首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was carried out to investigate development of recipient chicken embryonic reproductive tracts which are transferred chicken primordial germ cells (PGCs). It is thought that differentiation of PGCs is affected by the gonadal somatic cells. When female PGCs are transferred to male embryos, it is possible that they differentiate to W-spermatogonia. However, the relationship development between PGCs and gonads has not been investigated. At stage 12–15 of incubation of fertilized eggs, donor PGCs, which were taken from the blood vessels of donor embryos, were injected into the blood vessels of recipient embryos. The gonads were removed from embryos that died after 16 days of incubation and from newly hatched chickens and organs were examined for morphological and histological features. The survival rate of the treated embryos was 13.6% for homo-sexual transfer of PGCs (male PGCs to male embryo or female PGCs to female embryo) and 28.9% for hetero-sexual transfer PGCs (male PGCs to female embryo or female PGCs to male embryo) when determined at 15 days of incubation. The gonads of embryos arising from homo-sexual transfer appeared to develop normally. In contrast, embryos derived from hetero-sexual transfer of PGCs had abnormal gonads as assessed by histological observation. These results suggest that hetero-sexual transfer of PGCs may influence gonadal development early-stage embryos.  相似文献   

2.
Surgical embryo transfer in the silver fox was investigated as part of a larger project concerning the conservation of endangered canine species using modern artificial reproduction techniques with the farmed fox as a model. The animals were chosen on the basis of synchrony in natural oestrus. The timing of ovulation and artificial insemination was determined by measuring electrical resistance in the vagina. Twenty-nine embryos were flushed from eight humanely killed donor females and transferred surgically into the uteri of eight recipients. One recipient female gave birth to two male pups 47 days after the transfer of four expanded blastocysts and one embryo at the 16-cell stage derived from a donor female flushed 10 days after artificial insemination.  相似文献   

3.
Abstract: A technique for nonsurgical embryo transfer in common marmosets was developed. Transfers were either synchronous (ST) or asynchronous (AT). Synchronous transfers (embryo donor and the embryo recipient ovulated on the same day) were performed 5 to 8 days post-ovulation. Asynchronous transfers (embryo donor had ovulated at least 2 days before the embryo recipient) were performed when the recipient was 2 to 4 days post-ovulation (donor was 6 to 8 days post-ovulation). Four pregnancies from nine transfers (44%) were established by AT, and three pregnancies were carried to term. Only 1 of 11 transfers (9%) from ST resulted in a pregnancy, which was lost by Day 40 of gestation. Significantly more infants were born from AT (6 infants from 17 embryos; 35%) than from ST (0 infants from 22 embryos; 0%; p<0.005). This technique allows experimental analysis of primate postimplantation development and provides a tool for conservation of endangered Callithrichid species.  相似文献   

4.
An attempt was made to induce estrus and ovulation in eight anestrus yaks by use of the Ovsynch protocol. Six out of eight yaks were successfully induced into estrus, and ovulation occurred in all the responding yaks 1-2 days after the second GnRH administration. Out of the six animals that responded to the treatment, two mated naturally with yak bulls, and calves were obtained from them. The other four animals were further administered a superovulatory regimen of Folltropin (FSH-P). Following Folltropin and Ilerin (a PGF(2alpha) analog) treatment, the animals were subjected to natural insemination. Only one animal in which natural mating occurred was flushed non-surgically for embryo recovery 7 days post-insemination. Thereafter, all the donor animals were administered with Ilerin. After 48-72 h, they came into heat and mated naturally with yak bulls, and calves were obtained from them after expiration of the normal gestation period. Following superovulation, the average numbers of palpable corpora lutea in the right and left ovaries were 2.25+/-0.6 and 1.75 +/-0.3, respectively. Three embryos were recovered by non-surgical flushing from a single animal. One embryo was transferred to a recipient yak, who produced one female calf after 258 days. This is the first report of production of a yak calf through embryo transfer-technology.  相似文献   

5.
This study was carried out to elucidate whether primordial germ cells, obtained from embryonic blood and transferred into partially sterilized male and female recipient embryos, could differentiate into functional gametes and give rise to viable offspring. Manipulated embryos were cultured until hatching and the chicks were raised until maturity, when they were mated. When the sex of the donor primordial germ cells and the recipient embryo was the same, 15 out of 22 male chimaeric chickens (68.2%) and 10 out of 16 female chimaeric chickens (62.5%) produced donor-derived offspring. When the sex of the donor primordial germ cells and the recipient embryo was different, 4 out of 18 male chimaeric chickens (22.2%) and 2 out of 18 female chimaeric chickens (11.1%) produced donor-derived offspring. The rates of donor-derived offspring from the chimaeric chickens were 0.6-40.0% in male donor and male recipient and 0.4-34.9% in female donor and female recipient. However, the rates of donor-derived offspring from the chimaeric chickens were 0.4-0.9% in male donor and female recipient and 0.1-0.3% in female donor and male recipient. The presence of W chromosome-specific repeating sequences was detected in the sperm samples of male chimaeric chickens produced by transfer of female primordial germ cells. These results indicate that primordial germ cells isolated from embryonic blood can differentiate into functional gametes giving rise to viable offspring in the gonads of opposite-sex recipient embryos and chickens, although the efficiency was very low.  相似文献   

6.
The viability of embryos before flushing from donor mares (n = 5) and after transfer to recipient mares (n = 7) was monitored in mare serum by detecting early pregnancy factor (EPF) using the rosette inhibition test (RIT). The EPF activity was measured in donor mares before and after natural mating at natural estrus; after ovulation on Days 2, 5 and 8; and after embryo flushing (Day 8) on Days 8, 9, 10 and 13 after ovulation. The collected embryos were transferred immediately after flushing. The EPF activity in recipient mares were measured on the day of transfer and after embryo transfer on Days 1, 2, 3 and 5. Pregnancy was confirmed on Day 12 to 14 after embryo transfer. The mean EPF activity of donor mares was increased to the pregnant level (> an RI titer score of 10) on Day 2 after ovulation. Two days after flushing the embryos, the EPF activity of donor mares had decreased to the nonpregnant level. Among the 7 recipient mares, 3 mares were diagnosed pregnant on Day 12 after embryo transfer with ultrasound. The EPF activity of the pregnant recipient mares was increased above the minimum level observed in pregnant mares on Days 2 to 3 after transfer. However, among the nonpregnant recipient mares after embryo transfer, the EPF activity of 3 mares remained at the pregnant level only 2 to 3 d and then declined to the nonpregnant level. In one recipient mare, EPF activity did not reach the pregnant level throughout the sample collection. The results of this study indicated that equine EPF can be detected in serum of pregnant mares as early as Day 2 after ovulation. From our observation, we conclude that the measurement of EPF activity is useful for monitoring the in vivo viability of equine embryos and early detection of embryonic death.  相似文献   

7.
Embryos collected surgically from donors superovulated with PMSG and synchronized with either prostaglandin F(2)alpha or progestagen impregnated sponges were transferred non-surgically to prostaglandin or progestagen synchronized recipients. One embryo was transferred to the uterine horn ipsilateral to the corpus luteum either through a flexible catheter introduced through a steel tube and passed to the uterine tip, or through a Cassou inseminating gun passed approximately 6 cm into the horn. Of 16 recipients receiving 5 or 6 day old embryos through the catheter (1976), 6 (38%) were palpated pregnant at 42 days and 4 (25%) subsequently calved. Of 16 recipients receiving 7 or 8 day old embryos through the straw and 16 through the catheter (1977), 10 (63%) and 3 (19%), respectively, were palpated pregnant (P<0.05) and 8 (50%) and 3 (19%), respectively, had normal embryos at slaughter 4 to 29 days after palpation (P reverse similar0.10 ). Forty 7 to 9 day old embryos were transferred through the straw in 1978. Eighteen (45%) of the recipients were palpated pregnant and 16 (40%) had normal embryos at slaughter 98 to 168 days after palpation. The success of the transfers in 1978 was affected by embryo quality [good vs poor embryos; 64% vs 22% recipients pregnant (P<0.01) and 59% vs 17% embryos surviving to slaughter (P<0.05)]. Also, in 1978, pregnancy rate was affected by the time taken to transfer the embryo with the highest rate achieved with the fastest transfers (P<0.10, b = -0.47). Injection of Indomethacin near the time of transfer, synchronization between donor and recipient onset of estrus and embryo age did not affect pregnancy rates. The pregnancy rate achieved after the transfer of good quality embryos by the straw technique was equal to that expected from surgical techniques.  相似文献   

8.
Fourteen horse embryos recovered non-surgically on Days 6-8 after ovulation (Day 0) were cooled slowly to - 35 degrees C (7 embryos) or - 40 degrees C (7 embryos) and stored in liquid nitrogen (- 196 degrees C) for 4-98 days. Surgical transfer of the thawed embryos to unmated recipient mares that had ovulated - 2 to + 1 days with respect to the embryo donors resulted initially in the establishment of 4 conceptuses. However, only one mare maintained her pregnancy to term.  相似文献   

9.
High plasma urea nitrogen (PUN) concentrations are associated with decreased fertility in lactating dairy cows. Our objective was to evaluate the quality of embryos flushed from superovulated lactating cows having moderate or high PUN concentrations. Subsequent embryo survival was determined after transfer to recipient heifers with either low or high PUN. Lactating Holstein dairy cows (n = 23; 50-120 days in milk) were randomly assigned to one of two diets designed to result in moderate or high PUN concentrations (15.5 +/- 0.7 and 24.4 +/- 1.0 mg/dl, respectively; P < 0.001) and were fed for 30 days before embryo flushing and recovery. Embryos (n = 94) were evaluated morphologically, frozen and subsequently transferred into synchronized virgin heifers that were fed one of two diets designed to result in either low or high PUN concentrations (7.7 +/- 0.9 and 25.2 +/- 1.5 mg/dl, respectively; P < 0.001; 2 x 2 factorial design). The number, quality and stage of development of recovered embryos were similar for cows with moderate or high PUN. Transfer of embryos from moderate PUN donor cows resulted in a higher pregnancy rate (35%; P < 0.02) than the transfer of embryos from high PUN donor cows (11%). Pregnancy rate was not affected by either recipient diet or the interaction of donor and recipient diets (P > 0.05). These results indicate that high PUN concentrations in lactating dairy cows decrease embryo viability through effects exerted on the oocyte or embryo before recovery from the uterus 7 days after insemination.  相似文献   

10.
Recombinant bovine somatotropin (rbST) has been shown to increase follicular growth in cattle and some studies have demonstrated an increase in superovulatory response for rbST-treated cows. Pregnancy rates have also been shown to increase when rbST was administered around the time of insemination or prior to embryo transfer. The application of rbST for the purpose of increasing superovulatory responses of donor cows and increasing pregnancy rates of recipient heifers was tested in a commercial embryo transfer program. In Experiment 1, embryo donor cows (n = 56) underwent three cycles of control superovulation (two before and one after weaning) and subsequently underwent up to four additional superovulations while being treated with either rbST (500 mg sustained-release rbST; Posilac, Monsanto, St. Louis, MO; n = 28) or excipient (control; n = 28) once every 14 days. In Experiment 2, lactating embryo donor cows (n = 37) underwent a control superovulation and then underwent a superovulation while lactating and being treated with either rbST (n = 16) or excipient (n = 21). In Experiment 3, embryo recipient heifers that were being implanted with either in vitro or in vivo produced embryos were treated with either rbST (n = 146) or excipient (n = 143) at the time of embryo transfer. Treatment of non-lactating (Experiment 1) or lactating (Experiment 2) donor cows with rbST during repeated superovulation did not affect the number of corpora lutea, the sum of transferable embryos, degenerate embryos, and unfertilized oocytes, or the number of transferable embryos. Treatment of recipient heifers with rbST (Experiment 3) did not affect pregnancy rates for either in vitro or in vivo produced embryos. We conclude that superovulatory response and pregnancy rates (respectively) are similar to control for rbST-treated cows undergoing repeated superovulations and rbST-treated recipient heifers treated at the time of embryo transfer.  相似文献   

11.
Donor and recipient factors were assessed during development of embryos following superovulation, collection at the pronuclear and two-cell stage, culture in Synthetic Oviduct Fluid medium for 5 days and twin transfer into synchronised recipients to elucidate what factors affect embryo development and post-transfer survival. In particular, the administration of exogenous progesterone to recipients using an intravaginal CIDRTM device immediately following embryo transfer was investigated.

From 138 embryos collected from 30 donor ewes, 75% (103) were of transferable quality following culture, of which 100 were transferred to 50 recipients. There was significant variation (P < 0.001) in embryo development to the blastocyst stage between different donor ewes, but this was not related to the donor ovulation rate. At ultrasound sonography (approximately Day 60 of pregnancy), 58% of recipients were pregnant and 42% embryos had survived. Donor ovulation rate was related to embryo survival (P < 0.05) after transfer; the survival rate of embryos from ewes with high ovulation rates was lower than that of embryos from ewes with low ovulation rates. Exogenous progesterone supplementation following transfer did not affect embryo survival, rate of embryo development or plasma progesterone levels. In general, the results from this study suggest that factors other than efficacy of embryo culture can affect the outcome of embryo survival following transfer and that, where possible, these factors should be considered and balanced in experimental designs.  相似文献   


12.
13.
A novel system has been developed to determine the origin and development of primordial germ cells (PGCs) in avian embryos directly. Approximately 700 cells were removed from the center of the area pellucida, the outer of the area pellucida, and the area opaca of the stage X blastoderm (Eyal-Giladi and Kochav, 1976; Dev Biol 49:321–337). When the cells were removed from the center of the area pellucida, the mean number of circulating PGCs per 1 μl of blood was significantly decreased to 13 (P < 0.05) in the embryo at stage 15 (Hamburger and Hamilton, 1951: J Morphol 88:49–92) as compared to intact embryos of 51. When the removed recipient cells from the center of the area pellucida were replenished with 500 donor cells, no reduction in the PGC number was observed. The removal of cells from the outer of area pellucida or from the area opaca had no effect on the number of PGCs. When another set of the manipulated embryos were cultured ex vivo to hatching and reared to sexual maturity, the absence of germ cells and the degeneration of seminiferous tubules were observed in resulting chickens derived from the blastoderm from which the cells were removed from the center of the area pellucida. Chimeric embryos produced by the male donor cells and the female recipient contained the female-derived cells at 97.2% in the whole embryo and 94.3% in the erythrocytes at 5 days of incubation. At 5–7 days of incubation, masculinization was observed in about one half of the mixed-sex embryos. The proportions of the female-derived cells in the whole embryo and in the erythrocytes were 76.5% and 80.2% at 7 days to 55.7% and 62.5% at 10 days of incubation, respectively. When the chimeras reached their sexual maturity, they were test mated to assess donor contribution to their germline. Five of six male chimeras (83%) and three of five female chimeras (60%) from male donor cells and a female recipient embryo from which 700 cells at the center of area pellucida were removed were germline chimeras. Three of the five male germline chimeras (60%) and one of the three female germline chimeras (33%) transmitted exclusively (100%) donor-derived gametes into the offspring. When embryonic cells were removed from the outer of area pellucida or area opaca, regardless of the sex combination of the donor and the recipient, the transmission of the donor-derived gametes was essentially null. The findings in the present studies demonstrated, both in vivo and in vitro, that the PGCs originate in the central part of the area pellucida and that the developmental fate to germ cell (PGCs) had been destined at stage X blastoderm in chickens. Mol. Reprod. Dev. 48:501–510, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Blastocysts were collected non-surgically from 2 Przewalski's horse and 2 Grant's zebra mares and transferred extra-specifically to domestic horse and donkey recipients. Nine Przewalski's horse embryos were transferred surgically, and 2 non-surgically, to domestic Welsh-type pony mares. After surgical transfer, 7 (77.8%) pregnancies were established and 4 foals were born. Twelve Grant's zebra embryos were transferred surgically to 5 pony and 7 domestic donkey recipients respectively and 1 non-surgically to a donkey; 3 (60%) zebra-in-horse pregnancies were established and 2 went to term. Only 2 (28.6%) zebra-in-donkey pregnancies were established but neither went to term, although one zebra foal was aborted alive at Day 292 but failed to survive. No pregnancies resulted from the non-surgical transfers. Measurement of chorionic gonadotrophin concentrations and parental-specific lymphocytotoxic antibodies in the serum of the recipient animals indicated a pronounced maternal immunological response to the extra-specific embryo, but this could not be correlated with success or failure of pregnancy. The results indicate that extra-specific embryo transfer may be a useful aid to breeding exotic equids in captivity.  相似文献   

15.
In previous experiments in our laboratories, chickens that are chimeric in their gamete, melanocyte, and blood cell populations have been produced by injection of dispersed stage X blastodermal donor cells into the subgerminal cavity of stage X recipient embryos. In some experiments, donor cells were transfected with reporter gene constructs prior to injection as a preliminary step in the production of transgenic birds. Chimerism was assessed by test mating, observation of plumage, and DNA fingerprinting. Methods were sought that would provide a relatively rapid analysis of the spatial distribution of descendants of donor cells in chimeras to assess the efficacy of various methods of chimera construction. To date, the sex of donor and recipient embryos was not known and, therefore, numerous mixed sex chimeras must have been constructed by chance, since donor cells were usually collected from several embryos rather than from individual embryos. The presence of female-derived cells was determined by in situ hybridization using a W-chromosome-specific DNA probe, using smears of washed erythrocytes from 16 phenotypically male chimeric chickens ranging in age from 4 days to 42 months posthatching. The proportion of female cells detected in the erythrocyte samples was zero (eight samples) or very low (0.020-0.083%), although 1% of the erythrocytes from a phenotypically male chick that was killed 4 days after hatch were female-derived. The low proportions of female-derived cells were surprising, considering that most of these chimeras had been produced by the injection of cells pooled from several donor embryos and most recipients had been exposed to gamma irradiation prior to injection, thus dramatically enhancing the level of incorporation of donor cells into the resulting chimeras. By contrast, 0-100% of the erythrocytes were female-derived in blood samples taken at 10 days of incubation from the chorioallantois of seven phenotypically normal male embryos that resulted from the injection of blastodermal cells pooled from five embryos into irradiated recipient embryos. Approximately 70% of the erythrocytes in a blood sample from a phenotypically normal female chimeric embryo were female-derived, and 100% of the erythrocytes examined from an intersex embryo bearing a right testis and a left ovary were female-derived. These results indicate that female-derived cells can contribute to the formation of erythropoietic tissue during the early development of what will become a phenotypically male chimeric embryo. It would appear, therefore, that female-derived cells are blocked in development or destroyed, or certain male-female combinations of cells may be lethal prior to hatching.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The effect of intraoviductal embryos on endometrial receptivity was studied by intraendometrial and intrauterine embryo transfer. Five-week-old female ICR mice were mated after superovulation; a vaginal plug confirmed day 1 of pregnancy. On day 4 (90 h after hCG injection), blastocysts were collected and transferred to pseudopregnant female mice and to recipient mice in which the uterotubal junction had been ligated bilaterally on day 1 of pregnancy. Three embryos per uterine horn, a total of six embryos per recipient mouse at days 1-6, were transferred to the endometrium or uterine cavity and implantation and pregnancy rates were calculated. The implantation rate for intraendometrial embryo transfer to recipients of days 3, 5 and 6 was significantly higher for uterotubal junction-ligated mice (72.2, 20.8 and 9.7%, respectively) than for pseudopregnant mice (55.0, 8.3 and 0.0%, respectively). The implantation rate for intrauterine embryo transfer to recipients at days 2, 5 and 6 was significantly higher for uterotubal junction-ligated mice (11.1, 25.0 and 8.3%, respectively) than for pseudopregnant mice (0.0, 3.3 and 0.0%, respectively). Uterotubal junction-ligated mice achieved implantation and bore neonates by intrauterine embryo transfer on days 2 and 6, whereas no implantation was achieved in pseudopregnant mice. The difference in implantation rate could not be explained by a difference in progesterone concentration between the groups. The distribution of proliferating cells in the endometrium was also studied immunohistochemically by use of anti-proliferating cell nuclear antigen (PCNA) antibody in the recipient mice. PCNA-positive cells were more abundant in uterotubal junction-ligated mice and demonstrated a marked extension from the epithelium to the stroma over time, in contrast to those in pseudopregnant mice. These findings indicate that an intraoviductal embryo exerts a biological effect by sending a signal to the endometrial epithelium and stroma, thus facilitating endometrial receptivity to the embryo and improving the rate of implantation.  相似文献   

17.
This study investigated whether the transmission of naturally occurring scrapie in sheep can be prevented using embryo transfer. Embryos were collected from 38 donor ewes in a Suffolk sheep flock with a high incidence of naturally occurring scrapie, treated with a sanitary procedure (embryo washing) recommended by the International Embryo Transfer Society and then transferred to 58 scrapie-free recipient ewes. Ninety-four offspring were produced. None of the offspring or the recipient ewes developed scrapie. Furthermore, offspring derived from embryos collected from donor ewes bred to the immunohistochemically positive ram did not develop scrapie. We conclude that scrapie was not transmitted to offspring via the embryo nor was the infective agent transmitted to recipient ewes during embryo transfer procedures.  相似文献   

18.
Between-farm embryo transfer of livestock animals can potentially increase the spread of quality genetic material. However, the transporting of donor or recipient animals or their embryos has become a practical problem. The objective of this study was to compare the effect of transporting donor and recipient does and their embryos between various farms on inter-farm fresh embryo transfer in Boer goats. Results indicate the transportation of donor does within 4 h before embryo collection not to have a significant effect on embryo recovery number, embryo survival rate and the subsequent pregnancy in recipient does. Also, the transportation of embryos at 36.5–38 °C within 2 h before embryo transfer did not significantly affect the embryo survival rate and subsequent pregnancy rate, but the transportation of embryos at 20 °C resulted in a significant (P < 0.05) lower survival rate (41.7%) and pregnancy rate (42.0%). The transportation of recipient does resulted in a significantly lower pregnancy rate (42.0%) and embryo survival rate (32.1%) than the transportation of donor does and embryos. Results suggest the transportation of donor does to be the best method for embryo transfer programs on the farm. Alternatively, the supply of fresh embryos kept at body temperature (36.5 °C) was also preferred for short or long distances between farms.  相似文献   

19.
Micromanipulation and electrofusion were utilized for nuclear transfer in bovine embryos. Embryonic blastomeres from 5-day (estrus = day 0), 6-day, frozen-thawed 5-day, and first-generation nuclear transfer embryos (embryos were themselves a product of nuclear transfer with the original donor being a 5-day embryo) were transferred into bisected bovine oocytes by electrofusion. The percentage of donor cells fusing with the recipient oocytes was compared between different types of donor embryos. The percentage of embryos developing normally into morula or blastocysts following 6 days culture in the sheep oviduct was also recorded and compared between different donor embryo types. No significant differences were found between donor blastomeres for the percent successfully fused to oocytes: 5-day, 294 of 513 (57.3%); 6-day, 252 of 405 (62.2%); frozen-thawed 5-day, 111 of 144 (77.1%); nuclear transfer, 142 of 223 (63.7%); or the percent developing normally following nuclear transfer: 5-day, 92 of 444 (20.7%); 6-day, 84 of 357 (23.5%); frozen-thawed 5-day, 32 of 127 (25.2%); nuclear transfer, 31 of 199 (15.6%). These data suggest that a variety of donor embryos can successfully be utilized for bovine embryo cloning. Also, development of blastomeres from frozen-thawed 5-day donors and from donors that are themselves the product of nuclear transfer suggest that the production of multiple identical offspring is possible by frozen storage of seed stock and serial recloning.  相似文献   

20.
Endangered wolves cloned from adult somatic cells   总被引:1,自引:0,他引:1  
Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号