首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
1. The effects of omnivorous exotic species on native communities are often difficult to predict because of the broad diets and behavioural flexibility of the omnivore, and the diverse abiotic and biotic characteristics of invaded systems. We investigated experimentally the effects of a gradient of density of the introduced, omnivorous red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) on two stream communities in southern California, U.S.A. 2. The Ventura River is a clear, flowing stream with a cobble substratum, with abundant algae but low densities of large invertebrates, small herbivores and snails. The Santa Ynez River at the time of the study consisted of a series of drying pools underlain by sand, with abundant charophytes, large predatory invertebrates and herbivores, including snails. 3. In the Ventura River, periphyton biomass and inorganic sediment decreased with increasing crayfish abundance, but in the Santa Ynez River, periphyton and sediment were unrelated to crayfish densities. 4. In the Ventura River, the biomass and density of all benthic invertebrates combined, chironomids, micropredators, the meiofauna (chydorid cladocerans, copepods and ostracods), and specific predatory and herbivorous taxa, as well as taxon richness, were negatively related to crayfish density. In the Santa Ynez River, the biomass and average body size of benthic invertebrates, predatory invertebrates, herbivores and chironomids, but not total invertebrate density or taxon richness, were negatively related to crayfish density. 5. Fewer large predatory invertebrates and snails (Physella gyrina) in both streams, and baetid mayflies in the Ventura River, were visible at night in channels where crayfish were abundant. Snails responded to crayfish by moving above the water line in the Santa Ynez River, but not in the Ventura River. 6. We suggest that the same omnivore had different effects on these neighbouring streams because of crayfish predation on large invertebrates in the Santa Ynez River and the scarcity of such prey in the Ventura River, leading to increased crayfish grazing on periphyton, and reductions in periphyton‐associated invertebrates, in the Ventura River.  相似文献   

2.
The densities of two benthic fishes, the Siberian stone loach (Noemacheilus barbatulus) and the wrinklehead sculpin (Cottus nozawae), and the biomass of their food resources (i.e., periphyton and benthic invertebrates) were compared between forest and grassland streams in northern Hokkaido, Japan, to examine whether riparian deforestation had positive effects on the benthic fishes via enhancement of food availability. The comparisons indicated that riparian vegetation had little influence on periphyton, invertebrates, or fishes. Regression analysis indicated that spatial variations in loach and sculpin densities were explained more by substrate heterogeneity, competitor abundance, or both, rather than by food abundance. However, when the two species were combined as benthic insectivores, a strong correlation was found between total benthic fish density and invertebrate biomass. Our results suggest that, although total benthic fish abundance was food limited, riparian vegetation had no positive effects via food availability on the benthic fishes in our streams.  相似文献   

3.
Ecosystem development in different types of littoral enclosures   总被引:2,自引:2,他引:0  
Vermaat  J. E.  Hootsmans  M. J. M.  van Dijk  G. M. 《Hydrobiologia》1990,200(1):391-398
Macrophyte growth was studied in two enclosure types (gauze and polythene) in a homogeneousPotamogeton pectinatus bed in Lake Veluwe (The Netherlands). The gauze was expected to allow for sufficient exchange with the lake to maintain similar seston densities, the polythene was expected to exclude fish activity and most water exchange. Polythene enclosures held higher totalP. pectinatus biomass (ash-free dry weight, AFDW) than the lake, gauze enclosures were intermediate. The enclosures had a higher abundance of other macrophyte species (Chara sp.,Potamogeton pusillus) than the lake. Seston ash content was not but seston AFDW, periphyton ash content and AFDW were lower in polythene than in gauze enclosures. The difference in plant biomass between gauze and polythene may be attributed to a difference in periphyton density and in seston AFDW due to zooplankton grazing (Rotatoria andDaphnia densities were higher in polythene enclosures). Since seston and periphyton AFDW and ash content were similar in lake and gauze enclosures, the intermediate macrophyte biomass in the gauze enclosures may be explained by reduced wave action and mechanical stress. Alternatively, phytoplankton inhibition by allelopathic excretions from the macrophytes may have caused the high macrophyte biomass in the polythene, and an absence of sediment-disturbing fish the intermediate biomass in the gauze enclosures. Creation of sheltered areas may favour macrophyte growth through both mechanisms and we conclude that this can be an important tool in littoral biomanipulation.  相似文献   

4.
Abundant growths of macrophytes are a common feature of streams in open lowland areas of New Zealand during summer, but the values of these to aquatic biota are poorly understood. We studied the temporal dynamics of, and associations amongst, elements of a macrophyte-invertebrate system to provide an improved information base for lowland stream management. The biomass of macrophytes increased significantly over the four quarterly sampling occasions from 43.8 g m-2 in June to 370.8 g m-2 in March; biomass was dominated by Egeria densa on all dates, except in December when Potamogeton crispus was dominant. We did not detect strong associations between epiphyton biomass and invertebrate abundance in our study, but this may reflect the fact that we sampled loosely-adhering epiphyton on young, surface-reaching shoots whereas invertebrates were collected from macrophytes growing through the water column. Density of some invertebrate species per gram dry weight of plant material varied by macrophyte type, with the chironomids Tanytarsus vespertinus and Naonella forsythi displaying positive correlations with Egeria and Potamogeton biomass, respectively. The shrimp Paratya curvirostris accounted for 50% of phytophilous invertebrate biomass, with Chironomidae the only other group to comprise more than 9%. Abundance of total phytophilous invertebrates displayed a positive linear relationship with macrophyte biomass in a sample (0.1 m2), and a humped relationship with species richness, such that highest numbers of taxa occurred at macrophyte biomass levels around 400 g dw m-2. Our study suggests that intermediate macrophyte biomass levels are likely to enhance macroinvertebrate biodiversity in sandy-bottomed lowland streams. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Summary In the laboratory and field, we examined how periphyton (food of snails) and predatory crayfish influenced snail distribution in Trout Lake, a permanent, northern Wisconsin lake. Laboratory experiments (with no crayfish) tested the importance of periphyton biomass in determining snail preference among rocks, and among rock, sand, and macrophyte substrates. Among rocks with four different amounts of periphyton, periphyton biomass and the number of Lymnaea emarginata, Physa spp., and Amnicola spp. were positively related. A similar, but non-significant, trend occurred for Helisoma anceps. A field experiment at a site in Trout Lake where predation risk was low confirmed the preference by snails for periphyton covered rocks; more snails colonized rocks with periphyton than rocks without. When given a choice of rock, sand, and macrophytes in the laboratory, L. emarginata preferred high periphyton biomass and rock. Laboratory and field results contrasted with the distribution of snails in Trout Lake; no snails occurred in areas with abundant periphyton-covered rocks, but snails were abundant nearby on scattered rocks with little periphyton. However, where snails were absent, crayfish were abundant (14.5 crayfish-trap–1-day–1), and where snails were abundant, crayfish were rare (3.2 crayfish-trap–1-day–1), suggesting that crayfish predation reduced snails. The hypothesis that the negative association between snail and periphyton biomass resulted from snail grazing was supported by the results of a field snail enclosure-exclosure experiment (1 m2 cages; n=3). All experiments and observations therefore suggest that: 1) crayfish predation is more important than a preference for high periphyton biomass in determining snail distribution in Trout Lake; 2) periphyton biomass is negtively related to snail grazing; and 3) crayfish had a positive indirect effect on periphyton by preying on grazing snails.  相似文献   

6.
Patterns in benthic food webs: a role for omnivorous crayfish?   总被引:10,自引:0,他引:10  
1. The biomass and species richness of macrophytes and invertebrates in artificial ponds at two sites in southern Sweden (twenty-one ponds at each site) were investigated. Alkalinity was high at one site (H ponds) and low at the other site (L ponds). The ponds chosen had different densities of signal crayfish (Pacifastacus leniusculus), with mean crayfish abundance (estimated by trapping and expressed as catch per unit effort) significantly higher in the L ponds (10.7) than in the H ponds (4.9). Macrophytes, invertebrates, the amount of periphyton on stones and the organic content of the sediment were determined in each pond. 2. Macrophyte biomass, cover and species richness declined with increasing crayfish density. Macrophyte species composition differed between ponds and was related to crayfish abundance. 3. The total biomass of invertebrates and the biomass of herbivorous/detritivorous invertebrates declined with increasing crayfish abundance, but the biomass of predatory invertebrates declined only in the L ponds. The relative biomass of Gastropoda and Odonata declined in ponds where crayfish were abundant. In ponds where crayfish were abundant the invertebrate fauna was dominated by sediment-dwelling taxa (Sialis (H and L ponds) and Chironomidae (H ponds)). 4. The number of invertebrate taxa in macrophytes declined with increasing crayfish abundance. The percentage of macrophyte-associated invertebrate taxa differed between ponds, but also between sites. The relative biomass of Gastropoda declined in H ponds where crayfish were abundant. In H ponds Trichoptera or Gammarus sp. and Heteroptera dominated where crayfish were abundant, whereas Odonata dominated in L ponds with abundant crayfish. 5. The organic content of the sediment decreased in ponds with high crayfish densities, while the amount of periphyton on stones was not related to crayfish density. 6. We conclude that the signal crayfish may play an important role as a keystone consumer in pond ecosystems, but lower trophic levels did not respond to changes in the abundance of the crayfish according to the trophic cascade model. Omnivorous crayfish may decouple the cascading effect.  相似文献   

7.
Daoust RJ  Childers DL 《Oecologia》2004,141(4):672-686
We conducted a low-level phosphorus (P) enrichment study in two oligotrophic freshwater wetland communities (wet prairies [WP] and sawgrass marsh [SAW]) of the neotropical Florida Everglades. The experiment included three P addition levels (0, 3.33, and 33.3 mg P m–2 month–1), added over 2 years, and used in situ mesocosms located in northeastern Everglades National Park, Fla., USA. The calcareous periphyton mat in both communities degraded quickly and was replaced by green algae. In the WP community, we observed significant increases in net aboveground primary production (NAPP) and belowground biomass. Aboveground live standing crop (ALSC) did not show a treatment effect, though, because stem turnover rates of Eleocharis spp., the dominant emergent macrophyte in this community, increased significantly. Eleocharis spp. leaf tissue P content decreased with P additions, causing higher C:P and N:P ratios in enriched versus unenriched plots. In the SAW community, NAPP, ALSC, and belowground biomass all increased significantly in response to P additions. Cladium jamaicense leaf turnover rates and tissue nutrient content did not show treatment effects. The two oligotrophic communities responded differentially to P enrichment. Periphyton which was more abundant in the WP community, appeared to act as a P buffer that delayed the response of other ecosystem components until after the periphyton mat had disappeared. Periphyton played a smaller role in controlling ecosystem dynamics and community structure in the SAW community. Our data suggested a reduced reliance on internal stores of P by emergent macrophytes in the WP that were exposed to P enrichment. Eleocharis spp. rapidly recycled P through more rapid aboveground turnover. In contrast, C. jamaicense stored added P by initially investing in belowground biomass, then shifting growth allocation to aboveground tissue without increasing leaf turnover rates. Our results suggest that calcareous wetland systems throughout the Caribbean, and oligotrophic ecosystems in general, respond rapidly to low-level additions of their limiting nutrient.  相似文献   

8.
1. In four separate field experiments near Mount St Helens (Washington, U.S.A.) during 1986, the grazing effects of two large benthic herbivores, tadpoles of the tailed frog Ascaphus truei and larvae of the caddisfly Dicosmoecus gilvipes, were investigated using streamside channels and in-stream manipulations. In the experimental channels, abundances of periphyton and small benthic invertebrates declined significantly with increasing density of these larger herbivores. 2. In eleven small, high-gradient streams affected to varying degrees by the May 1980 eruption, in-stream platforms were used to reduce grazing by A, truei tadpoles on tile substrates. Single platforms erected in each tributary and compared to grazed controls revealed only minor grazing effects, and no significant differences among streams varying in disturbance intensity (and, consequently, tadpole density). However, results probably were confounded by high variability among streams in factors other than tadpole abundance. 3. Grazing effects were further examined in two unshaded streams with different tadpole densities, using five platforms per stream. In the stream with five tadpoles m?2, grazing reduced periphyton biomass by 98% and chlorophyll a by 82%. In the stream lacking tadpoles, no significant grazing effects were revealed. Low algal abundance on both platforms and controls, and high invertebrate density in that stream (c. 30000m?2) suggests that grazing by small, vagile invertebrates was approximately equivalent to that of tadpoles. 4. The influence of large benthic herbivores on algal and invertebrate communities in streams of Mount St Helens can be important, but reponses vary spatially in relation to stream disturbance history, local environmental factors, and herbivore distributional patterns and abundance.  相似文献   

9.
Periphyton and benthic invertebrates assemblages were studied at the confluence of two Rocky Mountain streams, Deer Creek and the Snake River near Montezuma, Colorado. Upstream from the confluence the Snake River is acidic and enriched in dissolved trace metals, while Deer Creek is a typical Rocky Mountain stream. In the Snake River, downstream from the confluence, the pH increases and hydrous metal oxides precipitate and cover the streambed. The algal and benthic invertebrate communities in the upstream reaches of the Snake River and in Deer Creek were very different. A liverwort, Scapania undulata var. undulata, was abundant in the Snake River, and although periphyton were very sparse, there were as many benthic invertebrates as in Deer Creek. Downstream from the confleunce, the precipitation of hydrous metal oxides greatly decreased the abundance of periphyton and benthic invertebrates. This study shows that in streams metal precipitates covering the streambed may have a more deleterious effect on stream communities than high metal-ion activities.  相似文献   

10.

Macrophytes and phytoplankton are recognized as having roles in determining alternative stable states in shallow lakes and reservoirs, while the role of periphyton has been poorly investigated. Temporal and spatial variation of phytoplankton, epipelon and epiphyton was examined in a shallow reservoir with high abundance of aquatic macrophytes. The relationships between algae communities and abiotic factors, macrophyte coverage and zooplankton density were also analyzed. Monthly sampling was performed in three zones of the depth gradient of the reservoir. Two phases of algal dominance were found: a phytoplankton phase and epipelon phase. The phase of phytoplankton dominance was characterized by high macrophyte coverage. Rotifera was the dominant zooplankton group in all the zones. Flagellate algae were dominant in phytoplankton, epipelon and epiphyton. Macrophyte coverage was found to be a predictor for algal biomass. Changes in biomass and species composition were associated with macrophyte cover variation, mainly the Nymphaea. In addition to the abiotic factors, the macrophyte coverage was a determining factor for changes to the algal community, contributing to the alternation between dominance phases of phytoplankton and epipelon. The macrophyte–phytoplankton–periphyton relationship needs to be further known in shallow reservoirs, especially the role of epipelon as an alternate stable state.

  相似文献   

11.
Chemically inert, cylindrical rods positioned in the littoral of two eutrophic Alberta lakes supported higher periphytic algal biomass (measured as total chlorophyll a) than nearby morphologically similar culms of Scirpus validus Vahl. during most of the summer. Upon initiation of macrophyte senescence, biomass on the two substrata became more similar. Experiments were conducted to investigate the basis for these observations. Whole extracts of intact vegetative Scirpus culms had no effect on periphyton photosynthesis, suggesting that the natural substrata do not produce water-soluble allelochemicals. Various modifications of the rod surfaces (roughening, wax coating, wax color) were used to test whether surficial properties of Scirpus culms influenced periphyton accumulation. Roughened rods supported levels of biomass similar to those of smooth rods, and both substrata developed structurally complex periphyton communities. Rods covered with paraffin wax had periphyton communities that were lower in biomass and structurally more simple than those on un-coated rods or on Scirpus culms. Coloring of the wax coating had no consistent effect on periphyton accumulation. We hypothesize that the hydrophobic cuticle on actively growing Scirpus culms retards the development of precursors for attachment by periphytic algae. Upon senescence of the culm and loss of epidermal integrity, colonization of culm surfaces by periphytic algae may occur in a manner similar to that on artificial substrata.  相似文献   

12.
1. Hydraulic conditions, periphyton biomass and invertebrate communities were compared on artificial substrates exposed to a range of upstream roughness conditions across an area of uniform current velocity and depth in a gravel-bedded river. The effect of river bed roughness was simulated by installing roughness elements upstream of artificial substrates.
2. Increasing upstream roughness reduced the average near-bed velocity above the substrates and increased short-term variability in velocity (i.e. turbulence).
3. Periphyton chlorophyll a density showed a general decline with near-bed velocity and was significantly lower on the substrates exposed to the river bed reference and 0 mm roughness treatments than the 110 mm roughness elements. Chlorophyll a was also negatively correlated with the abundance of larger collector-browsing invertebrates. This indicates that effects of the changes in hydraulic conditions on invertebrates may have contributed to the observed treatment effects on periphyton.
4. Invertebrate abundance and diversity declined with increasing upstream roughness. Filter-feeders, collector-browsers and predatory invertebrates all declined in abundance with increasing upstream roughness, but the effect was strongest for filter-feeders. Eight of the nine most common taxa showed significant treatment effects. The orthoclad chironomid, Eukiefferiella sp., was not influenced strongly by upstream roughness, but its abundance was correlated significantly with periphyton biomass.  相似文献   

13.
盐沼生态系统环境梯度明显,物种组成较简单,是研究生物多样性与生态系统功能关系的理想对象。本研究以崇明东滩盐沼湿地为研究区域,研究优势种去除对植物群落结构以及底栖动物群落的影响。结果表明:(1)去除处理仅对植物群落分株密度有极显著效应(P0.01)。去除组和对照组物种组成差异随时间增加而减小,处理效应逐渐减弱。(2)去除组底栖动物密度均低于对照组,但差异不显著。(3)盐沼植物群落特征与底栖动物群落有密切关系,植物密度、冠层高度与底栖动物密度相关性极显著。去除优势种后,植物群落分株密度升高,群落内剩余物种占比有所上升,次优势种对群落的补偿效应具有较大贡献;而底栖动物群落密度下降,其生物量和多样性指数的变化趋势与密度并不一致。上述结果表明生物多样性变化影响了盐沼湿地生态系统植物群落和底栖动物群落结构,进而可能影响物质循环和能量流动过程。  相似文献   

14.
Lillie  Richard A.  Evrard  James O. 《Hydrobiologia》1994,279(1):235-246
Waterfowl and limnological data were monitored on Waterfowl Production Area (WPA) wetlands in northwestern Wisconsin over a 6-yr period (1983–88) to determine the impact of macroinvertebrates and macrophytes on waterfowl utilization. Interrelationships between limnological conditions and Waterfowl Breeding Pair Densities (BPDs reported as pairs/ha water surface) were analyzed using correlation and general linear model analysis techniques.Annual changes in waterfowl BPDs differed between wetlands according to differences in the structure of macrophyte communities and basin morphometry. The strength of associations differed between the two dominant waterfowl species. In a wetland dominated by dense stands of submersed vegetation, annual fluctuations in blue-winged teal (Anas discors) BPDs corresponded directly with changes in macrophyte biomass, but not with changes in macroinvertebrate density. In a nearby less densely vegetated wetland of similar water chemistry and trophic status, fluctuations in teal BPDs corresponded directly with changes in macroinvertebrate density, but not with changes in macrophyte biomass. These associations occurred despite a significant positive correlation between macroinvertebrates and macrophyte biomass in the latter habitat. Annual fluctuations in mallard (Anas platyrhynchos) BPDs were not correlated significantly with either macrophyte biomass or macroinvertebrate density in either wetland.  相似文献   

15.
1. Hydraulic conditions, periphyton biomass and invertebrate communities were compared on artificial substrates exposed to a range of upstream roughness conditions across an area of uniform current velocity and depth in a gravel-bedded river. The effect of river bed roughness was simulated by installing roughness elements upstream of artificial substrates.
2. Increasing upstream roughness reduced the average near-bed velocity above the substrates and increased short-term variability in velocity (i.e. turbulence).
3. Periphyton chlorophyll a density showed a general decline with near-bed velocity and was significantly lower on the substrates exposed to the river bed reference and 0 mm roughness treatments than the 110 mm roughness elements. Chlorophyll a was also negatively correlated with the abundance of larger collector-browsing invertebrates. This indicates that effects of the changes in hydraulic conditions on invertebrates may have contributed to the observed treatment effects on periphyton.
4. Invertebrate abundance and diversity declined with increasing upstream roughness. Filter-feeders, collector-browsers and predatory invertebrates all declined in abundance with increasing upstream roughness, but the effect was strongest for filter-feeders. Eight of the nine most common taxa showed significant treatment effects. The orthoclad chironomid, Eukiefferiella sp., was not influenced strongly by upstream roughness, but its abundance was correlated significantly with periphyton biomass.  相似文献   

16.
The faunal composition of “interrhizon” invertebrate communities associated with submerged parts of three kinds of macrophytes, Eichhornia crassipes, Gramineae spp. and Polygonum tomentosum, were studied in an oxbow lake, Lake Tundai, with acidic water (pH 3.9–4.4) in the peat swamp area of Central Kalimantan. The pH, turbidity, and chlorophyll-a concentration in the surface waters tended to be higher in macrophyte stands than in open waters near the stands. Thirty-one taxa belonging to three groups of invertebrates, Arachnida, Insecta, especially chironomids, and Isopoda, were found from the root systems, of which insects were the most abundant in every macrophyte stand. The interrhizon invertebrates accounted for 0.16–8.7 g wet wt m?2 among three vegetational stands. The diversity and abundance of interrhizon invertebrates are low in Lake Tundai; this could be due to low pH and/or low productivity in the lake water.  相似文献   

17.
In saline lakes, areal cover and both species and structural diversity of macrophytes often decline as salinity increases. To assess effects of the loss of certain macrophyte growth forms, we characterized benthic and epiphytic invertebrates in three growth forms (thin-stemmed emergents, erect aquatics, and low macroalgae) in oligosaline lakes (0.8–4.2 mS cm−1) of the Wyoming High Plains, USA. We also measured the biomass and taxonomic composition of epiphytic and benthic invertebrates in two erect aquatics with very similar structure that are found in both oligosaline (Potamogeton pectinatus) and mesosaline (9.3–23.5 mS cm−1) (Ruppia maritima) lakes. Although total biomass of epiphytic invertebrates varied among oligosaline lakes, the relative distribution of biomass among growth forms was similar. For epiphytic invertebrates, biomass per unit area of lake was lowest in emergents and equivalent in erect aquatics and low macroalgae; biomass per unit volume of macrophyte habitat was greatest in low macroalgae. For benthic invertebrates, biomass was less beneath low macroalgae than other growth forms. Taxonomic composition did not differ appreciably between growth forms for either benthic or epiphytic invertebrates, except that epiphytic gastropods were more abundant in erect aquatics. Total biomass of epiphytic and benthic invertebrates for the same growth form (erect aquatic) did not differ between oligosaline (Potamogeton pectinatus) and mesosaline (Ruppia maritima) lakes, but taxonomic composition did change. In the oligosaline to mesosaline range, direct toxic effects of salinity appeared important for some major taxa such as gastropods and amphipods. However, indirect effects of salinity, such as loss of macrophyte cover and typically higher nutrient levels at greater salinities, probably have larger impacts on total invertebrate biomass lake-wide.  相似文献   

18.
1. Artificial bryophytes were placed in a shaded and an unshaded New Zealand alpine stream to investigate why invertebrates colonized these structures and, by inference, real plants. Three experiments were conducted to investigate the influence of (i) periphyton and detritus (ii) shelter, and (iii) time, on invertebrate colonization. 2. In the first experiment, seven taxa at the unshaded site displayed a preference for substrata with high detrital and periphyton biomass, presumably reflecting a food relationship. At the shaded, less stable site, only two taxa displayed such a relationship. 3. Reducing substratum ‘stem’ density (i.e. ‘shelter’) in the second experiment had little effect on the biomass of periphyton at each site, and only at the shaded site was detrital biomass reduced on low-density substrata. Abundances of most of the twenty-two invertebrate taxa analysed were unaffected by stem density reduction: densities of only four taxa at the unshaded site, and two at the shaded site were reduced. 4. Stepwise multiple regression showed that invertebrate abundance was little affected by stem density at either site. Indeed, shelter was the primary factor influencing abundance of only two of twenty-two taxa at the unshaded site, and none at the shaded site. Abundances of most taxa were related to periphyton or detrital biomass at each site. 5. The third experiment investigated temporal relationships between invertebrate density, periphyton and detrital biomass, and exposure time of artificial bryophytes. Regression analyses indicated that of twenty-two taxa at the stable, unshaded site, eight were influenced by periphyton biomass, three by detrital biomass, and two by exposure time. At the unstable shaded site, abundances of only eight of twenty-two taxa were significantly related to the measured variables, of which exposure time was most important (four taxa).  相似文献   

19.
Phytophilous macroinvertebrates (PMI) were sampled from the surfaces and surrounding water of two aquatic plant species, Vallisneria americana and Trapa natans, which have substantially different morphologies. It was expected that the plants would harbor invertebrate communities of different structure. Total density of PMI was consistently greater in Vallisneria than inTrapa, e.g. 6× greater per m3 water and 21× greater per m2 leaf surface in August. Each macrophyte harbored taxa that were either significantly more abundant or present only with that macrophyte; the herbivore Galerucella nymphaceae (Coleptera: Chrysomelidae) was abundant on Trapa. Vallisneria harbored 34 taxa vs. 40 taxa in Trapa, but similarity was low (Morisita's C=0.55–0.66). Predaceous invertebrates were more prevalent in Trapa than in Vallisneria, as were larger individuals. Both PMI communities exhibited shifts in size distribution between July and August. Standing crop of Trapa was 3× greater than forVallisneria. These two macrophyte beds clearly support PMI communities of different taxonomic and size structure, which is believed to be related to the differences in macrophyte morphology.  相似文献   

20.
SUMMARY. 1. We tested Krecker's model (1939) which states that the abundance of invertebrates per unit macrophyte biomass varies with plant species and is higher on plants with finely dissected leaves than on plants with broad leaves. The abundance of invertebrates was measured in thirteen lacustrine macrophyte beds in southern Québec, Canada. The model was tested for the total abundance of invertebrates and for the abundances of Chironomidae, Cladocera, Cyclopoida, Gastropoda, Hydracarina, Ostracoda and Trichoptera. 2. More epiphytic invertebrates were found on the dissected Myriophyllum spp. than on the broad-leaved Potamogeton amplifolius Tuckerm, P. robbinsii Oakes and Vallisneria americana Michx. (P<0.01). More invertebrates were also found on P. amplifolius than on P. robbinsii or V. americana (P<0.01). The total abundance of invertebrates was not systematically related to the degree of plant dissection. 3. The abundances of Chironomidae, Cladocera, Cyclopoida, Gastropoda, Hydracarina, Ostracoda and Trichoptera varied on different plant species (P<0.01). Contrary to Krecker's hypothesis, however, macrophytes with finely dissected leaves (Ceratophyllum demersum and Myriophyllum spp.) did not in general support more invertebrates per unit plant biomass than plants with large leaves (Potamogeton amplifolius, P. robbinsii and Vallisneria americana).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号