首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-scale transient expression from mammalian cells is a new technology. Breakthroughs have been achieved for non-viral delivery methods: transfections can now be done at the 1-10 L scale with mammalian cells grown in suspension. Production of 1-20 mg/L of recombinant protein have been obtained in stirred bioreactors. Modified alphaviruses have provided a fast and efficient expression technology based on viral vectors.  相似文献   

2.

Background  

A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E) suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner.  相似文献   

3.
4.
5.
The baculovirus vector systems has been extensively used for the expression of foreign gene products in insect and mammalian cells. New advances increase the possibilities and applications of the baculovirus expression system, which has the capability to express multiple genes simultaneously within a single infected insect cells and to use recombinant virus with mammalian cell-active expression cassettes to permit expression of recombinant proteins in mammalian cells in vitro and in vivo. Future investigations of the baculovirus expression system designed for specific target cells, can open wide variety of applications. This review summarizes the recent achievements in applications the baculovirus vector systems and optimization recombinant protein expression in both insect and mammalian cell lines.  相似文献   

6.
7.
Human cells: new platform for recombinant therapeutic protein production   总被引:1,自引:0,他引:1  
The demand for recombinant therapeutic proteins is significantly increasing. There is a constant need to improve the existing expression systems, and also developing novel approaches to face the therapeutic proteins demands. Human cell lines have emerged as a new and powerful alternative for the production of human therapeutic proteins because this expression system is expected to produce recombinant proteins with post translation modifications more similar to their natural counterpart and reduce the potential immunogenic reactions against nonhuman epitopes. Currently, little information about the cultivation of human cells for the production of biopharmaceuticals is available. These cells have shown efficient production in laboratory scale and represent an important tool for the pharmaceutical industry. This review presents the cell lines available for large-scale recombinant proteins production and evaluates critically the advantages of this expression system in comparison with other expression systems for recombinant therapeutic protein production.  相似文献   

8.

Background  

The development of appropriate expression vectors for large scale protein production constitutes a critical step in recombinant protein production. The use of conventional expression vectors to obtain cell lines is a cumbersome procedure. Often, stable cell lines produce low protein yields and production is not stable over the time. These problems are due to silencing of randomly integrated expression vectors by the surrounding chromatin. To overcome these chromatin effects, we have employed a Bacterial Artificial Chromosome (BAC) as expression vector to obtain stable cell lines suitable for protein production.  相似文献   

9.
Protein hydrolysates as substitutes for serum havebeen employed by many in cell culture mediumformulation, especially with the shift to low proteinor protein-free media. More recently, vegetablehydrolysates have also been added as nutritionalsupplements to fortify the amino acid content in smallpeptide form for batch and fed-batch fermentations. Several of these new hydrolysates (peptones of soy,rice, wheat gluten etc.) were tested as protein-freemedium supplements for the production of a recombinanttherapeutic protein. Multiple peptone-supplemented,continuous perfusion bioreactor experiments wereconducted, varying dilution rates and basal mediumcomposition over the various runs. Cell specificrates and product quality studies were obtained forthe various peptones and compared with peptone-freemedium. The potential for peptones to decreaseintrinsic and proteolytic degradation of the productwas also investigated.It was found that peptones confer a nutritionalbenefit, especially at low dilution rates, for therecombinant BHK cell line used in this investigation.The specific productivity increased 20–30% comparedto the peptone-free controls. However, this benefitwas also fully delivered by using fortified medium inplace of the peptone-enriched media. Therefore, whilepeptones may be considered as useful medium additiveswhen development time is limited, their addition maybe avoided by systematic medium development ifpermitted by the time line of the project.  相似文献   

10.
NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-13C-glucose and 15N-glutamate as labeled precursors. This study suggests that uniformly 15N,13C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.  相似文献   

11.
Recombinant proteins (r-proteins) are increasingly important in fundamental research and for clinical applications. As many of these r-proteins are of human or animal origin, cultivated mammalian cells are the host of choice to ensure their functional folding and proper posttranslational modifications. Large-scale transfection of human embryonic kidney 293 or Chinese hamster ovary cells is now an established technology that can be used in the production of hundreds of milligram to gram quantities of a r-protein in less than 1 mo from cloning of its cDNA. This chapter aims to provide an overview of large-scale transfection technology with a particular emphasis on calcium phosphate and polyethylenimine-mediated gene transfer.  相似文献   

12.
Recombinant glycoprotein therapeutics have proven to be invaluable pharmaceuticals for the treatment of various diseases. Chinese hamster ovary (CHO) cells are widely used in industry for the production of these proteins. Several strategies for engineering CHO cells for improved protein production have been tried with considerable results. The focus has mainly been to increase the specific productivity and to extend the culture longevity by preventing programmed cell death. These CHO cell engineering strategies, particularly those developed in Korea, are reviewed here.  相似文献   

13.
In spite of the generally stable nature of immobilized perfusion culture, its profile of target protein production frequently shows variations. This might be explained by the drift in the metabolism of cultured cells. To address this issue, we performed a set of four Opticell bioreactor cultures producing recombinant anticogulant protein PCGFX. All the cultures lasted 40-50 days with the oxygen consumption rate (OCR) mostly around 10 μmol min−1; nevertheless, glucose and lactate metabolism was fluctuated with a parallel fluctuation in the recombinant protein productivity (RPP). The mean productivity of recombinant PCGFX was determined to be about 1.0 mg day−1 for all the cultures. The statistical analysis revealed a significant correlation between the lactate production rate (LPR) and RPP in two cultures. A significant correlation was further found between average OCR and RPP in another culture where OCR was exceptionally lowered under serum-free conditions. No parameter significantly correlated with RPP in the remaining one culture; thus, the overt drift of RPP resulted, at least partly, from that of the cell metabolic activity and the present data should be helpful to explore a strategy for maximizing productivity.  相似文献   

14.
15.
Methods to increase the production of recombinant proteins in mammalian cell cultures have been developed which reduce in-culture growth through prohibiting progression of the cell cycle. This arrest increases the proportion of cells in the G1-phase of the cell cycle, and subsequently increases their specific productivity (QP). Through careful balancing of the decreased growth rate with an increased QP, multi-fold increases in recombinant protein yield can be achieved.  相似文献   

16.
Protein production of mammalian cells has been promoted by applying a small constant potential to the surface of an electrode on which cells are cultured. Human carcinoma line of MKN45 cells were cultured on the surface of a platinum-coated plastic plate electrode. Low d.c. voltage of constant potential was applied to the electrode during 4-day culture to modulate the production of carcinoembryonic antigen (CEA). The amounts of both secreted and membrane-bound CEA were dependent on the applied potential during culture. Secreted CEA was more than twice in amount in the potential range from 0.2 V to 0.6 V vs. Ag/Agcl as compared with that of normal culture. In the potential range, CEA was also increased in membrane-bound form. The potential-controlled cell culture may have an enhanced effect on protein production.  相似文献   

17.
18.
19.
Shortcut nitrogen removal, that is, removal via formation and reduction of nitrite rather than nitrate, has been observed in membrane-aerated biofilms (MABs), but the extent, the controlling factors, and the kinetics of nitrite formation in MABs are poorly understood. We used a special MAB reactor to systematically study the effects of the dissolved oxygen (DO) concentration at the membrane surface, which is the biofilm base, on nitrification rates, extent of shortcut nitrification, and microbial community structure. The focus was on anoxic bulk liquids, which is typical in MAB used for total nitrogen (TN) removal, although aerobic bulk liquids were also studied. Nitrifying MABs were grown on a hollow-fiber membrane exposed to 3 mg N/L ammonium. The MAB intra-membrane air pressure was varied to achieve different DO concentrations at the biofilm base, and the bulk liquid was anoxic or with 2 g m(-3) DO. With 2.2 and 3.5 g m(-3) DO at the biofilm base, and with an anoxic bulk-liquid, the ammonium fluxes were 0.75 and 1.0 g N m(-2) day(-1), respectively, and nitrite was the main oxidized nitrogen product. However, with membrane DO of 5.5 g m(-3), and either zero or 2 g m(-3) DO in the bulk, the ammonium flux was around 1.3 g N m(-2) day(-1), and nitrate flux increased significantly. For all experiments, the cell density of ammonium oxidizing bacteria (AOB) was relatively uniform throughout the biofilm, but the density of nitrite oxidizing bacteria (NOB) decreased with decreasing biofilm DO. Among NOB, Nitrobacter spp. were dominant in biofilm regions with 2 g m(-3) DO or greater, while Nitrospira spp. were dominant in regions with less than 2 g m(-3) DO. A biofilm model, including AOB, Nitrobacter spp., and Nitrospira spp., was developed and calibrated with the experimental results. The model predicted the greatest extent of nitrite formation (95%) and the lowest ammonium oxidation flux (0.91 g N m(-2) day(-1)) when the membrane DO was 2 g m(-3) and the bulk liquid was anoxic. Conversely, the model predicted the lowest extent of nitrite formation (40%) and the highest ammonium oxidation flux (1.5 g N m(-2) day(-1)) when the membrane-DO and bulk-DO were 8 g m(-3) and 2 g m(-3), respectively. The estimated kinetic parameters for Nitrospira spp., revealed a high affinity for nitrite and oxygen. This explains the dominance of Nitrospira spp. over Nitrobacter spp. in regions with low nitrite and oxygen concentrations. Our results suggest that shortcut nitrification can effectively be controlled by manipulating the DO at the membrane surface. A tradeoff is made between increased nitrite accumulation at lower DO, and higher nitrification rates at higher DO.  相似文献   

20.
A review of over 15 years of research, development and commercialization of plant cell suspension culture as a bioproduction platform is presented. Plant cell suspension culture production of recombinant products offers a number of advantages over traditional microbial and/or mammalian host systems such as their intrinsic safety, cost-effective bioprocessing, and the capacity for protein post-translational modifications. Recently significant progress has been made in understanding the bottlenecks in recombinant protein expression using plant cells, including advances in plant genetic engineering for efficient transgene expression and minimizing proteolytic degradation or loss of functionality of the product in cell culture medium. In this review article, the aspects of bioreactor design engineering to enable plant cell growth and production of valuable recombinant proteins is discussed, including unique characteristics and requirements of suspended plant cells, properties of recombinant proteins in a heterologous plant expression environment, bioreactor types, design criteria, and optimization strategies that have been successfully used, and examples of industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号