首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Pasta  G Mazzola  G Carrea 《Biochemistry》1987,26(5):1247-1251
Diethyl pyrocarbonate inactivated the tetrameric 3 alpha,20 beta-hydroxysteroid dehydrogenase with second-order rate constants of 1.63 M-1 s-1 at pH 6 and 25 degrees C or 190 M-1 s-1 at pH 9.4 and 25 degrees C. The activity was slowly and partially restored by incubation with hydroxylamine (81% reactivation after 28 h with 0.1 M hydroxylamine, pH 9, 25 degrees C). NADH protected the enzyme against inactivation with a Kd (10 microM) very close to the Km (7 microM) for the coenzyme. The ultraviolet difference spectrum of inactivated vs. native enzyme indicated that a single histidyl residue per enzyme subunit was modified by diethyl pyrocarbonate, with a second-order rate constant of 1.8 M-1 s-1 at pH 6 and 25 degrees C. The histidyl residue, however, was not essential for activity because in the presence of NADH it was modified without enzyme inactivation and modification of inactivated enzyme was rapidly reversed by hydroxylamine without concomitant reactivation. Progesterone, in the presence of NAD+, protected the histidyl residue against modification, and this suggests that the residue is located in or near the steroid binding site of the enzyme. Diethyl pyrocarbonate also modified, with unusually high reaction rate, one lysyl residue per enzyme subunit, as demonstrated by dinitrophenylation experiments carried out on the treated enzyme. The correlation between inactivation and modification of lysyl residues at different pHs and the protection by NADH against both inactivation and modification of lysyl residues indicate that this residue is essential for activity and is located in or near the NADH binding site of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Adenosine-5'-phosphosulfate (APS) kinase from Penicillium chrysogenum, loses catalytic activity at temperatures greater than approximately 40 degrees C. When the heat-inactivated enzyme is cooled to 30 degrees C or lower, activity is regained in a time-dependent process. At an intermediary temperature (e.g. 36 degrees C) an equilibrium between active and inactive forms can be demonstrated. APS kinase from P. chrysogenum is a dimer (Mr = 57,000-60,000) composed of two apparently identical subunits. Three lines of evidence suggest that the reversible inactivation is a result of subunit dissociation and reassociation. (a) Inactivation is a first-order process. The half-time for inactivation at a given temperature is independent of the original enzyme concentration. Reactivation follows second-order kinetics. The half-time for reactivation is inversely proportional to the original enzyme concentration. (b) The equilibrium active/inactive ratio at 36 degrees C increases as the total initial enzyme concentration is increased. However, Keq,app at 5 mM MgATP and 36 degrees C calculated as [inactive sites]2/0.5 [active sites] is near-constant at about 1.7 X 10(-8) M over a 10-fold concentration range of enzyme. (c) At 46 degrees C, the inactive P. chrysogenum enzyme (assayed after reactivation) elutes from a calibrated gel filtration column at a position corresponding to Mr = 33,000. Substrates and products of the APS kinase reaction had no detectable effect on the rate of inactivation. However, MgATP and MgADP markedly stimulated the reactivation process (kapp = 3 X 10(5) M-1 X s-1 at 30 degrees C and 10 mM MgATP). The kapp for reactivation was a nearly linear function of MgATP up to about 20 mM suggesting that the monomer has a very low affinity for the nucleotide compared to that of the native dimer. Keq,app at 36 degrees C increases as the MgATP concentration is increased. The inactivation rate constant increased as the pH was decreased but no pK alpha could be determined. The reactivation rate constant increased as the pH was increased. An apparent pK alpha of 6.4 was estimated.  相似文献   

3.
The method aforementioned (Liu, W. and Tsou, C.L. (1987) Biochim. Biophys. Acta 916, 455-464) for the study of the kinetics of irreversible modification of enzyme activity has been applied to the reactivation of guanidine-denatured ribonuclease A, by following the hydrolysis of cyclic CMP during refolding upon diluting a guanidine-denatured enzyme with a substrate-containing buffer. Appropriate equations have been derived to deal with the kinetics of the substrate reaction during the course of activation, while the product formed, 3'CMP, is a competitive inhibitor. When the overall process consists of multiple first-order reactions, the individual rate constants could be obtained by suitable semilogarithmic plots. Moreover, in certain cases, it can be distinguished from the shapes of the plots, whether the overall process consists of parallel or consecutive first-order reactions. The kinetics for the reactivation reaction has been compared to that for the refolding of the substrate binding site, as indicated by complex formation with the competitive inhibitor, 2'CMP, and for the refolding of the molecule as a whole. At pH 6.0 and 25 degrees C, only monophasic first-order reactions could be detected by manual mixing for both the reactivation and the refolding processes. At lower temperatures (0-10 degrees C), both processes consist of two first-order reactions. In all cases, the same rate constants have been obtained for the refolding and reactivation reactions.  相似文献   

4.
The effect of trehalose (0.5 M) on the thermal stability of cutinase in the alkaline pH range was studied. The thermal unfolding induced by increasing temperature was analyzed in the absence and in the presence of trehalose according to a two-state model (which assumes that only the folded and unfolded states of cutinase were present). Trehalose delays the reversible unfolding. The midpoint temperature of the unfolding transition (Tm) increases by 4.0 degrees C and 2. 6 degrees C at pH 9.2 and 10.5, respectively, in the presence of trehalose. At pH 9.2 the thermal unfolding occurs at higher temperatures (Tm is 52.6 degrees C compared to 42.0 degrees C at pH 10.5) and a refolding yield of around 80% was obtained upon cooling. This pH value was chosen to study the irreversible inactivation (long-term stability) of cutinase. Temperatures in the transition range from folded to unfolded state were selected and the rate constants of irreversible inactivation determined. Inactivation followed first-order kinetics and trehalose reduced the observed rate constants of inactivation, pointing to a stabilizing effect on the irreversible inactivation step of thermal denaturation. However, if the contribution of reversible unfolding on the irreversible inactivation of cutinase was taken into account, i.e., considering the fraction of cutinase molecules in the reversible unfolded conformation, the intrinsic rate constants can be calculated. Based on the intrinsic rate constants it was concluded that trehalose does not delay the irreversible inactivation. This conclusion was further supported by comparing the activation energy of the irreversible inactivation in the absence and in the presence of trehalose. The apparent activation energy in the absence and in the presence of trehalose were 67 and 99 Kcal/mol, respectively. The activation energy calculated from intrinsic rate constants was higher in the absence (30 Kcal/mol) than in the presence of trehalose (16 Kcal/mol), showing that kinetics of the irreversible inactivation step increased in the presence of trehalose. In fact, trehalose stabilized only the reversible step of thermal denaturation of cutinase.  相似文献   

5.
The irreversible thermal inactivation of the sugarcane leaf NADP(+)-malic enzyme was studied at 50 degrees C and pH 7.0 and 8.0. Depending on the preincubation conditions, thermal inactivation followed mono- or biphasic first-order kinetics. A two-step behavior in the irreversible denaturation process was found when protein concentration was sufficiently low. The protein concentration necessary to obtain monlphasic thermal inactivation kinetics was lower at pH 8.0 than at pH 7.0. The results suggest that biphasic inactivation kinetics are the consequence of the existence of two different oligomeric forms of the enzyme (dimer and tetramer), with the dimer being more stable in regards to thermal inactivation. The effects of the substrate and essential cofactors on the thermostability and equilibrium between the dimeric and tetrameric enzyme forms were also studied. Depending on the pH, NADP+, L-malate, and Mg2+ all had a protective effect on the stability of the dimeric and tetrameric species during thermal treatment. However, these ligands showed different effects on the aggregation state of the enzyme. NADP+ and L-malate induced dissociation, especially at pH 8.0, whereas Mg2+ induced aggregation of the protein. By studying the thermal inactivation kinetics at 50 degrees C and different pH values it was observed that the equilibrium between dimers and tetramers was dramatically affected in the range of pH 7.0-8.0. These results suggest that an amino acid residue(s) in the protein with an apparent pKa value of 7.7 needs to be deprotonated to stabilize aggregation of the enzyme to the tetrameric form.  相似文献   

6.
NADP+-linked isocitrate dehydrogenase (E.C.1.1.1.42) has been purified to homogeneity from germinating pea seeds. The enzyme is a tetrameric protein (mol wt, about 146,000) made up of apparently identical monomers (subunit mol wt, about 36,000). Thermal inactivation of purified enzyme at 45 degrees and 50 degrees C shows simple first order kinetics. The enzyme shows optimum activity at pH range 7.5-8. Effect of substrate [S] on enzyme activity at different pH (6.5-8) suggests that the proton behaves formally as an "uncompetitive inhibitor". A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.78. On successive dialysis against EDTA and phosphate buffer, pH 7.8 at 0 degrees C, yields an enzymatically inactive protein showing kinetics of thermal inactivation identical to the untreated (native) enzyme. Maximum enzyme activity is observed in presence of Mn2+ and Mg2+ ions (3.75 mM). Addition of Zn2+, Cd2+, Co2+ and Ca2+ ions brings about partial recovery. Other metal ions Fe2+, Cu2+ and Ni2+ are ineffective.  相似文献   

7.
NADP-isocitrate dehydrogenase from Cephalosporium acremonium CW-19 has been inactivated by diethyl pyrocarbonate following a first-order process giving a second-order rate constant of 3.0 m-1. s-1 at pH 6.5 and 25 degrees C. The pH-inactivation rate data indicated the participation of a group with a pK value of 6.9. Quantifying the increase in absorbance at 240 nm showed that six histidine residues per subunit were modified during total inactivation, only one of which was essential for catalysis, and substrate protection analysis would seem to indicate its location at the substrate binding site. The enzyme was not inactivated by 5, 5'-dithiobis(2-nitrobenzoate), N-ethylmaleimide or iodoacetate, which would point to the absence of an essential reactive cysteine residue at the active site. Pyridoxal 5'-phosphate reversibly inactivated the enzyme at pH 7.7 and 5 degrees C, with enzyme activity declining to an equilibrium value within 15 min. The remaining activity depended on the modifier concentration up to about 2 mm. The kinetic analysis of inactivation and reactivation rate data is consistent with a reversible two-step inactivation mechanism with formation of a noncovalent enzyme-pyridoxal 5'-phosphate complex prior to Schiff base formation with a probable lysyl residue of the enzyme. The analysis of substrate protection shows the essential residue(s) to be at the active site of the enzyme and probably to be involved in catalysis.  相似文献   

8.
Incubation of the pyruvate dehydrogenase component isolated from the pigeon breast muscle pyruvate dehydrogenase complex with Mg2+, thiamine pyrophosphate and low concentrations of pyruvic acid in the absence of electron acceptors results in irreversible time-dependent inactivation of the enzyme. The rate of the enzyme inactivation is markedly decreased in the presence of high concentrations of pyruvate; in this case acetoin and acetolactate are detected in the reaction mixture. The enzyme activity is stabilized when the artificial electron acceptor, 2,6-dichlorophenolindophenol, is present in the reaction mixture. The substrate-mediated inactivation of the enzyme is accompanied by incorporation of the 2-[14C]-substrate fragment and labelled thiamine pyrophosphate into the protein fraction. The enzyme reactivation by neutral hydroxylamine and the protective effect of dithiothreitol suggest that the SH-group(s) may be involved in the substrate-mediated inactivation of pyruvate dehydrogenase.  相似文献   

9.
General aspects of the mechanism of antithrombin action were elucidated by a comparison of the inactivation of trypsin by antithrombin with the inactivation of coagulation proteinases by the inhibitor. Bovine antithrombin and bovine trypsin were shown to form an inactive equimolar complex. A non-complexed, proteolytically modified form of antithrombin, electrophoretically identical with that formed in the reaction with coagulation proteinases, was also produced in the reaction with trypsin. In the absence of heparin, the inactivation of trypsin by antithrombin was 20 times faster than the inactivation of thrombin; the second-order rate constant was 1.5 x 10(5)m(-1).s(-1) at 25 degrees C and pH 7.4. However, the inhibition of thrombin was accelerated about 30 times more efficiently by small amounts of heparin than was trypsin inhibition. Dissociation of the antithrombin-trypsin complex at pH 7.4 followed first-order kinetics with a half-life for the complex of about 80h at 25 degrees C. The complex was rapidly and quantitatively dissociated at pH 11, resulting in the liberation of a modified two-chain form of the inhibitor, cleaved at the same Arg-Ser bond as in modified antithrombin released from complexes with thrombin, Factor Xa and Factor IXa. This supports the previous proposal that this bond is the active-site bond of antithrombin. Antisera specific for thrombin-modified antithrombin reacted with purified antithrombin-trypsin complex, indicating that the inhibitor was present in the complex in a form immunologically identical with thrombin-modified antithrombin. The results thus suggest a common mechanism, but different kinetics, for the inhibition of trypsin and coagulation proteinases by antithrombin.  相似文献   

10.
1. The enzyme which splits threonine to acetaldehyde and glycine has been partially purified from rat liver (five- to sixfold purification) and the name threonine aldolase proposed for it. 2. The general properties of threonine aldolase have been studied. The enzyme is unstable to a pH below 5. The pH optimum of the enzyme reaction is at 7.5-7.7. The initial rate of production of acetaldehyde is proportional to the enzyme concentration, and when the enzyme concentration is constant, the production of acetaldehyde is proportional to the time, provided that the substrate is in excess. The enzyme is inhibited by the carbonyl group reagent, hydroxylamine. Attempts to demonstrate that pyridoxal phosphate is a cofactor were unsuccessful. 3. The enzyme splits only L-allothreonine and L-threonine and is inactive against the D-forms of these amino acids. 4. The enzyme reaction on DL-allothreonine follows first order kinetics. From the first order velocity constants and the initial rates of the rates of the reaction at various substrate concentrations the Michaelis constant, Ks, for this substrate has been evaluated. Michaelis constants have also been determined for threonine. 5. The optimum temperature for the enzymatic breakdown of DL-allothreonine at pH 7.65 was found to be 50 degrees C. in phosphate buffer and 48 degrees C. in tris-maleate buffer. The rate of thermal inactivation of the enzyme threonine aldolase obeys a first order reaction. The heat of thermal inactivation was calculated by the aid of the van't Hoff-Arrhenius equation to be 43,000 cal. per mole for the temperature range 41.2-46.6 degrees C. 6. Equivalent amounts of acetaldehyde and glycine were formed from DL-allothreonine and the enzymatic breakdown of DL-allothreonine was found to be irreversible.  相似文献   

11.
R L Charnas  J Fisher  J R Knowles 《Biochemistry》1978,17(11):2185-2189
Incubation of clavulanic acid with the beta-lactamase from Escherichia coli RTEM leads to enzyme-catalyzed depletion of clavulanic acid, to transient inhibition, and to irreversible inactivation of the enzyme. Both the transiently inhibited and the irreversibly inactivated species show a marked increase in the absorbance at 281 nm that is proportional to the decrease in enzyme activity. Hydroxylamine treatment of irreversibly inactivated enzyme restores about one-third of the catalytic activity, with a concomitant decrease in absorbance at 281 nm. Polyacrylamide isoelectric focusing of the irreversibly inactivated enzyme shows three bands of approximately equal intensity, different from native enzyme. Upon hydroxylamine treatment, one of the three bands disappears and now focuses identically with native enzyme. It is evident that the irreversible inactivation of enzyme by an excess of clavulanic acid generates three products, one of which can be reactivated by hydroxylamine.  相似文献   

12.
The Neurospora crassa plasma membrane H+-ATPase is rapidly inactivated in the presence of diethyl pyrocarbonate (DEP). The reaction is pseudo-first-order showing time- and concentration-dependent inactivation with a second-order rate constant of 385-420 M-1.min-1 at pH 6.9 and 25 degrees C. The difference spectrum of the native and modified enzyme has a maximum near 240 nm, characteristic of N-carbethoxyhistidine. No change in the absorbance of the inhibited ATPase at 278 nm or in the number of modifiable sulfhydryl groups is observed, indicating that the inhibition is not due to tyrosine or cysteine modification, and the inhibition is irreversible, ruling out serine residues. Furthermore, pretreatment of the ATPase with pyridoxal phosphate/NaBH4 under the conditions of the DEP treatment does not inhibit the ATPase and does not alter the DEP inhibition kinetics, indicating that the inactivation by DEP is not due to amino group modification. The pH dependence of the inactivation reaction indicates that the essential residue has a pKa near 7.5, and the activity lost as a result of H+-ATPase modification by DEP is partially recovered after hydroxylamine treatment at 4 degrees C. Taken together, these results strongly indicate that the inactivation of the H+-ATPase by DEP involves histidine modification. Analyses of the inhibition kinetics and the stoichiometry of modification indicate that among eight histidines modified per enzyme molecule, only one is essential for H+-ATPase activity. Finally, ADP protects against inactivation by DEP, indicating that the essential residue modified may be located at or near the nucleotide binding site.  相似文献   

13.
Sheep liver 6-phosphogluconate dehydrogenase is shown to be inactivated by diethylpyrocarbonate in a biphasic manner at pH 6.0, 25 degrees C. After allowing for the hydrolysis of the reagent, rate constants of 56 M-1 s-1 and 11.0 M-1 s-1 were estimated for the two processes. The complete reactivation of partially inactivated enzyme by neutral hydroxylamine, the elimination of the possibility that modification of cysteine or tyrosine residues are responsible for inactivation, and the magnitudes of the rate constants for inactivation relative to the experimentally determined value for the reaction of diethylpyrocarbonate with N alpha-acetylhistidine (2.2 M-1 s-1), all suggested that enzyme inactivation occurs solely by modification of histidine residues. Comparison of the experimental plot of residual fractional activity versus the number of modified histidine residues per subunit with simulated plots for three hypothetical models, each predicting biphasic kinetics, indicated that inactivation results from the modification of at most one essential histidine residue per subunit, although it appears that other (non-essential) histidines react independently. This histidine is thought to be His-242 and is present in the active site. Evidence in support of its role in catalysis is briefly discussed. Both 6-phosphogluconate and organic phosphate protect against inactivation, and a kinetic analysis of the protection indicated a dissociation constant of 2.1 X 10(-6) M for the enzyme--6-phosphogluconate complex. NADP+ also protected, but this might be due, at least in part, to a reduction in the effective concentration of diethylpyrocarbonate.  相似文献   

14.
The shikimate pathway enzyme 3-dehydroquinase is very susceptible to inactivation by the group-specific reagent diethyl pyrocarbonate (DEP). Inactivation follows pseudo first-order kinetics and exhibits a second-order rate constant of 148.5 M-1 min-1. An equilibrium mixture of substrate and product substantially protects against inactivation by DEP, suggesting that residues within the active site are being modified. Complete inactivation of the enzyme correlates with the modification of 6 histidine residues/subunit as determined by difference spectroscopy at 240 nm. Enzymic activity can be restored by hydroxylamine treatment, which is also consistent with the modification occurring at histidine residues. Using the kinetic method of Tsou (Tsou, C.-L. (1962) Sci. Sin. 11, 1535-1558), it was shown that modification of a single histidine residue leads to inactivation. Ligand protection experiments also indicated that 1 histidine residue was protected from DEP modification. pH studies show that the pKa for this inactivation is 6.18, which is identical to the single pKa determined from the pH/log Vmax profile for the enzyme. A single active site peptide was identified by differential peptide mapping in the presence and absence of ligand. This peptide was found to comprise residues 141-158; of the 2 histidines in this peptide (His-143 and His-146), only one, His-143, is conserved among all type I dehydroquinases. We propose that His-143 is the active site histidine responsible for DEP-mediated inactivation of dehydroquinase and is a good candidate for the general base that has been postulated to participate in the mechanism of this enzyme.  相似文献   

15.
Treatment of Leuconostoc mesenteroides B-512F dextransucrase with diethyl pyrocarbonate (DEP) at pH 6.0 and 25 degrees or photo-oxidation in the presence of Rose Bengal or Methylene Blue at pH 6.0 and 25 degrees, caused a rapid decrease of enzyme activity. Both types of inactivation followed pseudo-first-order kinetics. Enzyme partially inactivated by DEP could be completely reactivated by treatment with 100 mM hydroxylamine at pH 7 and 4 degrees. The presence of dextran partially protected the enzyme from inactivation. At pH 7 or below, DEP is relatively specific for the modification of histidine. DEP-modified enzyme showed an increased absorbance at 240 nm, indicating the presence of (ethoxyformyl)ated histidine residues. DEP modification of the sulfhydryl group of cysteine and of the phenolic group of tyrosine was ruled out by showing that native and DEP-modified enzyme had the same number of sulfhydryl and phenolic groups. DEP modification of the epsilon-amino group of lysine was ruled out by reaction at pH 6 and reactivation with hydroxylamine, which has no effect on DEP-modified epsilon-amino groups. The photo-oxidized enzyme showed a characteristic increase in absorbance at 250 nm, also indicating that histidine had been oxidized, and no decrease in the absorbance at 280 nm, indicating that tyrosine and tryptophan were not oxidized. A statistical, kinetic analysis of the data on inactivation by DEP showed that two histidine residues are essential for the enzyme activity. Previously, it was proposed that two nucleophiles at the active site attack bound sucrose, to give two covalent D-glucosyl-enzyme intermediates. We now propose that in addition, two imidazolium groups of histidine at the active site donate protons to the leaving, D-fructosyl moieties. The resulting imidazole groups then facilitate the formation of the alpha-(1----6)-glycosidic linkage by abstracting protons from the C-6-OH groups, and become reprotonated for the next series of reactions.  相似文献   

16.
灰色链霉菌RX-17溶菌酶R1的纯化及性质研究   总被引:6,自引:0,他引:6  
通过硫酸铵分级沉淀,CM-Sephadex C50、CM-Sepharose Fast Flow离子交换层析及Sephadex G-75凝胶过滤层析,从灰色链霉菌(Streptomyces griseus)RX17的发酵上清液中得到了电泳纯的溶菌酶R1,回收率6.89%。测得该酶分子量和等电点分别为16.8kD和9.10,作用于变链球菌(Streptococcus mutans)Ingbritt的最适温度和pH分别为70℃和6.6。R1酶在50℃以下及pH6~9的范围内保持稳定,60℃保温1h,残存酶活20.3%。Mg2+对酶有激活作用,而Zn2+、Cu2+、Fe2+、Cd2+、Pb2+则使酶完全丧失活性,螯合剂、盐酸羟胺、碘乙酸抑制酶活,β-巯基乙醇及表面活性剂则对溶菌有部分促进作用。R1酶溶菌谱广泛,对多种卵清溶菌酶不能作用的G+、G细菌均有溶解能力,对变链球菌、金黄色葡萄球菌(Staphylococcus aureus)、乳杆菌(Lactobacillus)等则呈现高活性。  相似文献   

17.
p-Hydroxymercuribenzoate is a non-competitive inhibitor of beta-lactamase I from Bacillus cereus and also, after preliminary preincubation, an inactivator of the enzyme. Submitted to the simultaneous action of PCMB plus dicloxacillin, the enzyme completely loses its activity. Extensive dialysis can restore the enzymatic activity only if preincubation had been carried out with either PCMB or dicloxacillin but not if both inhibitors had been simultaneously present. Mercaptoethanol protects the enzyme from the action of PCMB, but not from the severe inactivation caused by dicloxacillin-PCMB mixtures. All these data suggest the formation of a complex between PCMB and the acyl-enzyme intermediate generated upon hydrolysis of the beta-lactam bond of dicloxacillin.  相似文献   

18.
Kinetic studies of irreversible inhibition in recent years have received growing attention owing to their relevance to problems of basic scientific interest as well as to their practical importance. Our studies have been devoted to the characterization of the effects that well-known acetylcholinesterase irreversible inhibitors exert on a carboxylesterase (EST2) from the thermophilic eubacterium Alicyclobacillus acidocaldarius. In particular, sulfonyl inhibitors and the organophosphorous insecticide diethyl-p-nitrophenyl phosphate (paraoxon) have been studied. The incubation of EST2 with sulfonyl inhibitors resulted in a time-dependent inactivation according to a pseudo-first-order kinetics. On the other hand, the EST2 inactivation process elicited by paraoxon, being the inhibition reaction completed immediately after the inhibitor addition, cannot be described as a pseudo-first-order kinetics but is better considered as a high affinity inhibition. The values of apparent rate constants for paraoxon inactivation were determined by monitoring the enzyme/substrate reaction in the presence of the inhibitor, and were compared with those of the sulfonyl inhibitors. The protective effect afforded by a competitive inhibitor on the EST2 irreversible inhibition, and the reactivation of a complex enzyme/irreversible-inhibitor by hydroxylamine and 2-PAM, were also investigated. The data have been discussed in the light of the recently described dual substrate binding mode of EST2, considering that the irreversible inhibitors employed were able to discriminate between the two different binding sites.  相似文献   

19.
The stability of highly purified L-amino acid oxidase from the sand viper venom remains practically unaffected by the pH-value at 4degreesC between pH 5 and 8, whereas a sharp activity fall was observed on both sides of this range. At temperatures above 30 degreesC the enzyme is stable only at pH 5.0--5.5. The inactivation pH values above 5.5 follows a first-order rate equation with characteristic changes in the absorption and emission spectra of the enzyme. The stability of the enzyme is dependent on the temperature of storage. At pH 7.5 there is a stability minimum at --10 degrees and -- 30 degreesC. At -- 72 degreesC the enzyme is stable practically for an unlimited period of time; temperatures exceeding 50 degrees C rapidly lead to complete inactivation. Also in the cold, the L-amino acid oxidase is most stable at pH 5.5. There are characteristic changes in absorption and emission spectra in the temperature-stability minimum (--15 degreesC) and at temperatures above 30degreesC. The inactivations follow a first-order rate equation. The cold inactivation is reversible. The stability of the enzyme is diminished by some anions and cations at 37 degreesC. The cold inactivation is promoted by several inorganic anions; organic anions and ammonium sulfate prevent cold inactivation.  相似文献   

20.
Irreversible thermal inactivation of the tetrameric form of human plasma butyrylcholinesterase (cholinesterase; EC 3.1.1.8) was studied in water and in deuterium oxide at pH 7 in the temperature range 53-65 degrees C. The enzyme inactivation follows a complex kinetics that may be described by the sum of two apparent first-order processes. The Eyring plot for enzyme inactivation exhibits a wavelike discontinuity over a span of 2 C degrees around 58 degrees C. This transition was interpreted in terms of equilibrium between two temperature-dependent conformational states. Though 2H2O does not alter the overall multistep inactivation process, a slight solvent isotope effect was observed: a stabilizing effect and a shift in the transition temperature. A comparison between several enzyme preparations revealed differences in thermodynamic activation parameters of inactivation suggesting microheterogeneity in enzyme structures. Kinetics of inactivation of usual (E1uE1u) and atypical (E1aEa1a++) enzymes were compared. The atypical enzyme was found to be more stable than the usual phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号