首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Li M  Binda C  Mattevi A  Edmondson DE 《Biochemistry》2006,45(15):4775-4784
Current structural results of several flavin-dependent amine oxidizing enzymes including human monoamine oxidases A and B (MAO A and MAO B) show aromatic amino acid residues oriented approximately perpendicular to the flavin ring, suggesting a functional role in catalysis. In the case of human MAO B, two tyrosyl residues (Y398 and Y435) are found in the substrate binding site on the re face of the covalent flavin ring [Binda et al. (2002) J. Biol. Chem. 277, 23973-23976]. To probe the functional significance of this structure, Tyr435 in MAO B was mutated with the amino acids Phe, His, Leu, or Trp, the mutant proteins expressed in Pichia pastoris, and purified to homogeneity. Each mutant protein contains covalent FAD and exhibits a high level of catalytic functionality. No major alterations in active site structures are detected on comparison of their respective crystal structures with that of WT enzyme. The relative k(cat)/K(m) values for each mutant enzyme show Y435 > Y435F = Y435L = Y435H > Y435W. A similar behavior is also observed with the membrane-bound forms of MAO A and MAO B (MAO A Y444 mutant enzymes are found to be unstable on membrane extraction). p-Nitrobenzylamine is found to be a poor substrate while p-nitrophenethylamine is found to be a good substrate for all WT and mutant forms of MAO B. Analysis of these kinetic and structural data suggests the function of the "aromatic cage" in MAO to include a steric role in substrate binding and access to the flavin coenzyme and to increase the nucleophilicity of the substrate amine moiety. These results are consistent with a proposed polar nucleophilic mechanism for catalytic amine oxidation.  相似文献   

2.
Sirtuins are emerging as the key regulators of metabolism and aging, and their potential activators and inhibitors are being explored as therapeutics for improving health and treating associated diseases. Despite the global structural similarity among all seven isoforms of sirtuins (of which most of them catalyze the deacetylation reaction), SIRT5 is the only isoform that catalyzes the cleavage of negatively charged acylated substrates, and the latter feature appears to be encoded by the presence of Tyr102 and Arg105 residues at the active site pocket of the enzyme. To determine the contributions of the above residues in SIRT5 (vis a vis the corresponding residues of SIRT1) on substrate selectivity, inhibition by EX527 and nicotinamide, secondary structural features and thermal stability of the enzymes, we created single and double mutations (viz. Y102A, R105l, and Y102A/R105I) in SIRT5. The kinetic data revealed that while Y102A mutant enzyme catalyzed both deacetylation and desuccinylation reactions with comparable efficiencies, R105I and Y102A/R105I mutant enzymes favored the deacetylase reaction. Like SIRT1, the nicotinamide inhibition of SIRT5 double mutant (Y102A/R105I) exhibited the mixed non-competitive behavior. On the other hand, the desuccinylation reaction of both wild-type and Y102A mutant enzymes conformed to the competitive inhibition model. The inhibitory potency of EX527 progressively increased from Y102A, R105I, to Y102A/R105 mutant enzymes in SIRT5, but it did not reach to the level obtained with SIRT1. The CD spectroscopic data for the wild-type and mutant enzymes revealed changes in the secondary structural features of the enzymes, and such changes were more pronounced on examining their thermal denaturation patterns. A cumulative account of our experimental data reveal mutual cooperation between Y102 and R105 residues in promoting the desuccinylation versus deacetylation reaction in SIRT5, and the overall catalytic feature of the enzyme is manifested via the mutation induced modulation in the protein structure.  相似文献   

3.
Quentmeier A  Li L  Friedrich CG 《FEBS letters》2008,582(25-26):3701-3704
The central protein of the sulfur-oxidizing enzyme system of Paracoccus pantotrophus, SoxYZ, reacts with three different Sox proteins. Its active site Cys110(Y) is on the carboxy-terminus of the SoxY subunit. SoxYZ "as isolated" consisted mainly of the catalytically inactive SoxY-Y(Z)(2) heterotetramer linked by a Cys110(Y)-Cys110(Y) interprotein disulfide. Sulfide activated SoxYZ "as isolated" 456-fold, reduced the disulfide, and yielded an active SoxYZ heterodimer. The reductant tris(2-carboxyethyl)phosphine (TCEP) inactivated SoxYZ. This form was not re-activated by sulfide, which identified it as a different inactive form. In analytical gel filtration, the elution of "TCEP-treated" SoxYZ was retarded compared to active SoxYZ, indicating a conformational change. The possible enzymes involved in the re-activation of each inactive form of SoxYZ are discussed.  相似文献   

4.
Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 Å resolution. The peptide monomer shows a helix trunk with short curved N‐ and C‐termini. In the crystal, two monomers cross in 35° and form an X‐shaped dimer, and each X‐shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two‐stranded, parallel, super long coiled coil rather than a discrete, two‐helix coiled coil of the wild‐type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild‐type leucine zipper, the N‐terminus of the mutant has a dramatic conformational change and the C‐terminus has one more residue Glu 32 determined. The mutant X‐shaped dimer has a large crossing angle of 35° instead of 18° in the wild‐type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self‐assembling protein fibers.  相似文献   

5.
The production of class A beta-lactamases is a major cause of clinical resistance to beta-lactam antibiotics. Some of class A beta-lactamases are known to have a disulfide bridge. Both narrow spectrum and extended spectrum beta-lactamases of TEM and the SHV enzymes possess a disulfide bond between Cys77 and Cys123, and the enzymes with carbapenem-hydrolyzing activity have a well-conserved disulfide bridge between Cys69 and Cys238. We produced A77C/G123C mutant of the extended-spectrum beta-lactamase Toho-1 in order to introduce a disulfide bond between the cysteine residues at positions 77 and 123. The result of 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) titrations confirmed formation of a new disulfide bridge in the mutant. The results of irreversible heat inactivation and circular dichroism (CD) melting experiments indicated that the disulfide bridge stabilized the enzyme significantly. Though kinetic analysis indicated that the catalytic properties of the mutant were quite similar to those of the wild-type enzyme, E. coli producing this mutant showed drug resistance significantly higher than E. coli producing the wild-type enzyme. We speculate that the stability of the enzymes provided by the disulfide bond may explain the wide distribution of TEM and SHV derivatives and explain how various mutations can cause broadened substrate specificity without loss of stability.  相似文献   

6.
The importance of aromatic and charged residues at the surface of the active site of a family 11 xylanase from Aspergillus niger was evaluated using site-directed mutagenesis. Ten mutant proteins were heterologously produced in Pichia pastoris, and their biochemical properties and kinetic parameters were determined. The specific activity of the Y6A, Y10A, Y89A, Y164A, and W172A mutant enzymes was drastically reduced. The low specific activities of Y6A and Y89A were entirely accounted for by a change in k(cat) and K(m), respectively, whereas the lower values of Y10A, Y164A, and W172A were due to a combination of increased K(m) and decreased k(cat). Tyr(6), Tyr(10), Tyr(89), Tyr(164), and Trp(172) are proposed as substrate-binding residues, a finding consistent with structural sequence alignments of family 11 xylanases and with the three-dimensional structure of the A. niger xylanase in complex with the modeled xylobiose. All other variants, D113A, D113N, N117A, E118A, and E118Q, retained full wild-type activity. Only N117A lost its sensitivity to xylanase inhibitor protein I (XIP-I), a protein inhibitor isolated from wheat, and this mutation did not affect the fold of the xylanase as revealed by circular dichroism. The N117A variant showed kinetics, pH stability, hydrolysis products pattern, substrate specificity, and structural properties identical to that of the wild-type xylanase. The loss of inhibition, as measured in activity assays, was due to abolition of the interaction between XIP-I and the mutant enzyme, as demonstrated by surface plasmon resonance and electrophoretic titration. A close inspection of the three-dimensional structure of A. niger xylanase suggests that the binding site of XIP-I is located at the conserved "thumb" hairpin loop of family 11 xylanases.  相似文献   

7.
E J Stewart  F Aslund    J Beckwith 《The EMBO journal》1998,17(19):5543-5550
Cytoplasmic proteins do not generally contain structural disulfide bonds, although certain cytoplasmic enzymes form such bonds as part of their catalytic cycles. The disulfide bonds in these latter enzymes are reduced in Escherichia coli by two systems; the thioredoxin pathway and the glutathione/glutaredoxin pathway. However, structural disulfide bonds can form in proteins in the cytoplasm when the gene (trxB) for the enzyme thioredoxin reductase is inactivated by mutation. This disulfide bond formation can be detected by assessing the state of the normally periplasmic enzyme alkaline phosphatase (AP) when it is localized to the cytoplasm. Here we show that the formation of disulfide bonds in cytoplasmic AP in the trxB mutant is dependent on the presence of two thioredoxins in the cell, thioredoxins 1 and 2, the products of the genes trxA and trxC, respectively. Our evidence supports a model in which the oxidized forms of these thioredoxins directly catalyze disulfide bond formation in cytoplasmic AP, a reversal of their normal role. In addition, we show that the recently discovered thioredoxin 2 can perform many of the roles of thioredoxin 1 in vivo, and thus is able to reduce certain essential cytoplasmic enzymes. Our results suggest that the three most effective cytoplasmic disulfide-reducing proteins are thioredoxin 1, thioredoxin 2 and glutaredoxin 1; expression of any one of these is sufficient to support aerobic growth. Our results help to explain how the reducing environment in the cytoplasm is maintained so that disulfide bonds do not normally occur.  相似文献   

8.
Previous studies of constitutively activated mutants of opsin in the absence of chromophore were carried out in crude cell membranes because such mutants could not be recovered in a detergent-solubilized form in the active state. We employed a strategy in which a stabilizing disulfide bond allowed for successful purification of a constitutively activated mutant opsin, N2C/E113Q/M257Y/D282C, solubilized in nonionic detergent from mammalian cell culture. The purified mutant opsin is able to activate transducin to a higher degree than opsin and may prove useful for future structural studies of the active state of GPCRs.  相似文献   

9.
Our previous results using the Saccharomyces cerevisiae secretion system suggest that intramolecular exchange of disulfide bonds occurs in the folding pathway of human lysozyme in vivo (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 265, 7570-7575). Here we report on the results of introducing an artificial disulfide bond in mutants with 2 cysteine residues substituting for Ala83 and Asp91. The mutant (C83/91) protein was not detected in the culture medium of the yeast, probably because of incorrect folding. Thereupon, 2 cysteine residues Cys77 and Cys95 were replaced with Ala in the mutant C83/91, because a native disulfide bond Cys77-Cys95 was found not necessary for correct folding in vivo (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). The resultant mutant (AC83/91) was secreted as two proteins (AC83/91-a and AC83/91-b) with different specific activities. Amino acid and peptide mapping analyses showed that two glutathiones appeared to be attached to the thiol groups of the cysteine residues introduced into AC83/91-a and that four disulfide bonds including an artificial disulfide bond existed in the AC83/91-b molecule. The presence of cysteine residues modified with glutathione may indicate that the non-native disulfide bond Cys83-Cys91 is not so easily formed as a native disulfide bond. These results suggest that the introduction of Cys83 and Cys91 may act to suppress the process of native disulfide bond formation through disulfide bond interchange in the folding of human lysozyme.  相似文献   

10.
To investigate the roles of tyrosyl residues located near the covalent 8alpha-S-cysteinyl FAD in monoamine oxidase A (MAO A) and to test the suggestion that MAO A and plant polyamine oxidase may have structural homology, tyrosyl to phenylalanyl mutants of MAO A at positions 377, 402, 407, 410, 419, and 444 were constructed and expressed in Saccharomyces cerevisiae. All mutant enzymes were expressed and exhibited lower specific activities as compared to WT MAO A using kynuramine as substrate. The lowest specific activities in this assay are exhibited by the Y407F and Y444F mutant enzymes. On purification and further characterization, these two mutants were found to each contain covalent FAD. Both mutant enzymes are irreversibly inhibited by the MAO A inhibitor clorgyline and exhibit binding stoichiometries of 0.54 (Y407F) and 0.95 (Y444F) as compared to 1.05 for WT MAO A. Y444F MAO A oxidizes kynuramine with a k(cat) <2% of WT enzyme and is greater than 100-fold slower in catalyzing the oxidation of phenylethylamine or of serotonin. In contrast, Y444F MAO A oxidizes p-CF(3)-benzylamine at a rate 25% that of WT enzyme. Steady state and reductive half-reaction stopped-flow data using a series of para-substituted benzylamine analogues show Y444F MAO A exhibits quantitative structure activity relationships (QSAR) properties on analogue binding and rates of substrate oxidation very similar to that exhibited by the WT enzyme (Miller and Edmondson (1999) Biochemistry 38, 13670): log K(d) = -(0.37 +/- ()()0.07)V(W)(x0.1) - 4.5 +/- 0.1; log k(red) = +(2.43 +/- 0.19)sigma + 0.17 +/- 0.05. The Y444F MAO A mutant also exhibits similar QSAR properties on the binding of phenylalkyl side chain amine analogues as WT enzyme: log K(i) = (4.37 +/- 0.51)E(S) + 1.21 +/- 0.77. These data show that mutation of Y444F in MAO A results in a mutant that has lost its ability to efficiently oxidize serotonin (its physiological substrate) but, however, exhibits unaltered quantitative structure-activity parameters in the binding and rate of benzylamine analogues. The mechanism of C-H abstraction is therefore unaltered. The suggestion that polyamine oxidase and monoamine oxidase may have structural homology appears to be valid as regards Y444 in MAO A and Y439 in plant polyamine oxidase.  相似文献   

11.
In vivo formation and stability of engineered disulfide bonds in subtilisin   总被引:9,自引:0,他引:9  
Computer modeling suggested that a disulfide bond could be built into Bacillus amyloliquefaciens subtilisin between positions 22 (wild-type, Thr) and 87 (Ser) or between positions 24 (Ser) and 87 (Ser). Single cysteines were introduced into this cysteine-free protease at positions 22, 24, or 87 by site-directed mutagenesis of the cloned subtilisin gene. The corresponding double-cysteine mutants were constructed, and recombinant plasmids were expressed in Bacillus subtilis. Double-cysteine mutant enzymes were secreted as efficiently as wild-type, and disulfide bonds were formed quantitatively in vivo. These disulfide bonds were introduced approximately 24 A away from the catalytic site and had no detectable effect on either the specific activities or the pH optima of the mutant enzymes. The equilibrium constants for the reduction of the mutant disulfide bonds by dithiothreitol were determined to be 82 +/- 22 and 20 +/- 5 for Cys22/Cys87 and Cys24/Cys87, respectively. Studies of autoproteolytic inactivation of wild-type subtilisin support a relationship between autolytic stability and conformational stability of the protein. The stabilities of Cys24/Cys87 and wild-type enzymes to autolysis were essentially the same; however, Cys22/Cys87 was actually less stable to autolysis. Reduction of the disulfide cross-bridge lowered the autolytic stability of both double-cysteine mutants relative to their disulfide forms. This correlates with a lowered autolytic stability for the Cys22 and Cys87 single-cysteine mutants, and the fact that an intramolecular hydrogen bond between the hydroxyl groups of Thr22 and Ser87 is likely to be disrupted in the Cys22 and Cys87 single-cysteine mutant proteins.  相似文献   

12.
The molecular forms of proteinase A, proteinase B and Car?ypeptidase Y, enzymes of the lysosome like yeast vacuole, were studied in mutants (Wolf,D.H. and Fink,G.R. (1975) J. Bacteriol. 123, 1150–1156;Wolf,D.H. and Ehmann,C. (1978) FEBS Lett. 92, 121–124;Mechler,B. and Wolf,D.H. (1981) Eur. J. Biochem. 121, 47–52) defective in genes, which appear to be structural genes of the respective enzymes. According to the immunochemical reactivity of proteinase protein, mutants could be divided into three classes: 1) Mutants harboring no immunoreactive proteinase material. 2) Mutants synthesizing proteinase precursor molecules of similar size as wild type, which are transferred into mature proteins, which are, however, completely inactive. 3) Mutants synthesizing proteinase precursor-like proteins, which are not processed into the mature proteins. As measured in the car?y-peptidase Y mutant strain the mutant precursor car?ypeptidase Y is rapidly degraded. A pleiotropic mutation (pep4-3) resulting in low activities of five vacuolar enzymes had been shown to accumulate pro-car?ypeptidase Y like immunoreactive material (Hemmings,B.A., Zubenko,G.S., Hasilik,A., and Jones,E.W. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 435–439). We found that this mutant is also defective in processing the proteinase B precursor, whereas no cross-reactive proteinase A molecule could be detected under the conditions employed.  相似文献   

13.
Five mutant forms of glucoamylase (GA) from the filamentous fungus Aspergillus awamori with artificial disulfide bonds (4D-G137A\A14C, 6D-A14C\Y419C\G137A, 10D-V13C\G396C, 11D-V13C\G396C\A14C\Y419C\G137A, and 20D-G137A\A246C\A14C) were constructed using molecular modeling simulations and experimentally tested for thermostability. The introduction of two additional disulfide bonds between its first and thirteenth α-helices and that of the loop located close to a catalytic residue—E400—made it possible to assess the effects of disulfide bridges on protein thermostability. The mutant proteins with combined amino acid substitutions G137A\A14C, V13C\G396C\A14C\Y419C\G137A, and G137A\A246C\A14C showed higher thermal stability as compared to the wild-type protein. At the same time, new disulfide bridges in the mutant A14C\Y419C\G137A and V13C\G396C proteins led to the destabilization of their structure and the loss of thermal stability.  相似文献   

14.
Chicken cystatin (cC) mutant I66Q is located in the hydrophobic core of the protein and increases the propensity for amyloid formation. Here, we demonstrate that under physiological conditions, the replacement of Ile with the Gln in the I66Q mutant increases the susceptibility for the disulfide bond Cys71–Cys81 to be reduced when compared to the wild type (WT) cC. Molecular dynamics (MD) simulations under conditions favoring cC amyloid fibril formation are in agreement with the experimental results. MD simulations were also performed to investigate the impact of disrupting the Cys71–Cys81 disulfide bond on the conformational stability of cC at the atomic level, and highlighted major disruption to the cC appendant structure. Domain swapping and extensive unfolding has been proposed as one of the possible mechanisms initiating amyloid fibril formation by cystatin. Our in silico studies suggest that disulfide bond formation between residues Cys95 and Cys115 is necessary to maintain conformational stability of the I66Q mutant following breakage of the Cys71–Cys81 disulfide bridge. Subsequent breakage of disulfide bond Cys95–Cys115 resulted in large structural destabilization of the I66Q mutant, which increased the α–β interface distance and expanded the hydrophobic core. These experimental and computational studies provide molecular-level insight into the relationship between disulfide bond formation and progressive unfolding of amyloidogenic cC mutant I66Q.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:23  相似文献   

15.
The sulfur-regulatory circuit of Neurospora crassa consists of a set of unlinked structural genes which encode sulfur-catabolic enzymes and two major regulatory genes which govern their expression. The positive-acting cys-3 regulatory gene is required to turn on the expression of the sulfur-related enzymes, whereas the other regulatory gene, scon, acts in a negative fashion to repress the synthesis of the same set of enzymes. Expression of the cys-3 regulatory gene was found to be controlled by scon and by sulfur availability. The nucleotide sequence of the cys-3 gene was determined and can be translated to yield a protein of molecular weight 25,892 which displays significant homology with the oncogene protein Fos, yeast GCN4 protein, and sea urchin histone H1. Moreover, the putative cys-3 protein has a well-defined leucine zipper element plus an adjacent charged region which together may make up a DNA-binding site. A cys-3 mutant and a cys-3 temperature-sensitive mutant lead to substitutions of glutamine for basic amino acids within the charged region and thus may alter DNA-binding properties of the cys-3 protein.  相似文献   

16.
Sunlight provides the energy source for the assimilation of carbon dioxide by photosynthesis, but it also provides regulatory signals that switch on specific sets of enzymes involved in the alternation of light and dark metabolisms in chloroplasts. Capture of photons by chlorophyll pigments triggers redox cascades that ultimately activate target enzymes via the reduction of regulatory disulfide bridges by thioredoxins. Here we report the structure of the oxidized, low-activity form of chloroplastic fructose-1, 6-bisphosphate phosphatase (FBPase), one of the four enzymes of the Calvin cycle whose activity is redox-regulated by light. The regulation is of allosteric nature, with a disulfide bridge promoting the disruption of the catalytic site across a distance of 20 A. Unexpectedly, regulation of plant FBPases by thiol-disulfide interchange differs in every respect from the regulation of mammalian gluconeogenic FBPases by AMP. We also report a second crystal form of oxidized FBPase whose tetrameric structure departs markedly from D(2) symmetry, a rare event in oligomeric structures, and the structure of a constitutively active mutant that is unable to form the regulatory disulfide bridge. Altogether, these structures provide a structural basis for redox regulation in the chloroplast.  相似文献   

17.
cys-3, the major sulfur regulatory gene of Neurospora crassa, activates the expression of a set of unlinked structural genes which encode sulfur catabolic-related enzymes during conditions of sulfur limitation. The cys-3 gene encodes a regulatory protein of 236 amino acid residues with a leucine zipper and an upstream basic region (the b-zip region) which together may constitute a DNA-binding domain. The b-zip region was expressed in Escherichia coli to examine its DNA-binding activity. The b-zip domain protein binds to the promoter region of the cys-3 gene itself and of cys-14, the sulfate permease II structural gene. A series of CYS3 mutant proteins obtained by site-directed mutagenesis were expressed and tested for function, dimer formation, and DNA-binding activity. The results demonstrate that the b-zip region of cys-3 is critical for both its function in vivo and specific DNA-binding in vitro.  相似文献   

18.
N S Reading  S D Aust 《Biochemistry》2001,40(27):8161-8168
Phanerochaete chrysosporium manganese peroxidase (MnP) [isoenzyme H4] was engineered with additional disulfide bonds to provide structural reinforcement to the proximal and distal calcium-binding sites. This rational protein engineering investigated the effects of multiple disulfide bonds on the stabilization of the enzyme heme environment and oxidase activity. Stabilization of the heme environment was monitored by UV-visible spectroscopy based on the electronic state of the alkaline transition species of ferric and ferrous enzyme. The optical spectral data confirm an alkaline transition to hexacoordinate, low-spin heme species for native and wild-type MnP and show that the location of the engineered disulfide bonds in the protein can have significant effects on the electronic state of the enzyme. The addition of a single disulfide bond in the distal region of MnP resulted in an enzyme that maintained a pentacoordinate, high-spin heme at pH 9.0, whereas MnP with multiple engineered disulfide bonds did not exhibit an increase in stability of the pentacoordinate, high-spin state of the enzyme at alkaline pH. The mutant enzymes were assessed for increased stability by incubation at high pH. In comparison to wild-type MnP, enzymes containing engineered disulfide bonds in the distal and proximal regions of the protein retained greater levels of activity when restored to physiological pH. Additionally, when assayed for oxidase activity at pH 9.0, proteins containing engineered disulfide bonds exhibited slower rates of inactivation than wild-type MnP.  相似文献   

19.
Human lysozyme is made up of 130 amino acid residues and has four disulfide bonds at Cys6-Cys128, Cys30-Cys116, Cys65-Cys81, and Cys77-Cys95. Our previous results using the Saccharomyces cerevisiae secretion system indicate that the individual disulfide bonds of human lysozyme have different functions in the correct in vivo folding and enzymatic activity of the protein (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). In this paper, we report the results of experiments that were focused on the roles of Cys65 and Cys81 in the folding of human lysozyme protein in yeast. A mutant protein (C81A), in which Cys81 was replaced with Ala, had almost the same enzymatic activity and conformation as those of the native enzyme. On the other hand, another mutant (C65A), in which Cys65 was replaced with Ala, was not found to fold correctly. These results indicate that Cys81 is not a requisite for both correct folding and activity, whereas Cys65 is indispensable. The mutant protein C81A is seen to contain a new, non-native disulfide bond at Cys65-Cys77. The possible occurrence of disulfide bond interchange during our mapping experiments cannot be ruled out by the experimental techniques presently available, but characterization of other mutant proteins and computer analysis suggest that the intramolecular exchange of disulfide bonds is present in the folding pathway of human lysozyme in vivo.  相似文献   

20.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) plays a central metabolic role in photosynthetic eukaryotes, and its catabolism is a crucial process for the nutrient economy of higher plants. The rubisco holoenzyme is assembled from eight chloroplast-encoded large subunits and eight nuclear-encoded small subunits. We have identified a cluster of conserved tyrosines at the interface between subunits (comprising Y67, Y68, and Y72 from the betaA-betaB loop of the small subunit and Y226 from the large subunit) that may contribute to holoenzyme stability. To investigate the role of these tyrosines in rubisco structure and in vivo degradation, we have examined site-directed mutants of these residues (Y67A, Y68A, Y72A, and Y226L) in Chlamydomonas reinhardtii. Even if all mutant strains were able to grow photoautotrophically, they exhibited a reduction in rubisco activity and/or the level of expression, especially the Y67A and Y72A mutants. Besides, all mutant rubiscos were inactivated at a lower temperature than the wild type. The kinetics of proteolysis of the mutant enzymes with subtilisin revealed structural alterations, leading to facilitated disassembly (in the cases of Y67A and Y72A) or aggregation propensity (for Y68A and Y226L). When subjected to oxidative stress in vivo through exposure of liquid cultures to hydrogen peroxide, all mutant strains degraded rubisco at a faster rate than the wild type. These results demonstrate that the tyrosine cluster around the betaA-betaB loop of rubisco small subunit plays a stabilizing role by affecting the catalytic activity and the degradation rate of the enzyme in stressed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号