首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural killer (NK) cells play a crucial role in the detection and destruction of virally infected and tumor cells during innate immune responses. The cytolytic activity of NK cells is regulated through a balance of inhibitory and stimulatory signals delivered by NK receptors that recognize classical major histocompatabilty complex class I (MHC-I) molecules, or MHC-I homologs such as MICA, on target cells. The Ly49 family of NK receptors (Ly49A through W), which includes both inhibitory and activating receptors, are homodimeric type II transmembrane glycoproteins, with each subunit composed of a C-type lectin-like domain tethered to the membrane by a stalk region. We have determined the crystal structure, at 3.0 A resolution, of the murine inhibitory NK receptor Ly49I. The Ly49I monomer adopts a fold similar to that of other C-type lectin-like NK receptors, including Ly49A, NKG2D and CD69. However, the Ly49I monomers associate in a manner distinct from that of these other NK receptors, forming a more open dimer. As a result, the putative MHC-binding surfaces of the Ly49I dimer are spatially more distant than the corresponding surfaces of Ly49A or NKG2D. These structural differences probably reflect the fundamentally different ways in which Ly49 and NKG2D receptors recognize their respective ligands: whereas the single MICA binding site of NKG2D is formed by the precise juxtaposition of two monomers, each Ly49 monomer contains an independent binding site for MHC-I. Hence, the structural constraints on dimerization geometry may be relatively relaxed within the Ly49 family. Such variability may enable certain Ly49 receptors, like Ly49I, to bind MHC-I molecules bivalently, thereby stabilizing receptor-ligand interactions and enhancing signal transmission to the NK cell.  相似文献   

2.
The Ly49 family of lectin-like receptors in rodents includes both stimulatory and inhibitory members. Although NK alloreactivity in mice is regulated primarily by inhibitory Ly49 receptors, in rats activating Ly49 receptors are equally important. Previous studies have suggested that activating rat Ly49 receptors are triggered by polymorphic ligands encoded within the nonclassical class Ib region of the rat MHC, RT1-CE/N/M, while inhibitory Ly49 receptors bind to widely expressed classical class Ia molecules encoded from the RT1-A region. To further investigate rat Ly49-mediated regulation of NK alloreactivity, we report in this study the identification and characterization of two novel paired Ly49 receptors that we have termed Ly49 inhibitory receptor 5 (Ly49i5) and Ly49 stimulatory receptor 5 (Ly49s5). Using a new mAb (mAb Fly5), we showed that Ly49i5 is an inhibitory receptor that recognizes ligands encoded within the class Ib region of the u and l haplotypes, while the structurally related Ly49s5 is an activating receptor that recognizes class Ib ligands of the u haplotype. Ly49s5 is functionally expressed in the high NK-alloresponder PVG strain, but not in the low alloresponder BN strain, in which it is a pseudogene. Ly49s5 is hence not responsible for the striking anti-u NK alloresponse previously described in BN rats (haplotype n), which results from repeated alloimmunizations with u haplotype cells. The present studies support the notion of a complex regulation of rat NK alloreactivity by activating and inhibitory Ly49 members, which may be highly homologous in the extracellular region and bind similar class Ib-encoded target ligands.  相似文献   

3.
4.
Ly49 recognition of MHC class I (MHC I) can be allele specific. However, the site of interaction on MHC I consists of highly conserved solvent-exposed amino acids, leaving it unclear how allele specificity occurs. In examining the specificity of mouse and rat Ly49, we noticed that MHC I ligands for mouse Ly49G and W, and the rat Ly49i2, typically share the HLA-B7 supertype, defined by a B-pocket that prefers a proline at position 2 in bound peptides. Through mutagenesis, we show that the supertype-defining B-pocket of RT1-A1(c) controls its allele-specific recognition by the syngeneic rat Ly49i2 inhibitory receptor and xenogeneic mouse inhibitory Ly49G and activating Ly49W receptors. Single amino acid substitutions in the B-pocket that did not prevent peptide binding disrupted Ly49 recognition. In contrast, single mutations in other regions of the peptide-binding groove had no effect. We provide a model whereby the B-pocket dictates the conformation of conserved residues at the Ly49 interaction site below, defining Ly49 allele specificity for MHC I. Therefore, at least some Ly49 may recognize supertypes, detectable even across species, and are sensitive to polymorphisms in the supertype-defining B-pocket. This would ensure that expression of specific MHC I supertypes capable of Ag presentation to T cells is sensed by NK cells, and if lacking, targets a cell for elimination, suggesting a supertype-mediated link between innate and adaptive immunity.  相似文献   

5.
The Ly49A NK cell receptor interacts with MHC class I (MHC-I) molecules on target cells and negatively regulates NK cell-mediated target cell lysis. We have recently shown that the MHC-I ligand-binding capacity of the Ly49A NK cell receptor is controlled by the NK cells' own MHC-I. To see whether this property was unique to Ly49A, we have investigated the binding of soluble MHC-I multimers to the Ly49 family receptors expressed in MHC-I-deficient and -sufficient C57BL/6 mice. In this study, we confirm the binding of classical MHC-I to the inhibitory Ly49A, C and I receptors, and demonstrate that detectable MHC-I binding to MHC-I-deficient NK cells is exclusively mediated by these three receptors. We did not detect significant multimer binding to stably transfected or NK cell-expressed Ly49D, E, F, G, and H receptors. Yet, we identified the more distantly related Ly49B and Ly49Q, which are not expressed by NK cells, as two novel MHC-I receptors in mice. Furthermore, we show using MHC-I-sufficient mice that the NK cells' own MHC-I significantly masks the Ly49A and Ly49C, but not the Ly49I receptor. Nevertheless, Ly49I was partly masked on transfected tumor cells, suggesting that the structure of Ly49I is compatible in principal with cis binding of MHC-I. Finally, masking of Ly49Q by cis MHC-I was minor, whereas masking of Ly49B was not detected. These data significantly extend the MHC-I specificity of Ly49 family receptors and show that the accessibility of most, but not all, MHC-I-binding Ly49 receptors is modulated by the expression of MHC-I in cis.  相似文献   

6.
Natural killer (NK) cells play a vital role in the detection and destruction of virally infected and tumor cells during innate immune responses. The highly polymorphic Ly49 family of NK receptors regulates NK cell function by sensing major histocompatibility complex class I (MHC-I) molecules on target cells. Despite the determination of two Ly49-MHC-I complex structures, the molecular features of Ly49 receptors that confer specificity for particular MHC-I alleles have not been identified. To understand the functional architecture of Ly49-binding sites, we determined the crystal structures of Ly49C and Ly49G and completed refinement of the Ly49C-H-2K(b) complex. This information, combined with mutational analysis of Ly49A, permitted a structure-based classification of Ly49s that we used to dissect the binding site into three distinct regions, each having different roles in MHC recognition. One region, located at the center of the binding site, has a similar structure across the Ly49 family and mediates conserved interactions with MHC-I that contribute most to binding. However, the preference of individual Ly49s for particular MHC-I molecules is governed by two regions that flank the central region and are structurally more variable. One of the flanking regions divides Ly49s into those that recognize both H-2D and H-2K versus only H-2D ligands, whereas the other discriminates among H-2D or H-2K alleles. The modular design of Ly49-binding sites provides a framework for predicting the MHC-binding specificity of Ly49s that have not been characterized experimentally.  相似文献   

7.
Mapping the ligand of the NK inhibitory receptor Ly49A on living cells   总被引:1,自引:0,他引:1  
We have used a recombinant, biotinylated form of the mouse NK cell inhibitory receptor, Ly49A, to visualize the expression of MHC class I (MHC-I) ligands on living lymphoid cells. A panel of murine strains, including MHC congenic lines, was examined. We detected binding of Ly49A to cells expressing H-2D(d), H-2D(k), and H-2D(p) but not to those expressing other MHC molecules. Cells of the MHC-recombinant strain B10.PL (H-2(u)) not only bound Ly49A but also inhibited cytolysis by Ly49A(+) effector cells, consistent with the correlation of in vitro binding and NK cell function. Binding of Ly49A to H-2D(d)-bearing cells of different lymphoid tissues was proportional to the level of H-2D(d) expression and was not related to the lineage of the cells examined. These binding results, interpreted in the context of amino acid sequence comparisons and the recently determined three-dimensional structure of the Ly49A/H-2D(d) complex, suggest a role for amino acid residues at the amino-terminal end of the alpha1 helix of the MHC-I molecule for Ly49A interaction. This view is supported by a marked decrease in affinity of an H-2D(d) mutant, I52 M, for Ly49A. Thus, allelic variation of MHC-I molecules controls measurable affinity for the NK inhibitory receptor Ly49A and explains differences in functional recognition in different mouse strains.  相似文献   

8.
NK cell function is regulated by Ly49 receptors in mice and killer cell Ig-like receptors in humans. Although inhibitory Ly49 and killer cell Ig-like receptors predominantly ligate classical MHC class I molecules, recent studies suggest that their activating counterparts recognize infection. The quintessential example is resistance to the mouse CMV in C57BL/6 mice, which depends on the functional recognition of m157, a mouse CMV-encoded MHC class I-like molecule, by Ly49H, an activating NK cell receptor. We have taken advantage of the natural variation in closely related members of the Ly49C-like receptors and the availability of Ly49 crystal structures to understand the molecular determinants of the Ly49H-m157 interaction and to identify amino acid residues discriminating between m157 binding and nonbinding receptors. Using a site-directed mutagenesis approach, we have targeted residues conserved in receptors binding to m157 (Ly49H and Ly49I(129)) but different from receptors lacking m157 recognition (Ly49C, Ly49I(B6), and Ly49U). Wild-type and mutant receptors were transfected into reporter cells, and physical binding as well as functional activation by m157 was studied. Our findings suggested that the Ly49 MHC class I contact "site 2," I226, may not be involved in m157 binding. In contrast, residue Y146 and G151, mapping at the receptor homodimer interface, are likely critical for functional recognition of the m157 glycoprotein. Our combined functional and three-dimensional modeling approach suggested that the architecture of the Ly49H dimer is crucial to accessing m157, but not MHC class I. These results link Ly49 homodimerization variability to the direct recognition of pathogen products.  相似文献   

9.
Activated NK cells mediate potent cytolytic and secretory effector functions and are vital components of the early antiviral immune response. NK cell activities are regulated by the assortment of inhibitory receptors that recognize MHC class I ligands expressed on healthy cells and activating receptors that recognize inducible host ligands or ligands that are not well characterized. The activating Ly49H receptor of mouse NK cells is unique in that it specifically recognizes a virally encoded ligand, the m157 glycoprotein of murine CMV (MCMV). The Ly49H-m157 interaction underlies a potent resistance mechanism (Cmv1) in C57BL/6 mice and serves as an excellent model in which to understand how NK cells are specifically activated in vivo, as similar receptor systems are operative for human NK cells. For transduced cells expressing m157 in isolation and for MCMV-infected cells, we show that m157 is expressed in multiple isoforms with marked differences in abundance between infected fibroblasts (high) and macrophages (low). At the cell surface, m157 is exclusively a glycosylphosphatidylinositol-associated protein in MCMV-infected cells. Through random and site-directed mutagenesis of m157, we identify unique residues that provide for efficient cell surface expression of m157 but fail to activate Ly49H-expressing reporter cells. These m157 mutations are predicted to alter the conformation of a putative m157 interface with Ly49H, one that relies on the position of a critical alpha0 helix of m157. These findings support an emerging model for a novel interaction between this important NK cell receptor and its viral ligand.  相似文献   

10.
The Ly49H activating receptor on C57BL/6 (B6) NK cells plays a key role in early resistance to murine cytomegalovirus (MCMV) infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. The m157 molecule is also recognized by the Ly49I inhibitory receptor from the 129/J mouse strain. The m157 gene is highly sequence variable among MCMV isolates, with many m157 variants unable to bind Ly49H(B6). In this study, we have sought to define if m157 variability leads to a wider spectrum of interactions with other Ly49 molecules and if this modifies host susceptibility to MCMV. We have identified novel m157-Ly49 receptor interactions, involving Ly49C inhibitory receptors from B6, BALB/c, and NZB mice, as well as the Ly49H(NZB) activation receptor. Using an MCMV recombinant virus in which m157(K181) was replaced with m157(G1F), which interacts with both Ly49H(B6) and Ly49C(B6), we show that the m157(G1F)-Ly49C interactions cause no apparent attenuating effect on viral clearance in B6 mice. Hence, when m157 can bind both inhibitory and activation NK cell receptors, the outcome is still activation. Thus, these data indicate that whereas m157 variants predominately interact with inhibitory Ly49 receptors, these interactions do not profoundly interfere with early NK cell responses.  相似文献   

11.
Inhibitory Ly49 receptors expressed on NK cells provide a mechanism for tolerance to normal self tissues. The immunoregulatory tyrosine-based inhibitory motifs present in some Ly49s are able to transmit an inhibitory signal upon ligation by MHC class I ligands. In our system, as well as others, mice transgenic for inhibitory Ly49 receptors express these receptors on both NK and T cells. FVB (H2(q)) mice transgenic for the B6 strain Ly49I (Ly49I(B6)) express the inhibitory Ly49 receptor on the surface of both T and NK cells. Although Ly49I functions to prevent NK-mediated rejection of H2(b) donor bone marrow cells in this transgenic mouse strain, the T cells do not appear to be affected by the expression of the Ly49I transgene. FVB.Ly49I T cells have normal proliferative capabilities both in vitro and in vivo in response to the Ly49I ligand, H2(b). In vivo functional T cell assays were also done, showing that transgenic T cells were not functionally affected. T cells in these mice also appear to undergo normal T cell development and activation. Only upon stimulation with suboptimal doses of anti-CD3 in the presence of anti-Ly49I is T cell proliferation inhibited. These data are in contrast with findings in Ly49A, and Ly49G2 receptor transgenic models. Perhaps Ly49I-H2(b) interactions are weaker or of lower avidity than Ly49A-H-2D(d) interactions, especially in T cells.  相似文献   

12.
Natural killer cells are part of the first line of innate immune defence against virus-infected cells and cancer cells in the vertebrate immune system. They are called 'natural' killers because, unlike cytotoxic T cells, they do not require a previous challenge and preactivation to become active. The Ly49 NK receptors are type II transmembrane glycoproteins, structurally characterized as disulphide-linked homodimers. They share extensive homology with C-type lectins, and they are encoded by a multigene family that in mice maps on chromosome 6. A fine balance between inhibitory and activating signals regulates the function of NK cells. Inhibitory Ly49 molecules bind primarily MHC class I ligands, whereas the ligands for activating Ly49 molecules may include MHC class I, but also interestingly MHC class I-like molecules expressed by viruses, as is the case for Ly49H, which binds the m157 gene product of murine cytomegalovirus. In this study, we review the function and X-ray crystal structure of the Ly49 NK cell receptors hitherto determined (Ly49A, Ly49C and Ly49I), and the structural features of the Ly49/MHC class I interaction as revealed by the X-ray crystal structures of Ly49A/H-2Dd and the recently determined Ly49C/H-2Kb.  相似文献   

13.
NK cells can express both activating and inhibitory Ly49 receptors on their cell surface. When cells expressing both receptors are presented with a ligand, inhibition dominates the functional outcome. In this report we demonstrate that costimulation of the activating Ly49D murine NK cell receptor with IL-12 or IL-18 is capable of over-riding the inhibitory Ly49G2 receptor blockade for cytokine production both in vitro and in vivo. This synergy is mediated by and dependent upon Ly49D-expressing NK cells and results in significant systemic expression of IFN-gamma. This would place NK cells and their activating Ly-49 receptors as important initiators of microbial, antiviral, and antitumor immunity and provide a mechanism for the release of activating Ly49 receptors from inhibitory receptor blockade.  相似文献   

14.
The diversity and ligand specificity of activating Ly-49 receptors expressed by murine NK cells are largely unknown. We cloned a new Ly-49-activating receptor, expressed by NK cells of the nonobese diabetic mouse strain, which we have designated Ly-49W. Ly-49W is highly related to the known inhibitory receptor Ly-49G in its carbohydrate recognition domain, exhibiting 97.6% amino acid identity in this region. We demonstrate that the 4D11 and Cwy-3 Abs, thought to be Ly-49G specific, also recognize Ly-49W. Rat RNK-16 cells transfected with Ly-49W mediated reverse Ab-dependent cellular cytotoxicity of FcR-positive target cells, indicating that Ly-49W can activate NK-mediated lysis. We further show that Ly-49W is allo-MHC specific: Ly-49W transfectants of RNK-16 only lysed Con A blasts expressing H-2(k) or H-2(d) haplotypes, and Ab-blocking experiments indicated that H-2D(k) and D(d) are ligands for Ly-49W. Ly-49W is the first activating Ly-49 receptor demonstrated to recognize an H-2(k) class I product. Ly-49G and Ly-49W represent a new pair of NK receptors with very similar ligand-binding domains, but opposite signaling functions.  相似文献   

15.
Natural Killer (NK) cells are crucial in early resistance to murine cytomegalovirus (MCMV) infection. In B6 mice, the activating Ly49H receptor recognizes the viral m157 glycoprotein on infected cells. We previously identified a mutant strain (MCMVG1F) whose variant m157 also binds the inhibitory Ly49C receptor. Here we show that simultaneous binding of m157 to the two receptors hampers Ly49H-dependent NK cell activation as Ly49C-mediated inhibition destabilizes NK cell conjugation with their targets and prevents the cytoskeleton reorganization that precedes killing. In B6 mice, as most Ly49H+ NK cells do not co-express Ly49C, the overall NK cell response remains able to control MCMVm157G1F infection. However, in B6 Ly49C transgenic mice where all NK cells express the inhibitory receptor, MCMV infection results in altered NK cell activation associated with increased viral replication. Ly49C-mediated inhibition also regulates Ly49H-independent NK cell activation. Most interestingly, MHC class I regulates Ly49C function through cis-interactions that mask the receptor and restricts m157 binding. B6 Ly49C Tg, β2m ko mice, whose Ly49C receptors are unmasked due to MHC class I deficient expression, are highly susceptible to MCMVm157G1F and are unable to control a low-dose infection. Our study provides novel insights into the mechanisms that regulate NK cell activation during viral infection.  相似文献   

16.
Tolerance and alloreactivity of the Ly49D subset of murine NK cells.   总被引:7,自引:0,他引:7  
Class I-specific stimulatory and inhibitory receptors expressed by NK cell subsets contribute to the alloreactive potential of the self-tolerant murine NK cell repertoire. In this report, we have studied potential mechanisms of tolerance to the function of the positive signaling Ly49D receptor in mice that express one of its ligands, H2-Dd. Our results demonstrate that H2-Dd-expressing mice possess a large Ly49D+ subset of NK cells that is functionally capable of rejecting bone marrow cell (BMC) allografts in vivo and lysing allogeneic Con A lymphoblasts in vitro. Also, we show that the Ly49D receptor is responsible for the ability of H2b/d F1 hybrid mice to reject H2d/d parental BMC (hybrid resistance). Thus, deletion or anergy of Ly49D+ cells in H2-Dd+ hosts cannot explain self tolerance. Our functional studies revealed that coexpression of the Dd-specific Ly49A or Ly49G2 inhibitory receptors by Ly49D+ cells resulted in tolerance to Dd+ targets, while coexpression of Kb-specific inhibitory receptors Ly49C/I resulted in tolerance to Kb+ targets. Only in H2d/d cells did Ly49C/I dominantly inhibit Ly49D-Dd stimulation. This correlated with an increased mean fluorescence intensity of Ly49C expression, as well as an increased percentage of Ly49C+ cells in the Ly49D+A/G2- compartment. Therefore, we conclude that self tolerance of the Ly49D subset can be achieved through coexpression of a sufficient level of self-specific inhibitory receptors.  相似文献   

17.
Background NK cell activity is regulated in part by inhibitory receptors that bind to MHC class I molecules. It is possible to enhance NK cell cytotoxicity against tumor cells by preventing the interaction of these inhibitory receptors with their MHC class I ligands. Results In this study, we determined that Ly49G2 is an inhibitory receptor in AKR mice for self-MHC class I, and AKR Ly49G2 has an identical sequence to BALB/c Ly49G2. Blockade of Ly49G2 receptors in vivo resulted in decreased growth of BW-Sp3 lymphoma cells when the tumor cells were given i.v. but not when the tumor cells were inoculated into the flank forming a solid tumor. However, NK cells were involved in inhibiting the growth of BW-Sp3 tumor cells in the flank. Conclusion These data demonstrate that the effectiveness of inhibitory receptor blockade depends upon the tissue location of the tumor cells.  相似文献   

18.
Ly49D is a natural killer (NK) cell activation receptor that is responsible for differential mouse inbred strain-determined lysis of Chinese hamster ovary (CHO) cells. Whereas C57BL/6 NK cells kill CHO, BALB/c-derived NK cells cannot kill because they lack expression of Ly49D. Furthermore, the expression of Ly49D, as detected by monoclonal antibody 4E4, correlates well with CHO lysis by NK cells from different inbred strains. However, one discordant mouse strain was identified; C57L NK cells express the mAb 4E4 epitope but fail to lyse CHO cells. Herein we describe a Ly49 molecule isolated from C57L mice that is recognized by mAb 4E4 (anti-Ly49D). Interestingly, this molecule shares extensive similarity to Ly49D(B6) in its extracellular domain, but its cytoplasmic and transmembrane domains are identical to the inhibitory receptor Ly49A(B6), including a cytoplasmic ITIM. This molecule bears substantial overall homology to the previously cloned Ly49O molecule from 129 mice the serologic reactivity and function of which were undefined. Cytotoxicity experiments revealed that 4E4(+) LAK cells from C57L mice failed to lyse CHO cells and inhibited NK cell function in redirected inhibition assays. MHC class I tetramer staining revealed that the Ly49O(C57L)-bound H-2D(d) and lysis by 4E4(+) C57L LAK cells is inhibited by target H-2D(d). The structural basis for ligand binding was also examined in the context of the recent crystallization of a Ly49A-H-2D(d) complex. Therefore, this apparently "chimeric" Ly49 molecule serologically resembles an NK cell activation receptor but functions as an inhibitory receptor.  相似文献   

19.
NK cells maintain self-tolerance through expression of inhibitory receptors that bind MHC class I (MHC-I) molecules. MHC-I can exist on the cell surface in several different forms, including "peptide-receptive" or PR-MHC-I that can bind exogenous peptide. PR-MHC-I molecules are short lived and, for H-2K(b), comprise approximately 10% of total MHC-I. In the present study, we confirm that signaling through the mouse NK inhibitory receptor Ly49C requires the presence of PR-K(b) and that this signaling is prevented when PR-K(b) is ablated by pulsing with a peptide that can bind to it with high affinity. Although crystallographic data indicate that Ly49C can engage H-2K(b) loaded with high-affinity peptide, our data suggest that this interaction does not generate an inhibitory signal. We also show that no signaling occurs when the PR-K(b) complex has mouse beta(2)-microglobulin (beta(2)m) replaced with human beta(2)m, although replacement with bovine beta(2)m has no effect. Furthermore, we show that beta(2)m exchange occurs preferentially in the PR-K(b) component of total H-2K(b). These conclusions were reached in studies modulating the sensitivity to lysis of both NK-resistant syngeneic lymphoblasts and NK-sensitive RMA-S tumor cells. We also show, using an in vivo model of lymphocyte recirculation, that engrafted lymphocytes are unable to survive NK attack when otherwise syngeneic lymphocytes express human beta(2)m. These findings suggest a qualitative extension of the "missing self" hypothesis to include NK inhibitory receptors that are restricted to the recognition of unstable forms of MHC-I, thus enabling NK cells to respond more quickly to events that decrease MHC-I synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号