首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We determined the nucleotide sequences of the envelope genes of the Snyder-Theilen and Gardner-Arnstein isolates of feline leukemia virus subgroup B. Comparison of the deduced amino acid sequences of the envelope gene products revealed regions of sequence divergence, which we relate to structural features of the viral protein. We also examined nucleotide sequences within the long terminal repeats of these related isolates of feline leukemia virus subgroup B.  相似文献   

2.
The outcome of feline leukemia virus (FeLV) infection in nature is variable, including malignant, proliferative, and degenerative disorders. The determinants of disease outcome are not well understood but are thought to include viral, host, and environmental factors. In particular, genetic variations in the FeLV long terminal repeat (LTR) and SU gene have been linked to disease outcome. FeLV-945 was previously identified as a natural isolate predominant in non-T-cell neoplastic and nonneoplastic diseases in a geographic cohort. The FeLV-945 LTR was shown to contain unique repeat elements, including a 21-bp triplication downstream of the enhancer. The FeLV-945 SU gene was shown to encode mutational changes in functional domains of the protein. The present study details the outcomes of infection with recombinant FeLVs in which the LTR and envelope (env) gene of FeLV-945, or the LTR only, was substituted for homologous sequences in a horizontally transmissible prototype isolate, FeLV-A/61E. The results showed that the FeLV-945 LTR determined the kinetics of disease. Substitution of the FeLV-945 LTR into FeLV-A/61E resulted in a significantly more rapid disease onset but did not alter the tumorigenic spectrum. In contrast, substitution of both the FeLV-945 LTR and env gene changed the disease outcome entirely. Further, the impact of FeLV-945 env on the disease outcome was dependent on the route of inoculation. Since the TM genes of FeLV-945 and FeLV-A/61E are nearly identical but the SU genes differ significantly, FeLV-945 SU is implicated in the outcome. These findings identify the FeLV-945 LTR and SU gene as determinants of disease.  相似文献   

3.
Friend murine leukemia virus (F-MuLV) and Friend mink cell focus-inducing virus (Fr-MCF) are helper-independent murine retroviruses which induce a rapidly fatal erytholeukemia in NIH Swiss mice. Amphotropic clone 4070 (Ampho) is a murine retrovirus which does not cause leukemia in these animals. Mice inoculated with Ampho, an Fr-MCF/Ampho pseudotype, or F-MuLV developed leukemia in 0, 50, and 100% of animals, respectively. To identify the F-MuLV and Fr-MCF sequences responsible for leukemia, we constructed hybrid viral genomes between these viruses and Ampho, using subgenomic fragments of molecularly cloned viral DNA. Transfection of these hybrid viral DNAs into fibroblasts produces recombinant retroviruses. These new viruses are assayed in vivo for their ability to cause leukemia. Recombinant viruses constructed between the Ampho genome and the Fr-MCF envelope gene do not cause leukemia. Similarly, viruses constructed by using either the Fr-MCF long terminal repeat U3 region or the F-MuLV long terminal repeat U3 region and the remainder of the Ampho genome do not cause leukemia. However, if the Fr-MCF envelope gene plus the Fr-MCF U3 region are joined to Ampho, the resulting virus causes erythroleukemia in 14% of mice. Recombinant viruses made between the Fr-MCF envelope gene, the F-MuLV U3 region, and the remainder of the Ampho genome cause erythroleukemia in 38% of mice. This study demonstrates that both the envelope gene of Fr-MCF and the U3 regions of Fr-MCF and F-MuLV contain sequences which contribute to the leukemic phenotype of helper-independent Friend viruses.  相似文献   

4.
We tested the ability of sequences in the long terminal repeat (LTR) of a mink cell focus-forming (MCF) murine leukemia virus to function as an enhancer in a cell-type-specific manner. In a stable transformation assay, the MCF or Akv LTR and the simian virus 40 enhancer had similar activities in murine fibroblasts. In contrast, the MCF LTR had a significantly greater activity in murine T lymphoid cells than did either the simian virus 40 enhancer or the Akv LTR.  相似文献   

5.
6.
The nucleotide sequence of the integrated avian myeloblastosis virus long terminal repeat has been determined. The sequence is 385 base pairs long and is present at both ends of the viral DNA. The cell-virus junctions at each end consist of a 6-base-pair direct repeat of cell DNA next to the inverted repeat of viral DNA. The long terminal repeat also contains promoter-like sequences, an mRNA capping site, and polyadenylation signals. Several features of this long terminal repeat suggest a structural and functional similarity with sequences of transposable and other genetic elements. Comparison of these sequences with long terminal repeats of other avian retroviruses indicates that there is a great variation in the 3' unique sequence (U3), whereas the 5' specific sequences (U5) and the R region are highly conserved.  相似文献   

7.
8.
9.
The recombinant retrovirus, MoFe2-MuLV (MoFe2), was constructed by replacing the U3 region of Moloney murine leukemia virus (M-MuLV) with homologous sequences from the FeLV-945 LTR. NIH/Swiss mice neonatally inoculated with MoFe2 developed T-cell lymphomas of immature thymocyte surface phenotype. MoFe2 integrated infrequently (0 to 9%) near common insertion sites (CISs) previously identified for either parent virus. Using three different strategies, CISs in MoFe2-induced tumors were identified at six loci, none of which had been previously reported as CISs in tumors induced by either parent virus in wild-type animals. Two of the newly identified CISs had not previously been implicated in lymphoma in any retrovirus model. One of these, designated 3-19, encodes the p101 regulatory subunit of phosphoinositide-3-kinase-gamma. The other, designated Rw1, is predicted to encode a protein that functions in the immune response to virus infection. Thus, substitution of FeLV-945 U3 sequences into the M-MuLV long terminal repeat (LTR) did not alter the target tissue for M-MuLV transformation but significantly altered the pattern of CIS utilization in the induction of T-cell lymphoma. These observations support a growing body of evidence that the distinctive sequence and/or structure of the retroviral LTR determines its pattern of insertional activation. The findings also demonstrate the oligoclonal nature of retrovirus-induced lymphomas by demonstrating proviral insertions at CISs in subdominant populations in the tumor mass. Finally, the findings demonstrate the utility of novel recombinant retroviruses such as MoFe2 to contribute new genes potentially relevant to the induction of lymphoid malignancy.  相似文献   

10.
C S Tailor  D Kabat 《Journal of virology》1997,71(12):9383-9391
The surface (SU) envelope glycoproteins of feline leukemia virus subgroup B (FeLV-B) and amphotropic murine leukemia virus (A-MLV) are highly related, even in the variable regions VRA and VRB that have been shown to be required for receptor recognition. However, FeLV-B and A-MLV use different sodium-dependent phosphate symporters, Pit1 and Pit2, respectively, as receptors for infection. Pit1 and Pit2 are predicted to have 10 membrane-spanning domains and five extracellular loops. The close relationship of the retroviral envelopes enabled us to generate pseudotype virions carrying chimeric FeLV-B/A-MLV envelope glycoproteins. We found that some of the pseudotype viruses could not use Pit1 or Pit2 proteins but could efficiently utilize specific chimeric Pit1/Pit2 proteins as receptors. By studying Mus dunni tail fibroblasts expressing chimeric Pit1/Pit2 proteins and pseudotype virions carrying chimeric FeLV-B/A-MLV envelopes, we show that FeLV-B and A-MLV VRA and VRB interact in a modular manner with specific receptor domains. Our results suggest that FeLV-B VRA interacts with Pit1 extracellular loops 4 and 5 and that residues Phe-60 and Pro-61 of FeLV-B VRA are essential for receptor choice. However, this interaction is insufficient for infection, and an additional interaction between FeLV-B VRB and Pit1 loop 2 is essential. Similarly, A-MLV infection requires interaction of A-MLV VRA with Pit2 loops 4 and 5 and VRB with Pit2 loop 2, with residues Tyr-60 and Val-61 of A-MLV VRA being critical for receptor recognition. Together, our results suggest that FeLV-B and A-MLV infections require two major discrete interactions between the viral SU envelope glycoproteins and their respective receptors. We propose a common two-step mechanism for interaction between retroviral envelope glycoproteins and cell surface receptors.  相似文献   

11.
An infectious NZB xenotropic murine leukemia virus (MuLV) provirus (NZB was molecularly cloned from the Hirt supernatant of NZB-IU-6-infected mink cells, and the nucleotide sequence of its env gene and long terminal repeat (LTR) was determined. The partial nucleotide sequence previously reported for the env gene of NFS-Th-1 xenotropic proviral DNA (Repaske, et al., J. Virol. 46:204-211, 1983) is identical to that of the infectious NZB xenotropic MuLV DNA reported here. Alignment of nucleotide or deduced amino acid sequences, or both, of xenotropic, mink cell focus-forming, and ecotropic MuLV proviral DNAs in the env region identified sequence differences among the three host range classes of C-type MuLVs. Major differences were confined to the 5' half of env; a high degree of homology was found among the three classes of MuLVs in the 3' half of env. Alignment of the nucleotide sequence of the LTR of NZB xenotropic MuLV with those of the LTRs of NFS-Th-1 xenotropic, mink cell focus-forming, and ecotropic MuLVs revealed extensive homology between the LTRs of xenotropic and MCF247 MuLVs. An inserted 6-base-pair repeat 5' to the TATA box was a unique feature of both NZB and NFS-Th-1 xenotropic LTRs.  相似文献   

12.
Polyomavirus mutants were isolated from PCC4 embryonal carcinoma cells infected with a variant strain of polyomavirus (ev 1001h) and were found to contain a tandem duplication overlapping the enhancers and the origin of replication. These mutants were able to infect several lines of embryonal carcinoma cells, including PCC4, F9, and LT1. The sequence and structure of one of these mutants are presented and compared with those of other PyEC PCC4 mutants previously described.  相似文献   

13.
14.
15.
We sequenced the envelope (env) gene and 3' long terminal repeat of a Friend mink cell focus-inducing virus (F-MCFV). We also sequenced the gp70 coding regions for two cDNA clones of another F-MCFV. The deduced amino acid sequence of the env gene products of both F-MCFVs were compared to the corresponding sequences of other MCFVs and of ecotropic viruses. The env polypeptides of the different viruses showed long stretches of homology in the carboxy-terminal half of gp70 and in p15env ("constant region"). The amino-terminal half of gp70 was very similar in all MCFVs, but showed extensive variations relative to the ecotropic viruses ("differential region"). This differential region in all MCFVs is of endogeneous origin. We show evidence that this region carries determinants for ecotropic or polytropic host range. No indication could be found that the env gene products determine the histological type of disease caused by particular MCFVs. When the long terminal repeats of F-MCFV and Friend murine leukemia virus were compared with those of other viruses causing either lymphatic leukemia or erythroleukemia, several nucleotides were localized which might determine the histological type of disease caused by these viruses.  相似文献   

16.
Endogenous feline leukemia virus (FeLV)-related sequences (enFeLV) are a family of proviral elements found in domestic cats and their close relatives. These elements can recombine with exogenous, infectious FeLVs of subgroup A (FeLV-A), giving rise to host range variants of FeLV-B. We found that a subset of defective enFeLV proviruses is highly expressed in lymphoma cell lines and in a variety of primary tissues, including lymphoid tissues from healthy specific-pathogen-free cats. At least two RNA species were detected, a 4.5-kb RNA containing gag, env, and long terminal repeat sequences and a 2-kb RNA containing env and long terminal repeat sequences. Cloning of enFeLV cDNA from two FeLV-free lymphoma cell lines (3201 and MCC) revealed a long open reading frame (ORF) encoding a truncated env gene product corresponding to the N-terminal portion of gp70env. Interestingly, all of three natural FeLV-B isolates include 3' env sequences which are missing from the highly transcribed subset and hence must be derived from other enFeLV elements. The enFeLV env ORF cDNA clones were closely similar to a previously characterized enFeLV provirus, CFE-16, but were polymorphic at a site corresponding to an exogenous FeLV neutralization epitope. Site-specific antiserum raised to a C-terminal 30-amino-acid peptide of the enFeLV env ORF detected an intracellular product of 35 kDa which was also shed from cells in stable form. Expression of the 35-kDa protein correlated with enFeLV RNA levels and was negatively correlated with susceptibility to infection with FeLV-B. Cell culture supernatant containing the 35-kDa protein specifically blocked infection of permissive fibroblast cells with FeLV-B isolates. We suggest that the truncated env protein mediates resistance by receptor blockade and that this form of enFeLV expression mediates the natural resistance of cats to infection with FeLV-B in the absence of FeLV-A.  相似文献   

17.
Retrovirus infection is initiated by the binding of virus envelope glycoprotein to a receptor molecule present on cell membranes. To characterize a receptor for feline leukemia virus (FeLV), we extensively purified the viral envelope glycoprotein, gp70, from culture supernatants of FeLV-61E (subgroup A)-infected cells by immunoaffinity chromatography. Binding of purified 125I-labeled gp70 to the feline T-cell line 3201 was specific and saturable, and Scatchard analysis revealed a single class of receptor binding sites with an average number of 1.6 x 10(5) receptors per cell and an apparent affinity constant (Ka) of 1.15 x 10(9) M-1. Cross-linking experiments identified a putative gp70-receptor complex of 135 to 140 kDa. Similarly, coprecipitation of 125I-labeled cell surface proteins with purified gp70 and a neutralizing but noninterfering anti-gp70 monoclonal antibody revealed a single cell surface protein of approximately 70 kDa. These results indicate that FeLV-A binds to feline T cells via a 70-kDa cell surface protein, its presumptive receptor.  相似文献   

18.
19.
20.
The nucleotide sequence of the 3' long terminal repeat and adjacent viral and host sequences was determined for a bovine leukemia provirus cloned from a bovine tumor. The long terminal repeat was found to comprise 535 nucleotides and to harbor at both ends an imperfect inverted repeat of 7 bases. Promoter-like sequences (Hogness box and CAT box), an mRNA capping site, and a core enhancer-related sequence were tentatively located. No kinship was detected between this bovine leukemia proviral fragment and other retroviral long terminal repeats, including that of human T-cell leukemia virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号