首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.  相似文献   

2.
3.
Abiotic stresses are the major concern in recent years as their effect on world food production is constantly increasing. We have obtained salt tolerant Arabidopsis lines overexpressing SaRBP1 (Suaeda asparagoides RNA binding protein 1) of a Korean halophyte, S. asparagoides. Homozygous T3 Arabidopsis transgenic lines were developed and used for salt stress tolerance studies. The transgenic seedlings displayed tolerance to salt and mannitol compared to the wild type (WT) seedlings. Transgenic lines produced longer primary roots, more fresh weight, and higher number of lateral roots than WT. In planta stress tolerance assay results showed that the survival rates of transgenic plants were significantly higher than WT plants. Transgenic lines showed delayed germination under 200 mM NaCl stress. In addition, the transgenics showed higher water retention ability than WT. Subcellular localization results revealed that SaRBP1 was targeted to the cytoplasm. Northwestern blot analysis results confirmed the RNA binding property of SaRBP1. Quantitative Real-Time Polymerase Chain Reaction results revealed that many stress marker genes were upregulated by SaRBP1 overexpression. Thus, our data demonstrate that SaRBP1 overexpression lines are tolerant to salt stress. Hence, this is the first report for the functional characterization of SaRBP1, a novel RBP gene isolated from S. asparagoides cDNA library.  相似文献   

4.
5.
Microarray analysis of a salt-tolerant wheat mutant identified a gene of unknown function that was induced by exposure to high levels of salt and subsequently denoted TaSIP (Triticum aestivum salt-induced protein). Quantitative PCR analysis revealed that TaSIP expression was induced not only by salt, but also by drought, abscisic acid (ABA), and other environmental stress factors. Transgenic rice plants that expressed an RNA interference construct specific for a rice gene homologous to TaSIP was more susceptible to salt stress than wild-type rice plants. Subcellular localization studies showed that the TaSIP localized to the cell membrane. Under conditions of salt and drought stress, transgenic Arabidopsis plants that overexpressed TaSIP showed superior physiological properties compared with control plants, including lower Na+ content and upregulation of several stress resistance genes. Staining of transgenic tissues with β-glucuronidase (GUS) failed to indicate tissue-specific activity of the full-length TaSIP promoter. Quantitative analysis of GUS fluorescence in transgenic plants treated with ABA or salt stress revealed that the region 1,176–1,410 bp from the start codon contained an ABA-responsive element and that the region 579–1,176 bp from the start codon upstream of the exon contained a salt-stress-responsive element. Based on these results, we conclude that the key part of the TaSIP gene is the region of its promoter involved in salt tolerance.  相似文献   

6.
7.
Since their discovery, germin and germin-like proteins (GLPs) were found to be associated with salt stress along with other physiological roles. Although a number of GLP family members showed spatio-temporal changes in expressional up-regulation or down-regulation upon exposure to salt stress across plant species, very little is known about any rice GLP member in relation to salt stress. Rice germin-like protein 1 (OsGLP1), belongs to “Cupin” superfamily, is a plant glycoprotein and is associated with the plant cell wall. Our previous studies on endogenous down-regulation of OsGLP1 in rice and heterologous expression in tobacco documented that the OsGLP1 possessing superoxide dismutase activity is involved in cell wall cross-linking and fungal disease resistance in plants. In the present study, the transgenic rice lines having reduced OsGLP1 expression were analyzed in advanced generation for deciphering the involvement of OsGLP1 under salt stress. OsGLP1 gene-silencing construct integated transgenic lines were confirmed by Southern hybridization and RNA-interfernce (RNAi) mediated gene-silencing of the transgenic rice lines was confirmed by northern blot analysis. The expression of endogenous OsGLP1 protein level was found to be reduced in salt sensitive indica rice cultivar Badshahbhog following salt stress. Additionally, the RNAi-mediated OsGLP1 gene-silencing in transgenic rice lines resulted improved salt tolerance as compared to the untransformed ones during seed germination, initial establishment, early seedling growth and callus proliferation. Salt tolerance nature of the OsGLP1 gene-silenced plants at early stages of growth and development depicted the negative correlation between the OsGLP1 expression and salt tolerance of rice.  相似文献   

8.
Rice yield is severely affected by high-salt concentration in the vicinity of the plant. In an effort to engineer rice for improved salt tolerance Agrobacterium-mediated transformation of rice cv. Binnatoa was accomplished with the Pennisetum glaucum vacuolar Na+/H+ antiporter gene (PgNHX1) under the constitutive CaMV35S promoter. For the molecular analysis of putative transgenic plants, PCR and RT-PCR were performed. Transgenic rice plants expressing PgNHX1 showed better physiological status and completed their life cycle by setting flowers and seeds in salt stress, while wild-type plants exhibited rapid chlorosis and growth inhibition. Moreover, transgenic rice plants produced higher grain yields than wild-type plants under salt stress. Assessment of the salinity tolerance of the transgenic plants at seedling and reproductive stages demonstrated the potential of PgNHX1 for imparting enhanced salt tolerance capabilities and improved yield.  相似文献   

9.
10.
Glycine betaine has been reported as an osmoprotectant compound conferring tolerance to salinity and osmotic stresses in plants. We previously found that the expression of betaine aldehyde dehydrogenase 1 gene (OsBADH1), encoding a key enzyme for glycine betaine biosynthesis pathway, showed close correlation with salt tolerance of rice. In this study, the expression of the OsBADH1 gene in transgenic tobacco was investigated in response to salt stress using a transgenic approach. Transgenic tobacco plants expressing the OsBADH1 gene were generated under the control of a promoter from the maize ubiquitin gene. Three homozygous lines of T2 progenies with single transgene insert were chosen for gene expression analysis. RT-PCR and western blot analysis results indicated that the OsBADH1 gene was effectively expressed in transgenic tobacco leading to the accumulation of glycine betaine. Transgenic lines demonstrated normal seed germination and morphology, and normal growth rates of seedlings under salt stress conditions. These results suggest that the OsBADH1 gene could be an excellent candidate for producing plants with osmotic stress tolerance.  相似文献   

11.
Cheng Y  Long M 《Biotechnology letters》2007,29(7):1129-1134
NADP-malic enzyme (NADP-ME, EC 1.1.1.40) functions in many different pathways in plant and may be involved in plant defense such as wound and UV-B radiation. Here, expression of the gene encoding cytosolic NADP-ME (cytoNADP-ME, GenBank Accession No. AY444338) in rice (Oryza sativa L.) seedlings was induced by salt stress (NaCl). NADP-ME activities in leaves and roots of rice also increased in response to NaCl. Transgenic Arabidopsis plants over-expressing rice cytoNADP-ME had a greater salt tolerance at the seedling stage than wild-type plants in MS medium-supplemented with different levels of NaCl. Cytosolic NADPH/NADP+ concentration ratio of transgenic plants was higher than those of wild-type plants. These results suggest that rice cytoNADP-ME confers salt tolerance in transgenic Arabidopsis seedlings.  相似文献   

12.
Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX) activity and anthocyanins were observed for all cultivars. The K+/Na+ ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K+/Na+ ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA) based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT), a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K+/Na+ ratio and chlorophyll accumulation.  相似文献   

13.
Ascorbic acid (AsA) is the most abundant water-soluble antioxidant in plants, and it plays a crucial role in plant growth, development and abiotic stress tolerance. In the present study, six key Arabidopsis or rapeseed genes involved in AsA biosynthesis were constitutively overexpressed in an elite Japonica rice cultivar. These genes encoded the GDP-mannose pyrophosphorylase (GMP), GDP-mannose-3'',5''-epimerase (GME), GDP-L-galactose phosphorylase (GGP), L-galactose-1-phosphate phosphatase (GPP), L-galactose dehydrogenase (GDH), and L-galactono-1,4-lactone dehydrogenase (GalLDH). The effects of transgene expression on rice leaf AsA accumulation were carefully evaluated. In homozygous transgenic seedlings, AtGGP transgenic lines had the highest AsA contents (2.55-fold greater than the empty vector transgenic control), followed by the AtGME and AtGDH transgenic lines. Moreover, with the exception of the AtGPP lines, the increased AsA content also provoked an increase in the redox state (AsA/DHA ratio). To evaluate salt tolerance, AtGGP and AtGME transgenic seedlings were exposed to salt stress for one week. The relative plant height, root length and fresh weight growth rates were significantly higher for the transgenic lines compared with the control plants. Altogether, our results suggest that GGP may be a key rate-limiting step in rice AsA biosynthesis, and the plants with elevated AsA contents demonstrated enhanced tolerance for salt stress.  相似文献   

14.
Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarix androssowii (named TaLEA) was transformed into Xiaohei poplar ( Populus simonii × P. nigra) via Agrobacterium . Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.  相似文献   

15.
16.
Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in T1 and T2 transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. T2 transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.  相似文献   

17.
Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.  相似文献   

18.
We have recently identified and classified a cystathionine ??-synthase domain containing protein family in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L.). Based on the microarray and MPSS data, we have suggested their involvement in stress tolerance. In this study, we have characterized a rice protein of unknown function, OsCBSX4. This gene was found to be upregulated under high salinity, heavy metal, and oxidative stresses at seedling stage. Transgenic tobacco plants overexpressing OsCBSX4 exhibited improved tolerance toward salinity, heavy metal, and oxidative stress. This enhanced stress tolerance in transgenic plants could directly be correlated with higher accumulation of OsCBSX4 protein. Transgenic plants could grow and set seeds under continuous presence of 150?mM NaCl. The total seed yield in WT plants was reduced by 80%, while in transgenic plants, it was reduced only by 15?C17%. The transgenic plants accumulated less Na+, especially in seeds and maintained higher net photosynthesis rate and Fv/Fm than WT plants under NaCl stress. Transgenic seedlings also accumulated significantly less H2O2 as compared to WT under salinity, heavy metal, and oxidative stress. OsCBSX4 overexpressing transgenic plants exhibit higher abiotic stress tolerance than WT plants suggesting its role in abiotic stress tolerance in plants.  相似文献   

19.
The Arabidopsis thaliana late embryogenesis abundant gene AtEm6 is required for normal seed development and for buffering the rate of dehydration during the latter stages of seed maturation. However, its function in salt stress tolerance is not fully understood. In this investigation, cell suspension cultures of three plant species rice (Oryza sativa L.), cotton (Gossypium hirsutum L.), and white pine (Pinus strobes L.) were transformed using Agrobacterium tumefaciens strain LBA4404 harboring pBI-AtEm6. Integration of the AtEm6 gene into the genome of rice, cotton, and white pine has been confirmed by polymerase chain reaction, Southern blotting, and northern blotting analyses. Three transgenic cell lines from each of O. sativa, G. hirsutum, and P. strobus were used to analyze salt stress tolerance conferred by the overexpression of the AtEm6 gene. Our results demonstrated that expression of the AtEm6 gene enhanced salt tolerance in transgenic cell lines. A decrease in lipid peroxidation and an increment in antioxidant enzymes ascorbate peroxidase, glutathione reductase and superoxide dismutase activities were observed in the transgenic cell lines, compared to the non- transgenic control. In rice, AtEM6 increased expression of Ca2+-dependent protein kinase genes OsCPK6, OsCPK9, OsCPK10, OsCPK19, OsCPK25, and OsCPK26 under treatment of salt. These results suggested that overexpression of the AtEM6 gene in transgenic cell lines improved salt stress tolerance by regulating expression of Ca2+-dependent protein kinase genes. Overexpression of the AtEM6 gene could be an alternative choice for engineering plant abiotic stress tolerance.  相似文献   

20.
Cassava (Manihot esculenta Crantz) is the most important staple food for more than 300?million people in Africa, and anthracnose disease caused by Colletotrichum gloeosporioides f. sp. manihotis is the most destructive fungal disease affecting cassava production in sub-Saharan Africa. The main objective of this study was to improve anthracnose resistance in cassava through genetic engineering. Transgenic cassava plants harbouring rice thaumatin-like protein (Ostlp) gene, driven by the constitutive CaMV35S promoter, were generated using Agrobacterium-mediated transformation of friable embryogenic calli (FEC) of cultivar TMS 60444. Molecular analysis confirmed the presence, integration, copy number of the transgene all the independent transgenic events. Semi-quantitative RT-PCR confirmed high expression levels of Ostlp in six transgenic lines tested. The antifungal activity of the transgene against Colletotrichum gloeosporioides pathogen was evaluated using the leaves and stem cuttings bioassay. The results demonstrated significantly delayed disease development and reduced size of necrotic lesions in leaves and stem cuttings of all transgenic lines compared to the leaves and stem cuttingss of non-transgenic control plants. Therefore, constitutive overexpression of rice thaumatin-like protein in transgenic cassava confers enhanced tolerance to the fungal pathogen C. gloeosporioides f. sp. manihotis. These results can therefore serve as an initial step towards genetic engineering of farmer-preffered cassava cultivars for resistance to anthracnose disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号