首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We constructed the plasmid pTTB151 in which the E. coli bioB gene was expressed under the control of the tac promoter. Conversion of dethiobiotin to biotin was demonstrated in cell-free extracts of E. coli carrying this plasmid. The requirements for this biotin-forming reaction included fructose-1,6-bisphosphate, Fe2+, S-adenosyl-L-methionine, NADPH, and KCl, as well as dethiobiotin as the substrate. The enzymes were partially purified from cell-free extracts by a procedure involving ammonium sulfate fractionation. Our results suggest that an unidentified enzyme(s) besides the bioB gene product is obligatory for the conversion of dethiobiotin to biotin.  相似文献   

2.
Bacteriophage T4 gene 1 and 42 amber mutants (defective in deoxynucleoside monophosphate kinase and deoxycytidylate hydroxymethylase, respectively) are able to synthesize DNA in cell-free lysates prepared as described by Barry and Alberts (1972), in contrast to their inabliity to do so in plasmolyzed and toluenized cell systems. Addition of extracts containing an active gene 1 or 42 product has no effect on synthesis in lysates defective in the respective gene. Thus, if these enzymes do play additional direct roles in replication, these roles are not manifest in the lysed-cell system. The gene 42 mutant am N122/m, a double mutant bearing an additional defect in DNA polymerase, is unable to synthesize DNA in these lysates. This inability is overcome by addition of extracts containing an active T4 DNA polymerase. m is a leaky amber mutation which reduces DNA polymerase activity to a very low level. However, this level is high enough to allow positive genetic complementation tests with gene 43 mutants. Two other gene 42 amber mutants contain additional defects: am 269 induces only half the normal level of DNA polymerase, and am C87 fails to induce a detectable level of thymidylate synthetase. These defects do not result from pleiotropic effects of the gene 42 mutations. In plasmolyzed cells, temperature-sensitive gene 42 mutants fail to synthesize DNA under conditions where replication forks and 5-hydroxymethyl-dCTP are present. This supports the idea that the gene 42 protein is directly involved in DNA synthesis.  相似文献   

3.
AIMS: To isolate new fungal strains from subtropical soils and to identify those that produce high cellulase activity. To select microbial strains producing thermostable cellulases with potential application in industry. METHODS AND RESULTS: The new strains Penicillium sp. CR-316 and Penicillium sp. CR-313 have been identified and selected because they secreted a high level of cellulase in media supplemented with rice straw. Analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis, isoelectric focussing and zymography showed that the studied strains secreted multiple enzymes that hydrolyse cellulose. Cellulase activity of Penicillium sp. CR-316, the strain showing higher production, was analysed. Optimum temperature and pH of carboxymethyl cellulase activity were 65 degrees C and pH 4.5, respectively. Activity remained stable after incubation at 60 degrees C and pH 4.5 for 3 h. CONCLUSIONS: Fungal strains that secrete high levels of cellulase activity have been characterized and selected from soil. The isolated strains have complex sets of enzymes for cellulose degradation. Crude cellulase produced by Penicillium sp. CR-316 showed activity and stability at high temperature. SIGNIFICANCE AND IMPACT OF THE STUDY: Two fungal strains with biotechnological potential have been isolated. The strains secrete high levels of cellulase, and one of them, Penicillium sp. CR-316, produces a thermostable cellulase, that makes it a good candidate for industrial applications.  相似文献   

4.
The distribution of glycerol dehydrogenase activity was studied with cell-free extracts of bacteria, yeasts, molds and actinomycetes. High activity was found in 4 strains of bacteria and in 3 strains of molds. The enzymes of bacteria were dependent on NAD+ and those of molds were dependent on NADP+. An isolated gram-positive bacterium, which showed the high activity, was identified as Cellulomonas sp. NT3060. The total and specific activities were associated with growth of this strain and reached the maximum at the early stationary phase. Significant high level activity was detected in cell-free extracts from glycerol and glucose media.  相似文献   

5.
In vitro analysis of the rat liver-type arginase promoter   总被引:1,自引:0,他引:1  
  相似文献   

6.
Saccharomyces cerevisiae X2180-1A synthesizes two forms of asparaginase: L-asparaginase I, an internal constitutive enzyme, and asparaginase II, an external enzyme which is secreted in response to nitrogen starvation. The two enzymes are biochemically and genetically distinct. The structural gene for asparaginase I (asp 1) is closely linked to the trp 4 gene on chromosome IV. The gene controlling the synthesis of asparaginase II is not linked to either the trp 4 or asp 1 genes. The rate of biosynthesis of asparaginase II is unaltered in yeast strains carrying the structural gene mutation for asparaginase I. Asparaginase II has been purified approximately 300-fold from crude extracts of Saccharomyces by heat and pH treatment, ethanol fractionation, ammonium sulfate fractionation followed by Sephadex G-25 chromatography, and DEAE-cellulose chromatography. Multiple activity peaks were obtained which, upon gas chromatographic analysis, exhibit varying mannose to protein ratios. Asparaginase I has been purified approximately 100-fold from crude extracts of Saccharomyces by protamine sulfate treatment, ammonium sulfate fractionation, gel permeation chromatography, and DEAE-cellulose chromatography. No carbohydrate component was observed upon gas chromatographic analysis. Comparative kinetic and analytic studies show the two enzymes have little in common except their ability to hydrolyze L-asparagine to L-aspartic acid and ammonia.  相似文献   

7.
Blatt, L. (University of Wisconsin, Madison), F. E. Dorer, and H. J. Sallach. Occurrence of hydroxypyruvate-l-glutamate transaminase in Escherichia coli and its separation from hydroxypyruvate-phosphate-l-glutamate transaminase. J. Bacteriol. 92:668-675. 1966.-The formation of l-serine from hydroxypyruvate by a transamination reaction with l-glutamate has been demonstrated in extracts of Escherichia coli. The level of activity with hydroxypyruvate is approximately one-tenth that observed with hydroxypyruvate-phosphate in cell-free extracts. The transamination of hydroxypyruvate, but not hydroxypyruvate-phosphate, is inhibited by inorganic phosphate. No marked differences in the levels of activity with hydroxypyruvate were observed in extracts from bacteria grown under different conditions. Heat treatment of enzyme preparations at 65 C rapidly destroys the activity with hydroxypyruvate-phosphate, but not that with hydroxypyruvate. Fractionation of extracts with lithium sulfate and alumina Cgamma resulted not only in a 10-fold purification, but also in a complete separation of the two activities, thereby establishing that two different enzymes are involved in the transamination of hydroxypyruvate and hydroxypyruvate-phosphate. Hydroxypyruvate transaminase is present in two mutants that require serine for growth. The inability of hydroxypyruvate to replace the growth requirement for serine, even to a limited extent, was shown to be due to the inability of the bacteria to accumulate this compound actively.  相似文献   

8.
The recently isolated sulfate reducer Desulfovibrio inopinatus oxidizes hydroxyhydroquinone (1,2,4trihydroxybenzene; HHQ) to 2 mol acetate and 2 mol CO2 (mol substrate)-1, with stoichiometric reduction of sulfate to sulfide. None of the key enzymes of fermentative HHQ degradation, i.e. HHQ-1,2,3,5-tetrahydroxybenzene transhydroxylase or phloroglucinol reductase, were detected in cell-free extracts of D. inopinatus, indicating that this bacterium uses a different pathway for anaerobic HHQ degradation. HHQ was reduced with NADH in cell-free extracts to a nonaromatic compound, which was identified as dihydrohydroxyhydroquinone by its retention time in HPLC separation and by HPLC-mass spectrometry. The compound was identical with the product of chemical reduction of HHQ with sodium borohydride. Dihydrohydroxyhydroquinone was converted stoichiometrically to acetate and to an unknown coproduct. HHQ reduction was an enzymatic activity which was present in the cell-free extract at 0.25-0.30 U (mg protein)-1, with a pH optimum at 7.5. The enzyme was sensitive to sodium chloride, potassium chloride, EDTA, and o-phenanthroline, and exhibited little sensitivity towards sulfhydryl group reagents, such as copper chloride or p-chloromercuribenzoate.  相似文献   

9.
Methanol oxidase produced by the yeast Hansenula polymorpha DL-1 was used for the enzymatic oxidation of methanol to formaldehyde. The kinetics of enzyme and protein release during cell desruption were studied at the laboratory scale with a Braun homogenizer and the pilot plant scale with a Manton–Gaulin homogenizer. Conditions were defined for maximum release and retention of high activity in cell-free extracts. Methanol oxidase was immobilized by adsorption on DEAE-cellulose from enzymes in cell-free extracts or from ammonium sulfate purified purified fractions. The kinetics of formaldehyde formation with both soluble and immobilized enzyme was studied in batch and continuous reactors.  相似文献   

10.
11.
D-Arabinose dehydrogenase has been purified to homogeneity from wild-type Neurospora crassa 74-A (FGSC 262) and from two colonial mutants, col-15a (FGSC 1391) and col-16a (FGSC 1349), found to contain more of the enzyme. The enzymes were characterized by measurement of several kinetic and physicochemical parameters. The enzymes were the same in all characteristics studied thus far. Immunological studied performed with enzyme preparations from the three strains showed antigenic identity and indicated that those colonial strains contain more normal enzyme, rather than the usual amount of an altered "improved" enzyme. Quantitation of the enzyme in crude extracts, performed by single radial immunodiffusion, showed that the colonial strains have twice the level of enzyme as the wild-type strain. Genetic characterization, performed by analysis of meiotic products, heterokaryosis, and reversions, indicated that the difference in D-arabinose dehydrogenase activity detected among the three strains is probably determined by one gene. The genetic control, structural or regulatory of this enzyme activity is different from that determining the morphological alterations exhibited by mutant strains carrying the col-15 or col-16 gene.  相似文献   

12.
Argininosuccinate lyase (AS lyase) deficiency is an inborn error of the urea cycle with extensive clinical and genetic heterogeneity. We investigated the biochemical basis of the enzyme defect and the genetic heterogeneity in this disorder using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting of fibroblast extracts. The AS lyase monomer in control fibroblasts was present in two bands of approximately 51 and approximately 49 Kd. Each of 28 mutant strains had some cross-reactive material (CRM) of the lower (approximately 49 Kd) MW, in quantities ranging from trace to substantial levels. The approximately 51 Kd band was found in only six mutants with near-normal amounts of AS lyase CRM or high residual enzyme activity. The residual AS lyase enzyme activity in a mutant did not necessarily reflect the amount of the 49-51 Kd monomer in that strain. In contrast, there was a strong general correlation between the quantity of 49-51 Kd CRM in a mutant and the frequency of complementation by that mutant. In addition to the CRM of normal molecular weight (MW) (49-51 Kd), the majority of mutants (but not controls) had significant CRM present in one to five bands of MW less than 49 Kd. The immunoprecipitation of at least one of these low MW bands was inhibited by purified human AS lyase. Mutants indistinguishable by clinical, enzymatic, or complementation analysis have been shown to be heterogeneous in their content of AS lyase CRM, greatly extending the number of distinct mutant alleles identified at this locus. These data demonstrate that multiple unique mutations in the structural gene coding for the monomer cause AS lyase deficiency and that the AS lyase monomers made by these mutants may be unstable. Integration of these findings with enzymatic and complementation data has indicated the functional domain of the AS lyase monomer likely to be altered in certain mutants.  相似文献   

13.
The isopropylmalate isomerase in Salmonella typhimurium is the second enzyme specific for leucine biosynthesis. It is a complex enzyme composed of two subunits which are coded for by two genes of the leucine operon, leuC and leuD. The two polypeptides have been shown to copurify through successive ammonium sulfate fractionations and have been identified on sodium dodecyl sulfate-polyacrylamide gels as having molecular weights of 51,000 (leuC gene product) and 23,500 (leuD gene product). They have also been shown to be fairly stable, since in vitro complementation of cell-free extracts of leuC and leuD mutant strains was demonstrated, with only a 40% loss of activity 16 h after preparation of the extracts. The native isopropylmalate isomerase was shown to have a Km for its substrate alpha-isopropylmalate of 3 x 10(-4)M.  相似文献   

14.
We constructed the plasmid pTTB151 in which the E. coli bio B gene was expressed under the control of the tac promoter. Conversion of dethiobiotin to biotin was demonstrated in cell-free extracts of E. coli carrying this plasmid. The requirements for this biotin-forming reaction included fructose-1,6-bisphosphate, Fe2+, S-adenosyl-L-methionine, NADPH, and KCl, as well as dethiobiotin as the substrate. The enzymes were partially purified from cell-free extracts by a procedure involving ammonium sulfate fractionation. Our results suggest that an unidentified enzyme(s) besides the bioB gene product is obligatory for the conversion of dethiobiotin to biotin.  相似文献   

15.
Thymidylate synthetase activity was measured in crude extracts of the yeast Saccharomyces cerevisiae by a sensitive radiochemical assay. Spontaneous non-conditional mutants auxotrophic for thymidine 5'-monophosphate (tmp1) lacked detectable thymidylate synthetase activity in cell-free extracts. In contrast, the parent strains (tup1, -2, or -4), which were permeable to thymidine 5'-monophosphate, contained levels of activity similar to those found in wild-type cells. Specific activity of thymidylate synthetase in crude extracts of normal cells or of cells carrying tup mutations was essentially unaffected by the ploidy or mating type of the cells, by the medium used for growth, by the respiratory capacity of the cells, by concentrations of exogenous thymidine 5'-monophosphate as high as 50 mug/ml, or by subsequent removal of thymidine 5'-monophosphate from the medium. Extracts of a strain bearing the temperature-sensitive cell division cycle mutation cdc21 lacked detectable thymidylate synthetase activity under all conditions tested. Its parent and another mutant (cdc8), which arrests with the same terminal phenotype under restrictive conditions, had normal levels of the enzyme. Cells of a temperature-sensitive thymidine 5'-monophosphate auxotroph arrested with a morphology identical to the cdc21 strain at the nonpermissive temperature and contained demonstrably thermolabile thymidylate synthetase activity. Tetrad analysis and the properties of revertants showed that the thymidylate synthetase defects were a consequence of the same mutation causing, in the auxotrophs, a requirement for thymidine 5'-monophosphate and, in the conditional mutants, temperature sensitivity. Complementation tests indicated that tmp1 and cdc21 are the same locus. These results identify tmp1 as the structural gene for yeast thymidylate synthetase.  相似文献   

16.
The effect of cya and crp mutations on the expression of the activity of nucleoside catabolizing genes has been studied in Escherichia coli. It is found that cya and crp mutants lose their ability to grow on nucleosides as carbon sources in spite of the preservation of the basal levels of nucleoside catabolizing enzymes, found in cell-free extracts of cya and crp mutants. It is shown that cya and crp mutations completely release the influence of the regulatory gene cytR on the activity of uridine phosphorylase (udp gene) and thymidine phosphorylase (tpp gene). On this ground it is assumed that the cytR gene product acts at the level of promotors of the corresponding structural genes, causing their insensitivity to the positive action of cAMP--CRP complex. The same data concerning the effect of cya and crp mutations on cytR regulation have been reported [8], but these authors favoured the hypothesis that the cytR gene product is a repressor protein, which binds to the specific operator.  相似文献   

17.
The activities of five hydrolytic enzymes in the culture filtrate and in cell-free extracts from strains of Streptomyces griseus, differing in macrotetrolide production, have been determined over a fermentation period of 200 h. The specific activities of phosphatase, phosphodiesterase, and adenosine triphosphatase in the medium, and phosphatase and phosphodiesterase in the cell-free extract were lower in the low than in the high producing strain. No significant difference was found between the strains, for adenosine triphosphatase and protease activity in the cell-free extract or protease activity in the medium. The specific activity of esterase was higher in the low than in the high producing strain.  相似文献   

18.
Four independent menaquinone (vitamin K(2))-deficient mutants of Escherichia coli, blocked in the conversion of o-succinylbenzoate (OSB) to 1,4-dihydroxy-2-naphthoate (DHNA), were found to represent two distinct classes. Enzymatic complementation was observed when a cell-free extract of one mutant was mixed with extracts of any of the remaining three mutants. The missing enzymes in the two classes were identified by in vitro complementation with preparations of OSB-coenzyme A (CoA) synthetase or DHNA synthase isolated from Mycobacterium phlei. Mutants lacking DHNA synthase (and therefore complementing with M. phlei DHNA synthase) were designated menB, and the mutant lacking OSB-CoA synthetase (and therefore complementing with M. phlei OSB-CoA synthetase) was designated menE. The menB mutants produced only the spirodilactone form of OSB when extracts were incubated with [2,3-(14)C(2)]OSB, ATP, and CoA; the OSB was unchanged on incubation with an extract from the menE mutant under these conditions. Experiments with strains lysogenized by a lambda men transducing phage (lambdaG68) and transduction studies with phage P1 indicated that the menB and menE genes form part of a cluster of four genes, controlling the early steps in menaquinone biosynthesis, located at 48.5 min in the E. coli linkage map. Evidence was obtained for the clockwise gene order gyrA....menC- 0000100000 0000110000 0011111000 0000111000 0011111000 0001110000 0000110101 0001111111 0001100000 0000100000 0001101100 0011111000 0011000000 0011000000 0111000111 0111101110 -B-D, where the asterisk denotes the uncertain position of menE relative to menC and menB. The transducing phage (lambdaG68) contained functional menB, menC, and menE genes, but only part of the menD gene, and it was designated lambda menCB(D).  相似文献   

19.
Effect of the M (modifier) gene of Escherichia coli W on the expression of wild-type structural genes of four arginine biosynthetic enzymes was studied by examining enzyme activity in cell-free extracts of cultures grown in minimal medium and medium containing arginine. The mutant M gene was originally identified as causing arginine-induced synthesis of acetylornithine delta-transaminase in a strain deficient for the enzyme. The strains used in this study received the mutant M gene by recombination. Noncoordinate repression has been demonstrated for two more enzymes of the arginine regulon of E. coli W and the M(-) gene increases the degree of noncoordinate repression for the regulon. Mutation of the M gene results in altered regulation of acetylornithine delta-transaminase, ornithine transcarbamylase, and acetylornithinase. In addition, a decreased growth rate is observed. It is proposed that the M gene is a regulatory gene. A model is presented to explain the data which involves changes in operator-repressor affinity for the structural genes and possibly for the gene controlling arginyl transfer ribonucleic acid synthetase.  相似文献   

20.
Pseudomonas aeruginosa secretes elastase in a multistep process which begins with the synthesis of a preproelastase (53.6 kDa) encoded by lasB, is followed by processing to proelastase (51 kDa), and concludes with the rapid accumulation of mature elastase (33 kDa) in the extracellular environment. In this study, mutants of P. aeruginosa were constructed by gene replacement which expressed lasB1, an allele altered in vitro at an active-site His-223-encoding codon. The lasB1 allele was exchanged for chromosomal lasB sequences in two strain backgrounds, FRD2 and PAO1, through a selectable-cassette strategy which placed a downstream Tn501 marker next to lasB1 and provided the selection for homologous recombination with the chromosome. Two lasB1 mutants, FRD720 and PDO220, were characterized, and their culture supernatants contained greatly reduced proteolytic (9-fold) and elastolytic (14- to 20-fold) activities compared with their respective parental lasB+ strains. This was primarily due to the effect of His-223 substitution on substrate binding by elastase and thus its proteolytic activity. However, the concentration of supernatant elastase antigen was also reduced (five- to sevenfold) in the mutant strains compared with the parental strains. An immunoblot analysis of cell extracts showed a large accumulation of 51-kDa proelastase within lasB1 mutant cells which was not seen in wild-type cell extracts. A time course study showed that production of extracellular elastase was inefficient in the lasB1 mutants compared with that of parental strains. This showed that expression of an enzymatically defective elastase inhibits proper processing of proelastase and provides further evidence for autoproteolytic processing of proelastase in P. aeruginosa. Unlike the parental strains, culture supernatants of the lasB1 mutants contained two prominent elastase species that were 33 and 36 kDa in size. Extracellular 51-kDa proelastase was barely detectable, even though it accumulated to high concentrations within the lasB1 mutant cells. These data suggest that production of an enzymatically defective elastase affects proper secretion because autoproteolytic processing of proelastase is necessary for efficient localization to the extracellular milieu. The appearance of reduced amounts of extracellular elastase and their sizes of 33 and 36 kDa suggest that lasB1-encoded elastase was processed by alternate, less-efficient processing mechanisms. Thus, proelastase must be processed by removal of nearly all of the 18-kDa propeptide before elastase is a protein competent for extracellular secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号