首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
The effects of mesenchymal stem cells (MSCs) on proliferation and cell fate determination of neural stem cells (NSCs) have been investigated. NSCs were co-cultured with MSCs or NIH3T3 cells using an in vitro transwell system. After 4 days, immunofluorescence staining showed that the number of cells positive for the cell proliferation antigen, ki-67, in neurospheres in MSCs was greater than in NIH3T3 cells. In some experiments, the top-layers of MSCs and NIH3T3 cells were removed to induce NSCs differentiation. Seven days after initiating differentiation, the levels of the neuronal marker, NSE, were higher in NSCs in MSCs co-culture group, and those of glial fibrillary acidic protein (GFAP) were lower, compared with NIH3T3 cells co-culture group. These were confirmed by immunofluorescence. The role of the Notch signaling pathway analyzed with the specific inhibitor, DAPT, and by examining the expression of Notch-related genes using RT-PCR showed that after co-culturing with MSCs for 24 h, NSCs expressed much higher levels of ki-67, Notch1, and Hes1 than did NSCs co-cultured with NIH3T3 cells. Treatment with DAPT decreased ki-67, Notch1 and Hes1 expression in NCSs, and increased Mash1 expression. The data indicate that the interactions between MSCs and NSCs promote NSCs proliferation and are involved in specifying neuronal fate, mediated in part by Notch signaling.  相似文献   

3.
BACKGROUND: Aberrations during neurulation due to genetic and/or environmental factors underlie a variety of adverse developmental outcomes, including neural tube defects (NTDs). Methylmercury (MeHg) is a developmental neurotoxicant and teratogen that perturbs a wide range of biological processes/pathways in animal models, including those involved in early gestation (e.g., cell cycle, cell differentiation). Yet, the relationship between these MeHg‐linked effects and changes in gestational development remains unresolved. Specifically, current information lacks mechanistic comparisons across dose or time for MeHg exposure during neurulation. These detailed investigations are crucial for identifying sensitive indicators of toxicity and for risk assessment applications. METHODS: Using a systems‐based toxicogenomic approach, we examined dose‐ and time‐dependent effects of MeHg on gene expression in C57BL/6 mouse embryos during cranial neural tube closure, assessing for significantly altered genes and associated Gene Ontology (GO) biological processes. Using the GO‐based application GO‐Quant, we quantitatively assessed dose‐ and time‐dependent effects on gene expression within enriched GO biological processes impacted by MeHg. RESULTS: We observed MeHg to significantly alter expression of 883 genes, including several genes (e.g., Vangl2, Celsr1, Ptk7, Twist, Tcf7) previously characterized to be crucial for neural tube development. Significantly altered genes were associated with development cell adhesion, cell cycle, and cell differentiation–related GO biological processes. CONCLUSIONS: Our results suggest that MeHg‐induced impacts within these biological processes during gestational development may underlie MeHg‐induced teratogenic and neurodevelopmental toxicity outcomes. Birth Defects Res (Part B) 89:188–200, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
神经干细胞作为一种具有自我更新能力和多向分化潜能的细胞,它的增殖和分化受到多种源于自身或外在、邻近或远程细胞信号通路的调控,各种细胞因子及胞间通讯在神经干细胞的增殖和分化中发挥着重要的作用。近年来的多种研究表明,Notch信号通路正是这样一种可以通过相邻细胞的配体与受体相互作用,从而传递信号,进一步发挥其生物学功能的重要信号通路。该通路参与了神经干细胞维持自我形态及向多种具有不同功能的神经细胞分化的过程.对于研究神经干细胞的增殖和分化具有巨大的意义。该文将就当前Notch信号通路对神经干细胞增殖分化影响的相关研究进行简要综述。  相似文献   

5.
《Developmental neurobiology》2017,77(10):1206-1220
Adult neurogenesis occurs more commonly in teleosts, represented by zebrafish, than in mammals. Zebrafish is therefore considered a suitable model to study adult neurogenesis, for which the regulatory molecular mechanisms remain little known. Our previous study revealed that neuroepithelial‐like neural stem cells (NSCs) are located at the edge of the dorsomedial region. We also showed that Notch signaling inhibits NSC proliferation in this region. In the present study, we reported the expression of Wnt and Shh signaling components in this region of the optic tectum. Moreover, inhibitors of Wnt and Shh signaling suppressed NSC proliferation, suggesting that these pathways promote NSC proliferation. Shh is particularly required for maintaining Sox2‐positive NSCs. Our experimental data also indicate the involvement of these signaling pathways in neural differentiation from NSCs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1206–1220, 2017  相似文献   

6.
Retinoic acid, midkine, and defects of secondary neurulation   总被引:10,自引:0,他引:10  
Griffith M  Zile MH 《Teratology》2000,62(2):123-133
BACKGROUND: Retinoic acid (RA) is necessary for normal differentiation of the tail bud into the secondary neural tube. Excess RA, however, is teratogenic and causes neural tube defects (NTDs). The way in which RA modulates secondary neurulation is unclear but probably involves RA-regulated downstream genes such midkine (MK), which encodes a growth factor implicated in tail bud mesenchymal-neuroepithelial conversion. Our objective was to determine whether RA-deficiency would produce similar defects and if MK is involved. METHODS: Citral, a drug that blocks endogenous RA formation, as well as a neutralizing antibody, were used to block RA activity in chick embryos. Immunohistochemistry and in situ hybridization were used to localize RA and MK in the tail bud. Competitive RT-PCR was used to examine the effects of excess RA and RA deficiency due to citral on the expression of MK mRNA. RESULTS: Citral-induced NTDs displayed a morphological resemblance to those caused by excess RA. However, citral treatment did not significantly increase embryonic mortality, and RA rescue of citral-treated embryos proved unsuccessful. MK mRNA was detected in the differentiating tail bud by in situ hybridization. Competitive RT-PCR showed that excess RA decreased MK expression by 60%. Doses of citral that caused a comparable incidence of defects, however, caused only a 25% decrease. CONCLUSIONS: The results show that excess RA and RA deficiency both cause defects of secondary neurulation. While excess RA decreased MK expression, RA deficiency had minimal effects. However, whether or not MK is an intermediary in the developmental phenomena regulated physiologically or pathologically by RA remains to be elucidated.  相似文献   

7.
Oxidative stress caused by hyperglycemia is one of the key factors responsible for maternal diabetes-induced congenital malformations, including neural tube defects in embryos. However, mechanisms by which maternal diabetes induces oxidative stress during neurulation are not clear. The present study was aimed to investigate whether high glucose induces oxidative stress in neural stem cells (NSCs), which compose the neural tube during development. We also investigated the mechanism by which high glucose disturbs the growth and survival of NSCs in vitro . NSCs were exposed to physiological d -glucose concentration (PG, 5 mmol/L), PG with l -glucose (25 mmol/L), or high d -glucose concentration (HG, 30 or 45 mmol/l). HG induced reactive oxygen species production and mRNA expression of aldose reductase (AR), which catalyzes the glucose reduction through polyol pathway, in NSCs. Expression of glucose transporter 1 (Glut1) mRNA and protein which regulates glucose uptake in NSCs was increased at early stage (24 h) and became down-regulated at late stage (72 h) of exposure to HG. Inhibition of AR by fidarestat, an AR inhibitor, decreased the oxidative stress, restored the cell viability and proliferation, and reduced apoptotic cell death in NSCs exposed to HG. Moreover, inhibition of AR attenuated the down-regulation of Glut1 expression in NSCs exposed to HG for 72 h. These results suggest that the activation of polyol pathway plays a role in the induction of oxidative stress which alters Glut1 expression and cell cycle in NSCs exposed to HG, thereby resulting in abnormal patterning of the neural tube in embryos of diabetic pregnancy.  相似文献   

8.
Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. Several signaling pathways have been shown to be involved in the fate determination process of NSCs, but the molecular mechanisms underlying the maintenance of neural cell stemness remain largely unknown. Our previous study showed that human natural killer carbohydrate epitopes expressed specifically by mouse NSCs modulate the Ras-MAPK pathway, raising the possibility of regulatory roles of glycoprotein glycans in the specific signaling pathways involved in NSC fate determination. To address this issue, we performed comparative N-glycosylation profiling of NSCs before and after differentiation in a comprehensive and quantitative manner. We found that Lewis X-carrying N-glycans were specifically displayed on undifferentiated cells, whereas pauci-mannose-type N-glycans were predominantly expressed on differentiated cells. Furthermore, by knocking down a fucosyltransferase 9 with short interfering RNA, we demonstrated that the Lewis X-carrying N-glycans were actively involved in the proliferation of NSCs via modulation of the expression level of Musashi-1, which is an activator of the Notch signaling pathway. Our findings suggest that Lewis X carbohydrates, which have so far been characterized as undifferentiation markers, actually operate as activators of the Notch signaling pathway for the maintenance of NSC stemness during brain development.  相似文献   

9.
10.
Sulforaphane (SFN) is a natural organosulfur compound with anti‐oxidant and anti‐inflammation properties. The objective of this study is to investigate the effect of SFN on the proliferation and differentiation of neural stem cells (NSC). NSCs were exposed to SFN at the concentrations ranging from 0.25 to 10 µM. Cell viability was evaluated with MTT assay and lactate dehydogenase (LDH) release assay. The proliferation of NSCs was evaluated with neurosphere formation assay and Ki‐67 staining. The level of Tuj‐1 was evaluated with immunostaining and Western blot to assess NSC neuronal differentiation. The expression of key proteins in the Wnt signaling pathway, including β‐catenin and cyclin D1, in response to SFN treatment or the Wnt inhibitor, DKK‐1, was determined by Western blotting. No significant cytotoxicity was seen for SFN on NSCs with SFN at concentrations of less than 10 µM. On the contrary, SFN of low concentrations stimulated cell proliferation and prominently increased neurosphere formation and NSC differentiation to neurons. SFN treatment upregulated Wnt signaling in the NSCs, whereas DKK‐1 attenuated the effects of SFN. SFN is a drug to promote NSC proliferation and neuronal differentiation when used at low concentrations. These protective effects are mediated by Wnt signaling pathway.  相似文献   

11.
Neurotrophin-3 (NT-3) is well known to play an important role in facilitating neuronal survival and differentiation during development. However, the mechanisms by which neurotrophin-3 promotes prolonged Akt/MAPK signaling at an early stage are not well understood. Here, we report that NT-3 works at an early stage of neuronal differentiation in mouse neural stem cells (NSCs). After treatment with NT-3 for 12h, more NSCs differentiated into neurons than did untreated cells. These findings demonstrated that stimulation with NT-3 causes NSCs to differentiate into neurons through a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and the phosphorylated extracellular signal-regulated kinase (ERK) pathway. In addition, treatment with NT-3 induced neurite outgrowth by specific phosphorylation of p38 MAPK, which was accompanied by neuronal differentiation. Taken together, these results suggest that NT-3, along with the Trk C receptors in NSCs, might lead to the survival and neuronal differentiation of NSCs via two distinct downstream signaling pathways at an early stage of neuronal differentiation.  相似文献   

12.
13.
Here, we investigated the effects and molecular mechanisms of metabotropic glutamate receptor 6 (mGluR6) on rat embryonic neural stem cells (NSCs). Overexpression of mGluR6 significantly promoted the proliferation of NSCs and increased the diameter of neutrospheres after treatment for 24 h, 48 h and 72 h. Overexpression of mGluR6 promoted G1 to S phase transition, with significantly decreased cell ratio in G1/G0 phase but significantly increased cell ratio in S phase. Additionally, mGluR6 overexpression for 48 h decreased the early and late apoptosis significantly. Moreover, overexpression of mGluR6 significantly increased the expression of p-ERK1/2, Cyclin D1 and CDK2, while the expression of p-p38 was significantly decreased. On the contrary, these effects of mGluR6 overexpression were reversed by mGluR6 knockdown. In conclusion, mGluR6 promotes the proliferation of NSCs by activation of ERK1/2-Cyclin D1/CDK2 signaling pathway and inhibits the apoptosis of NSCs by blockage of the p38 MAPK signaling pathway.  相似文献   

14.

Background

Maternal diabetes alters gene expression leading to neural tube defects (NTDs) in the developing brain. The mechanistic pathways that deregulate the gene expression remain unknown. It is hypothesized that exposure of neural stem cells (NSCs) to high glucose/hyperglycemia results in activation of epigenetic mechanisms which alter gene expression and cell fate during brain development.

Methods and Findings

NSCs were isolated from normal pregnancy and streptozotocin induced-diabetic pregnancy and cultured in physiological glucose. In order to examine hyperglycemia induced epigenetic changes in NSCs, chromatin reorganization, global histone status at lysine 9 residue of histone H3 (acetylation and trimethylation) and global DNA methylation were examined and found to be altered by hyperglycemia. In NSCs, hyperglycemia increased the expression of Dcx (Doublecortin) and Pafah1b1 (Platelet activating factor acetyl hydrolase, isoform 1b, subunit 1) proteins concomitant with decreased expression of four microRNAs (mmu-miR-200a, mmu-miR-200b, mmu-miR-466a-3p and mmu-miR-466 d-3p) predicted to target these genes. Knockdown of specific microRNAs in NSCs resulted in increased expression of Dcx and Pafah1b1 proteins confirming target prediction and altered NSC fate by increasing the expression of neuronal and glial lineage markers.

Conclusion/Interpretation

This study revealed that hyperglycemia alters the epigenetic mechanisms in NSCs, resulting in altered expression of some development control genes which may form the basis for the NTDs. Since epigenetic changes are reversible, they may be valuable therapeutic targets in order to improve fetal outcomes in diabetic pregnancy.  相似文献   

15.
Neural tube defects (NTDs) are severe congenital malformations affecting 1-2 in 1,000 live births, whose etiology is multifactorial, involving environmental and genetic factors. NTDs arise as consequence of the failure of fusion of the neural tube early during embryogenesis. NTDs' pathogenesis has been linked to genes involved in folate metabolism, consistent with an epidemiologic evidence that 70% of NTDs can be prevented by maternal periconceptional supplementation. However, polymorphisms in such genes are not linked in all populations, suggesting that other genetic factors and environmental factors could be involved. Animal models have provided crucial mechanistic information and possible candidate genes to explain susceptibility to NTDs. A crucial role has been assigned to the planar cell polarity (PCP) pathway, a highly conserved, non-canonical Wnt-frizzled-dishevelled signaling cascade that plays a key role in establishing and maintaining polarity in the plane of the epithelium and in the process of convergent extension during gastrulation and neurulation in vertebrates. The Loop-tail (Lp) mouse that develops craniorachischisis carry missense mutations in the PCP core gene Vangl2, that is the mammalian homolog of the Drosophila Strabismus/Van gogh (Stbm/Vang). The presence of mutations in human VANGL1 and VANGL2 genes encourages us to extend the investigation to other PCP genes that, with VANGL, play an essential role in neurulation during development.  相似文献   

16.
Neural tube defects (NTDs) such as spina bifida and anencephaly are some of the most common structural birth defects found in humans. These defects occur due to failures of neurulation, a process where the flat neural plate rolls into a tube. In spite of their prevalence, the causes of NTDs are poorly understood. The multifactorial threshold model best describes the pattern of inheritance of NTDs where multiple undefined gene variants interact with environmental factors to cause an NTD. To date, mouse models have implicated a multitude of genes as required for neurulation, providing a mechanistic understanding of the cellular and molecular pathways that control neurulation. However, the majority of these mouse models exhibit NTDs with a Mendelian pattern of inheritance. Still, many examples of multifactorial inheritance have been demonstrated in mouse models of NTDs. These include null and hypomorphic alleles of neurulation genes that interact in a complex fashion with other genetic mutations or environmental factors to cause NTDs. These models have implicated several genes and pathways for testing as candidates for the genetic basis of NTDs in humans, resulting in identification of putative pathogenic mutations in some patients. Mouse models also provide an experimental paradigm to gain a mechanistic understanding of the environmental factors that influence NTD occurrence, such as folic acid and maternal diabetes, and have led to the discovery of additional preventative nutritional supplements such as inositol. This review provides examples of how multifactorial inheritance of NTDs can be modeled in the mouse. Birth Defects Research (Part C) 96:193–205, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The objective of this study was to clarify the relationship between the effect and associated mechanisms of lithium chloride on neural stem cells (NSCs) and the Wnt signaling pathway. The expression of key molecules proteins related to the Wnt signaling pathway in the proliferation and differentiation of control NSCs and lithium chloride-treated NSCs was detected by Western blot analysis. Flow cytometry analysis was applied to study the cell cycle dynamics of control NSCs and NSCs treated with lithium chloride. The therapeutic concentrations of lithium chloride stimulated NSC proliferation. β-catenin expression gradually decreased, while Gsk-3β expression gradually increased (P?P?in vitro and preventing the cells from differentiating, which is potentially mediated by activation of the Wnt signaling pathway.  相似文献   

18.
Aging refers to the physical and functional decline of the tissues over time that often leads to age-related degenerative diseases. Accumulating evidence implicates that the senescence of neural stem cells (NSCs) is of paramount importance to the aging of central neural system (CNS). However, exploration of the underlying molecular mechanisms has been hindered by the lack of proper aging models to allow the mechanistic examination within a reasonable time window. In the present study, we have utilized a hydroxyurea (HU) treatment protocol and effectively induced postnatal subventricle NSCs to undergo cellular senescence as determined by augmented senescence-associated-β-galactosidase (SA-β-gal) staining, decreased proliferation and differentiation capacity, increased G0/G1 cell cycle arrest, elevated reactive oxygen species (ROS) level and diminished apoptosis. These phenotypic changes were accompanied by a significant increase in p16, p21 and p53 expression, as well as a decreased expression of key proteins in various DNA repair pathways such as xrcc2, xrcc3 and ku70. Further proteomic analysis suggests that multiple pathways are involved in the HU-induced NSC senescence, including genes related to DNA damage and repair, mitochondrial dysfunction and the increase of ROS level. Intriguingly, compensatory mechanisms may have also been initiated to interfere with apoptotic signaling pathways and to minimize the cell death by downregulating Bcl2-associated X protein (BAX) expression. Taken together, we have successfully established a cellular model that will be of broad utilities to the molecular exploration of NSC senescence and aging.  相似文献   

19.
The purpose of the study was to investigate the impact of rat cytomegalovirus (RCMV) infection on the development of the nervous system in rat embryos, and to evaluate the involvement of Wnt signaling pathway key molecules and the downstream gene neurogenin 1 (Ngn1) in RCMV infected neural stem cells (NSCs). Infection and control groups were established, each containing 20 pregnant Wistar rats. Rats in the infection group were inoculated with RCMV by intraperitoneal injection on the first day of pregnancy. Rat E20 embryos were taken to evaluate the teratogenic rate. NSCs were isolated from E13 embryos, and maintained in vitro. We found: 1) Poor fetal development was found in the infection group with low survival and high malformation rates. 2) The proliferation and differentiation of NSCs were affected. In the infection group, NSCs proliferated more slowly and had a lower neurosphere formation rate than the control. The differentiation ratio from NSCs to neurons and glial cells was significantly different from that of the control, showed by immunofluorescence staining. 3) Ngn1 mRNA expression and the nuclear β-catenin protein level were significantly lower than the control on day 2 when NSCs differentiated. 4) The Morris water maze test was performed on 4-week pups, and the infected rats were found worse in learning and memory ability. In a summary, RCMV infection caused abnormalities in the rat embryonic nervous system, significantly inhibited NSC proliferation and differentiation, and inhibited the expression of key molecules in the Wnt/β-catenin signaling pathway so as to affect NSCs differentiation. This may be an important mechanism by which RCMV causes embryonic nervous system abnormalities.  相似文献   

20.
Neural stem cells (NSCs) serve as the source of both neurons and support cells, and neurogenesis is reportedly linked to the circadian clock. This study aimed to clarify the functional role of the circadian rhythm-related nuclear receptor, REV-ERBβ, in neurogenesis of NSCs from adult brain. Accordingly, Rev-erbβ expression and the effect of Rev-erbβ gene-specific knockdown on neurogenesis in vitro was examined in adult rodent NSCs. Initial experiments confirmed REV-ERBβ expression in cultured adult NSCs, while subsequent gene expression and gene ontogeny analyses identified functional genes upregulated or downregulated by REV-ERBβ. In particular, expression levels of factors associated with proliferation, stemness, and neural differentiation were affected. Knockdown of Rev-erbβ showed involvement of REV-ERBβ in regulation of cellular proliferation and self-renewal of cultured adult NSCs. Moreover, Rev-erbβ-knockdown cells formed neurons with a slightly shrunken morphology, fewer new primary neurites, and reduced length and branch formation of neurites. Altogether, this suggests that REV-ERBβ is involved in neurite formation during neuronal differentiation of cultured adult NSCs. In summary, REV-ERBβ is a known circadian regulatory protein that appears to be involved in neurogenesis via regulation of networks for cell proliferation and neural differentiation/maturation in adult NSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号