50 in the region of 200 nM) but was ineffective against a direct depolarizing stimulus (56 mM K+). In contrast, the calmodulin antagonist trifluoperazine was equally effective against both stimuli. These data indicate that although a staurosporine-sensitive event (perhaps involving protein kinase C) is essential for coupling histamine receptor activation to the release processes, it is not essential for exocytosis itself. A further distinction between histamine- and depolarization-induced release was demonstrated by the differential effect of the guanine nucleotide-binding protein inhibitor pertussis toxin. Pretreatment with pertussis toxin (0.1 microgram/ml for 16 h) enhanced depolarization-induced release by approximately 1.5-fold. This pertussis toxin pretreatment was, however, approximately twofold as effective in potentiating histamine-evoked release. Thus, the characteristics of the histaminergic response are distinct from those of a depolarizing stimulus, perhaps indicating the involvement of different mechanisms in the release process.  相似文献   

17.
Previous studies from our laboratory suggest that protein kinase C (PKC) is involved in the angiotensin II (AII)-induced increase in the expression of genes encoding proenkephalin and catecholamine biosynthesizing enzymes in primary cultured bovine adrenal medullary (BAM) cells. The purpose of this study was to examine the effects of [Sar1]-AII (S1-AII), an AII agonist, on PKC activity in BAM cells. Thirty-minute incubation with S1-AII produced a dose-dependent activation of PKC. The particulate PKC activity was significantly increased by 2 nM S1-AII after both 30 min and 12 h of incubation. A high concentration of S1-AII (200 nM) caused an increase in particulate PKC activity after 30 min of incubation and this increase was still observed after 18 h of continuous incubation. [Sar1, Thr8]-angiotensin II (S1, T8-AII) (100 microM), an AII antagonist, inhibited the effect of S1-AII (20 nM) on PKC activity, suggesting a specific AII receptor-mediated effect. An increase in BAM cell particulate PKC immunoreactivity after 18 h of S1-AII treatment was observed in Western blot analysis of PKC-immunoreactive protein (82 kDa). The persistent activation of PKC seen in this study is consistent with our hypothesis that PKC may mediate the S1-AII-induced increase in the expression of genes encoding proenkephalin and catecholamine synthesizing enzymes in BAM cells.  相似文献   

18.
The in vivo storage relationship between catecholamines and ATP in chromaffin vesicles of cultured bovine adrenal medulla cells was investigated using drugs that block vesicular catecholamine uptake. Three-day treatments with reserpine and tetrabenazine causing 85-90% depletion of catecholamines resulted in 41-46% reductions in cellular ATP content. Subcellular fractionation of reserpine-treated cells indicated that the ATP is lost from the chromaffin vesicle pool. This was confirmed in experiments using metabolic inhibitors to differentiate the vesicular and extravesicular ATP pools. The vesicular ATP loss was not proportional to that of catecholamines, resulting in a reduction by 50% in the chromaffin vesicle mole ratio of catecholamines to ATP after 48 h of treatment. In metabolic labeling studies, it was found that reserpine treatment reduced the incorporation of [3H]adenosine into vesicular ATP selectively, but it reduced the incorporation of 32Pi into both the vesicular and extravesicular pools. The reduction of the [3H]adenosine incorporation was not due to diminished vesicular nucleotide uptake resulting from low catecholamine levels, because when the catecholamines were depleted by tetrabenazine pretreatment followed by removal of the drug before labeling, no reduction in [3H]adenosine incorporation was observed. When present during the labeling, tetrabenazine was found to be a reversible inhibitor of plasma membrane adenosine uptake. The observed loss of adenine nucleotides from catecholamine-depleted chromaffin vesicles in vivo provides evidence that interactions between ATP and catecholamines are important in the vesicular storage of high concentration of these compounds.  相似文献   

19.
Abstract: Primary cultures of chromaffin cells from bovine adrenal medulla were used to evaluate the ability of several opiates to reduce the release of catecholamines induced by stimulation of nicotinic receptors. Etorphine, β-endorphin, Met-enkephalin[Arg6,Phe7], and the synthetic peptide [d -Ala2,Me-Phe4,Met(O)s-ol]enkephalin inhibited the acetylcholine-induced release of catecholamines with an IC30 varying from 10?7 to 1 × 10?6M. The effect was stereospecific because levorphanol (IC30= 7.5 × 10?7M) was approximately two orders of magnitude more potent than dextrorphan. Morphine (μ-receptor agonist), [d -Ala2, d -Leu5]enkephalin (δ-receptor agonist), ethylketazocine (k -receptor agonist), and N-allylnormetazocine (σ-receptor agonist) were at least 100–1000 times less potent than etorphine. Diprenorphine (IC50= 5 × 10?7M) and naloxone (IC50= 10?6M) antagonized the effect of etorphine. High-affinity, saturable, and stereospecific binding sites for [3H]etorphine, [3H]dihydromorphine, [3H-d -Ala2,d -Leu5]enkephalin, [3H]ethylketazocine, and for [3H]N-allylnormetazocine, [3H]diprenorphine, and [3H]naloxone were detected in chromaffin cell membranes and in membranes obtained from adrenal medulla homogenates. However, the number of binding sites for [3H]etorphine and [3H]diprenorphine was 10–70 times higher than the number of sites measured with the other 3H ligands. The rank order of potency of these compounds for the displacement of [3H]etorphine binding correlates (r = 0.90) with the rank order of potency of the same compounds for the inhibition of acetylcholine-induced catecholamine release. These data suggest that a stereoselective opiate receptor (different from the classic μ-, δ-, k -, or σ-receptor) with high affinity for etorphine, diprenorphine, β-endorphin, and Met-enkephalin[Arg6,Phe7] modulates the function of the nicotinic receptor in adrenal chromaffin cells.  相似文献   

20.
目的:观察房颤及房颤并发血栓栓塞患者血浆内脑钠肽(brain natriuretic peptide,BNP)和D-二聚体(D-dimer)的表达水平;探讨两者表达水平的关联性以及两者对房颤血栓栓塞的预测价值。方法:回顾分析2010年5月-2012年12月上海市第一人民医院心内科住院病人;根据入组及排除标准将符合条件的研究对象74例分为对照组、单纯房颤组与房颤血栓组;对所有对象进行数据采集,包括年龄、性别、血脂情况、高血压病史、血糖等情况;对所有对象进行D-dimer及BNP水平的数据采集。结果:(1)房颤血栓组的年龄明显高于对照组(P0.01)和单纯房颤组(P0.001);(2)房颤血栓组的D-dimer和BNP水平高于单纯房颤组(P0.05)和对照组(P0.001);(3)单纯房颤组BNP水平与D-dimer水平呈正相关性(r=0.507,P=0.004),房颤血栓组BNP水平与D-dimer水平呈正相关性(r=0.680,P0.001)。结论:(1)心房颤动患者随着年龄的增加并发血栓栓塞风险也增加,指导我们在临床治疗时需要重视年龄因素。(2)患者血浆中D-dimer和BNP水平的增高是心房颤动并发血栓栓塞患者的危险信号。(3)D-dimer和BNP检测在预防心房颤动并发血栓栓塞中有重要的临床意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号