首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the structure ofEscherichia coli ribosomal protein S13 in 30S ribosomal subunits, we have previously generated 22 S13 specific monoclonal antibodies and mapped their specific epitopes to the S13 sequence. The availability of these S13 epitopesin situ has been further examined by incubating these monoclonal antibodies with 30S ribosomal subunits and analyzing formation of monoclonal antibody-linked ribosome dimers by sucrose gradients centrifugation. We have found that none of the 22 monoclonal antibodies makes ribosome dimers individually as do typical antisera. However, one monoclonal antibody, designated AS13-MAb 2, reacts with 30S ribosomal subunits to form immunocomplexes sedimenting faster than subunit monomers. When AS13-MAb 2 is paired with any one of three monoclonal antibodies directed to the S13 C-terminal epitopes, dimer formation is observed. Other pairs of monoclonal antibodies directed to distinct S13 epitopes have been tested similarly for dimer formation. Monoclonal antibody AS13-MAb 22, directed to the N-terminal region of 22 residues, also causes subunits to form typical dimers, but only if paired with one of the three monoclonal antibodies directed to the S13 C-terminal region. The close proximity of the epitopes recognized by AS13-MAbs 2 and 22 has been established by the mutual competition between the antibodies binding to intact 30S subunits. These results corroborate our previous observation, using polyclonal antibodies, that S13 has more than one epitope exposed on 30S subunits. Our finding that sequences on both ends of the S13 molecule are immunochemically accessible provides information about the molecular organization of S13in situ.  相似文献   

2.
To analyze the immunochemical structure ofEscherichia coli ribosomal protein S13 and its organizationin situ, we have generated and characterized 22 S13-specific monoclonal antibodies. We used a competitive enzyme-linked immunosorbent assay to divide them into groups based on their ability to inhibit binding of one another. The discovery of five groups with distinct binding properties suggested that a minimum of five distinct determinants on S13 are recognized by our monoclonal antibodies. The locations of the epitopes detected by these monoclonal antibodies have been mapped on S13 peptides. Three monoclonal antibodies bind a S13 C-terminal 34-residue segment. All the other 19 monoclonal antibodies bind a S13N-terminal segment of about 80 residues. The binding sites of these 19 monoclonal antibodies have been further mapped to subfragments of peptides. Two monoclonal antibodies recognized S131–22; three monoclonal antibodies bound to S131–40; the binding sites of three other antibodies have been located in S1323–80, with epitopes possibly associated with residues 40–80. The remaining 11 monoclonal antibodies did not bind to these subfragments. These data provide molecular basis to the structure of S13 epitopes, whosein situ accessibility may reveal the S13 organization on the ribosome.  相似文献   

3.
To analyze the immunochemical structure ofEscherichia coli ribosomal protein S13 and its organizationin situ, we have generated and characterized 22 S13-specific monoclonal antibodies. We used a competitive enzyme-linked immunosorbent assay to divide them into groups based on their ability to inhibit binding of one another. The discovery of five groups with distinct binding properties suggested that a minimum of five distinct determinants on S13 are recognized by our monoclonal antibodies. The locations of the epitopes detected by these monoclonal antibodies have been mapped on S13 peptides. Three monoclonal antibodies bind a S13 C-terminal 34-residue segment. All the other 19 monoclonal antibodies bind a S13N-terminal segment of about 80 residues. The binding sites of these 19 monoclonal antibodies have been further mapped to subfragments of peptides. Two monoclonal antibodies recognized S131–22; three monoclonal antibodies bound to S131–40; the binding sites of three other antibodies have been located in S1323–80, with epitopes possibly associated with residues 40–80. The remaining 11 monoclonal antibodies did not bind to these subfragments. These data provide molecular basis to the structure of S13 epitopes, whosein situ accessibility may reveal the S13 organization on the ribosome.  相似文献   

4.
Four molecules of ribosomal protein L7/L12 are found as two dimers on the Escherichia coli 50 S ribosomal subunit. Immune electron microscopy using monoclonal antibodies directed against two epitopes of protein L7/L12 has allowed placement of elements of each dimer. One monoclonal antibody, directed against a determinant in the COOH-terminal domain, allows localization of two identical determinants at or near the end of the subunit stalk. The same antibody was used to place two additional determinants at the periphery of stalkless subunits, in an area from which a stalk might be expected to project. A second antibody, directed against an epitope in the amino-terminal portion of L7/L12, caused loss of stalks from the 50 S subunits. The micrographs showed symmetrical oligometric complexes of the dissociated dimeric protein with bivalent antibody. Antibodies were also seen to bind to the body of stalkless subunits, in a region near the COOH-terminal sites. The results are explained by a model in which one dimer of protein L7/L12 exists in a folded conformation on the subunit body and the second dimer occurs in an extended conformation in the subunit stalk.  相似文献   

5.
The antigenic structure ofEscherichia coli ribosomal protein S3 has been investigated by use of monoclonal antibodies. Six S3-specific monoclonal antibodies secreted by mouse hybridomas have been identified by immunoblotting of two-dimensional ribosomal protein separation gels. By using a competitive enzyme-linked immunosorbent assay, we have divided these monoclonal antibodies into three mutual inhibition groups, members of which are directed to three distinct regions of the S3 molecule. The independence of these monoclonal antibody-defined regions was confirmed by the failure of pairs of monoclonal antibodies from two inhibition groups to block the binding of biotinylated monoclonal antibodies of the third group. To determine the regions recognized by these monoclonal antibodies, chemically cleaved S3 peptides were fractionated by gel filtration and reverse-phase high-performance liquid chromatography. The fractionated peptides were coated on plates and examined for specific interaction with monoclonal antibody by enzyme immunoassay. In this manner, two epitopes have been mapped at the ends of the S3 molecule: one, in the last 22 residues, is recognized by three monoclonal antibodies; and the second, in the first 21 residues, is defined by two monoclonal antibodies. The third S3 epitope, recognized by a single monoclonal antibody, has been localized in a central segment of about 90 residues by gel electrophoresis and immunoblotting. These epitope-mapped monoclonal antibodies are valuable probes for studying S3 structurein situ.  相似文献   

6.
Monoclonal antibodies to Escherichia coli 50S ribosomes.   总被引:2,自引:1,他引:1       下载免费PDF全文
Hybridoma cell lines that produce monoclonal antibodies directed against 50S Ribosomal proteins have been isolated. Spleen cells (from BALB/c mice immunized with 50S ribosomal subunits extracted from Escherichia coli) were fused to mouse myeloma cell line SP2/O-Ag 14. The initial screening for antibody producing hybridomas was carried out by a double antibody sandwich method; hybridomas were subsequently cloned in soft agar. Antibodies were characterized by their specific binding to individual 50S ribsomal proteins separated on phosphocellulose columns and in two-dimensional polyacrylamide gels. The assignments were confirmed with purified single ribosomal proteins. Of four clones analyzed thus far, two are identical with specificity for r-protein L5. The other clones produce two different antibodies directed against r-protein L20. Each monoclonal antibody formed ribosome dimers visualizable in the electron microscope. Dimers could be reacted with a different second antibody to form chains containing 8 or more ribosomes, which may be useful for structural studies.  相似文献   

7.
Two monoclonal antibodies with specificities for Escherichia coli 50 S ribosomal subunit protein L7/L12 were isolated. The antibodies and Fab fragments thereof were purified by affinity chromatography using solid-phase coupled L7/L12 protein as the immunoadsorbent. The two antibodies were shown to recognize different epitopes; one in the N-terminal and the other in the C-terminal domain of protein L7/L12. Both intact antibodies strongly inhibited polyuridylic acid-directed polyphenylalanine synthesis, ribosome-dependent GTPase activity, and the binding of elongation factor EF-G to the ribosome. Ratios of antibody to ribosome of 4:1 or less were effective in inhibiting these activities. Neither antibody prevented the association of ribosomal subunits to form 70 S ribosomes. The Fab fragments showed similar effects.  相似文献   

8.
The antigenic structure ofEscherichia coli ribosomal protein S3 has been investigated by use of monoclonal antibodies. Six S3-specific monoclonal antibodies secreted by mouse hybridomas have been identified by immunoblotting of two-dimensional ribosomal protein separation gels. By using a competitive enzyme-linked immunosorbent assay, we have divided these monoclonal antibodies into three mutual inhibition groups, members of which are directed to three distinct regions of the S3 molecule. The independence of these monoclonal antibody-defined regions was confirmed by the failure of pairs of monoclonal antibodies from two inhibition groups to block the binding of biotinylated monoclonal antibodies of the third group. To determine the regions recognized by these monoclonal antibodies, chemically cleaved S3 peptides were fractionated by gel filtration and reverse-phase high-performance liquid chromatography. The fractionated peptides were coated on plates and examined for specific interaction with monoclonal antibody by enzyme immunoassay. In this manner, two epitopes have been mapped at the ends of the S3 molecule: one, in the last 22 residues, is recognized by three monoclonal antibodies; and the second, in the first 21 residues, is defined by two monoclonal antibodies. The third S3 epitope, recognized by a single monoclonal antibody, has been localized in a central segment of about 90 residues by gel electrophoresis and immunoblotting. These epitope-mapped monoclonal antibodies are valuable probes for studying S3 structurein situ.  相似文献   

9.
Two monoclonal antibodies against different epitopes in Escherichia coli ribosomal protein L7/L12 were prepared and characterized as reported previously (Sommer, A., Etchison, J.R., Gavino, G., Zecherle, N., Casiano, C., and Traud, R.R. (1985) J. Biol. Chem. 260, 6522-6527). Both antibodies strongly inhibited polyuridylic acid-directed polyphenylalanine synthesis, ribosome-dependent GTPase activity, and the binding of elongation factor G to the ribosome at mole ratios over ribosomes of 4:1 or less. One epitope was shown to be within residues 1-73 (Ab 1-73) and the other within 74-120 (Ab 74-120). Incubation of 50 S ribosomal subunits or 70 S ribosomes with Ab 1-73, but not with Ab 74-120, leads to a partial loss of L7/L12 from the particle with no loss of any other protein. The experiment was repeated with ribosomes reconstituted with pure radioactive L7/L12 of determined specific activity in order to quantify the L7/L12 in the antibody-treated particle. The protein-deficient core particles isolated by sucrose gradient centrifugation after incubation with Ab 1-73 were found to contain, on average, two copies of L7/L12 and one Ab 1-73. The constancy of this stoichiometry in many experiments and the demonstration of Ab 1-73 on all particles indicate the presence of a homogeneous population of ribosomes, each with only one of the two L7/L12 dimers originally present. The results show a difference in the interactions of the two dimers with the ribosome and present a means of preparing ribosomes with one dimer in a specific binding site. The accompanying paper (Olson, H.M., Sommer, A., Tewari, D. S., Traut, R.R., and Glitz, D.G. (1986) J. Biol. Chem. 261, 6924-6932) shows by immune electron microscopy the location of the two antibody-binding sites and the effect of Ab 1-73 on structure.  相似文献   

10.
At the end of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. In x-ray crystal structures of RRF with the Escherichia coli 70S ribosome, RRF binds to the large ribosomal subunit in the cleft that contains the peptidyl transferase center. Upon binding of either E. coli or Thermus thermophilus RRF to the E. coli ribosome, the tip of ribosomal RNA helix 69 in the large subunit moves away from the small subunit toward RRF by 8 Å, thereby disrupting a key contact between the small and large ribosomal subunits termed bridge B2a. In the ribosome crystals, the ability of RRF to destabilize bridge B2a is influenced by crystal packing forces. Movement of helix 69 involves an ordered-to-disordered transition upon binding of RRF to the ribosome. The disruption of bridge B2a upon RRF binding to the ribosome seen in the present structures reveals one of the key roles that RRF plays in ribosome recycling, the dissociation of 70S ribosomes into subunits. The structures also reveal contacts between domain II of RRF and protein S12 in the 30S subunit that may also play a role in ribosome recycling.  相似文献   

11.
The 70 S ribosomes of Escherichia coli were treated with 2-iminothiolane with the resultant addition of 110 sulfhydryl groups per ribosome. The modified ribosomes were oxidized to promote disulfide bond formation, some of which formed intermolecular crosslinks. About 50% of the crosslinked 70 S ribosomes did not dissociate when exposed to low concentrations of magnesium in the absence of reducting agent. Dissociation took place in the presence of reducing agents, which indicated that the subunits had become covalently linked by disulfide linkages. Proteins extracted from purified crosslinked 70 S ribosomes were first fractionated by polyacrylamide/urea gel electrophoresis. The proteins from sequential slices of these gels were analyzed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Monomeric proteins derived from crosslinked dimers appeared below the diagonal containing non-crosslinked proteins, since the second electrophoresis, but not the first, is run under reducing conditions to cleave the crosslinked species. Final identification of the proteins in each dimer was made by radioiodination of the crosslinked proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis in the presence of non-radioactive total 70 S proteins as markers. This paper describes the identification of 23 protein dimers that contained one protein from each of the two different ribosomal subunits. The proteins implicated must have some part of their structure in proximity to the other ribosomal subunit and are therefore defined as “interface proteins”. The group of interface proteins thus defined includes 50 S proteins that are part of the 5 S RNA: protein complex and 30 S proteins at the initiation site. Correlations between the crosslinked interface proteins and other functional data are discussed.  相似文献   

12.
Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions.Key words: ribosome, translation, stress, starvation, polysome  相似文献   

13.
Griaznova O  Traut RR 《Biochemistry》2000,39(14):4075-4081
Escherichia coli ribosomal protein L10 binds the two L7/L12 dimers and thereby anchors them to the large ribosomal subunit. C-Terminal deletion variants (Delta10, Delta20, and Delta33 amino acids) of ribosomal protein L10 were constructed in order to define the binding sites for the two L7/L12 dimers and then to make and test ribosomal particles that contain only one of the two dimers. None of the deletions interfered with binding of L10 variants to ribosomal core particles. Deletion of 20 or 33 amino acids led to the inability of the proteins to bind both dimers of protein L7/L12. The L10 variant with deletion of 10 amino acids bound one L7/L12 dimer in solution and when reconstituted into ribosomes promoted the binding of only one L7/L12 dimer to the ribosome. The ribosomes that contained a single L7/L12 dimer were homogeneous by gel electrophoresis where they had a mobility between wild-type 50S subunits and cores completely lacking L7/L12. The single-dimer ribosomal particles supported elongation factor G dependent GTP hydrolysis and protein synthesis in vitro with the same activity as that of two-dimer particles. The results suggest that amino acids 145-154 in protein L10 determine the binding site ("internal-site") for one L7/L12 dimer (the one reported here), and residues 155-164 ("C-terminal-site") are involved in the interaction with the second L7/L12 dimer. Homogeneous ribosomal particles containing a single L7/L12 dimer in each of the distinct sites present an ideal system for studying the location, conformation, dynamics, and function of each of the dimers individually.  相似文献   

14.
The effects of antibodies specific for the Escherichia coli 30 S and 50 S ribosomal proteins have been determined for in vitro peptide chain termination and two partial reactions, the codon-directed binding of E. coli release factor to the ribosome and peptidyl-tRNA hydrolysis with RF2. Antibodies to ribosomal proteins L7 and L12 inhibit the initial binding of RF to the ribosome, and as a result, the subsequent peptidyl-tRNA hydrolysis. The kinetics of ribosomal inactivation for in vitro termination by anti-L7/L12 indicate that Fab fragments bind to three ribosome sites, and suggest that each of three copies of L7/L12 is involved in the binding of RF to the ribosome. When 70 S ribosome substrates are pretreated with anti-L11 and anti-L16 RF-dependent peptidyl-tRNA, hydrolysis is partially inhibited but the interaction of RF with the ribosome is not affected. The inactivation of in vitro termination by a mixture of anti-L11 and anti-L16 is not co-operative. Pretreatment of the 30 S ribosomal subunit (but not 70 S ribosomal substrate) with antibodies to the 30 S proteins, S9 and S11, results in strong inhibition of codon-directed hydrolysis of peptidyl-tRNA. While these antibodies inhibit ribosome subunit association, a requirement for peptide chain termination, and thereby may inhibit the in vitro termination reactions indirectly, the codon-directed binding of RF is markedly more affected than peptidyl-tRNA hydrolysis by anti-S9 and anti-S11. Antibody to S2 and anti-S3 exhibit a similar but less marked differential effect on the partial reactions of in vitro termination under the same conditions. When dissociated ribosomes are pretreated with anti-L11, in vitro termination is completely inhibited and both codon-directed binding of RF and peptidyl-tRNA hydrolysis are affected. L11 may, therefore, be at or near the interface between the ribosome subunits and like S9 and S11 not completely accessible to antibody in 70 S ribosomes. Pretreatment of dissociated ribosomes with antibodies to a number of other ribosomal proteins (L2, L4, L6, L14, L15, L17, L18, L20, L23, L26, L27) results in partial inhibition of all termination reactions although these antibodies have no effect on termination when incubated with 70 S ribosome substrates. The antibodies probably affect in vitro termination indirectly as a result of either preventing correct ribosome subunit association, or preventing correct positioning of the fMet-tRNA at the ribosome P site.  相似文献   

15.
16.
Summary Mice were immunised with 30S subunits from E. coli and their spleen cells were fused with myeloma cells. From this fusion two monoclonal antibodies were obtained, one of which was shown to be specific for ribosomal protein S3, the other for ribosomal protein S7. The two monoclonal antibodies formed stable complexes with intact 30S subunits and were therefore used for the three-dimensional localisation of ribosomal proteins S3 and S7 on the surface of the E. coli small subunit by immuno electron microscopy. The antibody binding sites determined with the two monoclonal antibodies were found to lie in the same area as those obtained with conventional antibodies. Both proteins S3 and S7 are located on the head of the 30S subunit, close to the one-third/two-thirds partition. Protein S3 is located just above the small lobe, whereas protein S7 is located on the side of the large lobe.  相似文献   

17.
The 50 S ribosomal subunit of Escherichia coli was allowed to react with 2-iminothiolane under conditions in which amidine-linked sulfhydryl derivatives were formed between lysine ?-amino groups in ribosomal proteins and the heterocyclic thioimidate. Crosslinking between sulfhydryl groups close enough to form intermolecular disulfide bonds was promoted by oxidation of the modified ribosomal subunits. Disulfide-linked dimers were partially purified by extraction of the oxidized subunits with lithium chloride and electrophoresis of the salt-extracted fractions in polyacrylamide/urea gels at pH 5.5. Crosslinked protein dimers were separated by polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Fifteen protein dimers were identified. Many of them involve proteins implicated in functional sites of the 50 S subunit and in ribosome assembly. The crosslinking results show the proximity of many of these proteins at these active centers, and extend the neighborhood by demonstrating the presence of additional proteins.  相似文献   

18.
The minor nucleoside 7-methylguanosine occurs in Escherichia coli 16 S ribosomal RNA at a single site. High pressure liquid chromatographic analysis shows that a single residue of 7-methylguanosine is also present in chloroplast 16 S ribosomal RNA, presumably at an analogous position in the sequence. Antibodies to 7-methylguanosine were induced in rabbits and shown to be highly specific for the intact methylated base. These antibodies were reacted with 30 S ribosomal subunits from E. coli and from the chloroplasts of Alaskan peas. These two types of ribosome have been shown to be topographically similar (Trempe, M. R., and Glitz, D. G. (1981) J. Biol. Chem. 256, 11873-11879). Electron microscopy of the subunit-antibody complexes showed similar subunit-IgG monomers and antibody-linked subunit dimers. In greater than 95% of the complexes observed for each type of ribosome, antibody contact was consistent with a single binding site, which places 7-methylguanosine near the junction of the upper one-third and lower two-thirds of the subunit and maximally distant from the platform. The analogous localization in both E. coli and chloroplast 30 S ribosomal subunits lends support to their proposed common evolutionary origin.  相似文献   

19.
Chi W  He B  Mao J  Li Q  Ma J  Ji D  Zou M  Zhang L 《Plant physiology》2012,158(2):693-707
The chloroplast ribosome is a large and dynamic ribonucleoprotein machine that is composed of the 30S and 50S subunits. Although the components of the chloroplast ribosome have been identified in the last decade, the molecular mechanisms driving chloroplast ribosome biogenesis remain largely elusive. Here, we show that RNA helicase 22 (RH22), a putative DEAD RNA helicase, is involved in chloroplast ribosome assembly in Arabidopsis (Arabidopsis thaliana). A loss of RH22 was lethal, whereas a knockdown of RH22 expression resulted in virescent seedlings with clear defects in chloroplast ribosomal RNA (rRNA) accumulation. The precursors of 23S and 4.5S, but not 16S, rRNA accumulated in rh22 mutants. Further analysis showed that RH22 was associated with the precursors of 50S ribosomal subunits. These results suggest that RH22 may function in the assembly of 50S ribosomal subunits in chloroplasts. In addition, RH22 interacted with the 50S ribosomal protein RPL24 through yeast two-hybrid and pull-down assays, and it was also bound to a small 23S rRNA fragment encompassing RPL24-binding sites. This action of RH22 may be similar to, but distinct from, that of SrmB, a DEAD RNA helicase that is involved in the ribosomal assembly in Escherichia coli, which suggests that DEAD RNA helicases and rRNA structures may have coevolved with respect to ribosomal assembly and function.  相似文献   

20.
Purified 50 S ribosomal subunits were found to contain significant amounts of protein coincident with the 30 S proteins S9 and/or S11 on two-dimensional polyacrylamide/urea electropherographs. Peptide mapping established that the protein was largely S9 with smaller amounts of S11. Proteins S5 and L6 were nearly coincident on the two-dimensional polyacrylamide/urea electropherographs. Peptide maps of material from the L6 spot obtained from purified 50 S subunits showed the presence of significant amounts of the peptides corresponding to S5. Experiments in which 35S-labelled 30 S subunits and non-radioactive 50 S subunits were reassociated to form 70 S ribosomes showed that some radioactive 30 S protein was transferred to the 50 S subunit. Most of the transferred radioactivity was associated with two proteins, S9 and S5. Sulfhydryl groups were added to the 50 S subunit by amidination with 2-iminothiolane (methyl 4-mercaptobutyrimidate). These were oxidized to form disulfide linkages, some of which crosslinked different proteins of the intact 50 S ribosomal subunit. Protein dimers were partially fractionated by sequential salt extraction and then by electrophoresis of each fraction in polyacrylamide gels containing urea. Slices of the gel were analysed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Final identification of the constituent proteins in each dimer by two-dimensional polyacrylamide/urea gel electrophoresis showed that 50 S proteins L5 and L27 were crosslinked to S9. The evidence suggests that proteins S5, S9, S11, L5 and L27 are located at the interface region of the 70 S ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号