首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
MCF-7 human breast cancer cells provide a useful in vitro model system to study hormone-responsive breast cancer as they contain receptors for estrogen and progesterone, and estrogen both induces the synthesis of specific proteins in these cells and increases their rate of proliferation. An MCF-7 cell line which was selected for resistance to adriamycin (MCF-7/AdrR) exhibits the phenotype of multidrug resistance (MDR), and displays multiple biochemical changes. MDR in MCF-7/AdrR is also associated with a loss of mitogenic response to estrogen and the development of cross-resistance to the antiestrogen 4-hydroxytamoxifen. In addition, while the parental MCF-7 cell line responds to estrogen with increased levels of progesterone receptors and the secretion of specific proteins, these estrogen responses are lost in MCF-7/AdrR. Furthermore, while the formation of tumors in nude mice by wild-type MCF-7 cells is dependent upon the presence of estrogen, MCF-7/AdrR cells form tumors in the absence of exogenous estrogen administration. These changes in hormonal sensitivity and estrogen-independent tumorigenicity of the multidrug-resistant MCF-7 cell line are associated with a loss of the estrogen receptor and a concomitant increase in the level of receptors for epidermal growth factor. Thus, in MCF-7/AdrR cells, the development of MDR is associated with alterations in the expression of both cytosolic and membrane receptors, resulting in resistance to hormonal agents and the expression of hormone-independent tumor formation.  相似文献   

3.
Human breast cancer cells in tissue culture (MCF-7) were pretreated with the antiestrogen nafoxidine to arrest cellular proliferation and then were given estradiol to release this block and stimulate DNA synthesis and cell division. During this period of growth stimulation intracellular proteins, labeled by a double isotope method, were analyzed on SDS-polyacrylamide gel electrophoresis. Estradiol directly increases the rates of synthesis of specific proteins which migrate on SDS-gels at molecular weights of 24,000 and 36,000. Nafoxidine-pretreatment alone does not induce these same proteins, and no changes in the rates of specific protein synthesis occur in cells grown on control medium for the same length of time as on estradiol. Induced synthesis of these proteins is observed only during the period of estrogen stimulation of cell proliferation following pretreatment with nafoxidine. We do not detect induction when cells are incubated with estradiol without antiestrogen-pretreatment. Since rescue of antiestrogen growth inhibition is also the only condition under which MCF-7 cell division can be reproducibly stimulated by estrogen, these proteins may be related to estrogen effects on cellular proliferation.  相似文献   

4.
ES-1 cells, which showed a higher sensitivity to the cytocidal action of estradiol were isolated from a human breast cancer MCF-7 cell line. Growth of ES-1 cells was inhibited by a dose of 17-beta estradiol that stimulated the growth of the parental MCF-7 cells. Proteins secreted from MCF-7 and ES-1 cells when cultured with 17-beta estradiol were compared by sodium dodecyl sulfate-containing polyacrylamide gel electrophoresis (SDS-PAGE). Addition of estradiol to culture medium enhanced secretion of a protein of molecular mass of 52 kDa in media for both MCF-7 and ES-1 cell lines, but the secretion of a second 67 kDa protein was enhanced about 10-fold only in ES-1 cells. The analysis by SDS-PAGE of culture medium immunoprecipitated with anti-tissue-type plasminogen activator (t-PA) antibody demonstrated that the band of 67 kDa protein specifically secreted from estradiol-treated ES-1 cells contained t-PA. Zymography assays, quantitative immunoreactive assays, and Northern analysis showed about 5-fold specific increase by estradiol of t-PA with molecular mass of 65-70 kDa in ES-1 but not in its parental MCF-7 cells. Cellular level of the plasminogen activity was also specifically enhanced in ES-1 cells by estradiol, but only a slightly in MCF-7 cells. By contrast, another urokinase-type PA (u-PA) with molecular weight of 55 kDa showed very low level activity in both MCF-7 and ES-1 cell lines in the presence of estradiol. Formation of t-PA mRNA was specifically enhanced in ES-1 cells when ES-1 cells were treated for more than 12 h with 10(-8) M 17-beta estradiol. Estradiol did not elongate the lifetime of t-PA mRNA in ES-1 cells. A unique phenotype of ES-1 cells in response to estradiol is discussed in relation to activating expression of the t-PA gene.  相似文献   

5.
Summary Both retinoic acid and 17β-estradiol formed covalent bonds with proteins of the human breast cancer cell line MCF-7. Two-dimensional gel patterns of the labeled proteins were unique for each ligand. There were four major retinoylated proteins in MCF-7 consisting of two doublets with molecular masses of 37 kDa and 20 kDa. These proteins were designated 37a, 37b, 37c, and 20d. The extent of retinoylation was very low in a 55 kDa protein that we previously identified in the human myeloid leukemia cell line HL60 [Takahashi, N. and Breitman, T. R. (1989) J. Biol. Chem. 264, 5159–5163]. These results indicated that the protein substrates for retinoylation may vary among cell-types. About 10 proteins were labeled from 17β-estradiol. Two of these proteins had mobilities that were identitied to the retinoylated proteins 37a and 20c. These results indicate that in MCF-7 cells there are two proteins that can be retinoylated and labeled from estradiol. The demonstration that some ligands of the steroid/thyroid receptor family are covalently linked to cellular proteins suggests new mechanisms for the many effects of these agents on cells. This study is the first report showing that estradiol or one of its metabolic products covalently binds to proteins in the human breast cancer cell line MCF-7. Two of the proteins labeled from radioactive estradiol comigrate with proteins labeled from radioactive retinoic acid. These results suggest new mechanisms of action for the steroid and thyroid hormones. EDITOR’S STATEMENT This study is the first report showing that estradiol or one of its metabolic products covalently binds to proteins in the human breast cancer cellline MCF-7. Two of the proteins labeled from radioactive estradiol comigrate with proteins labeled from radioactive retinoic acid. These results suggest new mechanisms of action for the steroid and thyroid hormones.  相似文献   

6.
Antiestrogens are efficient inhibitors of estrogen-mediated growth of human breast cancer. Besides inhibiting estradiol-stimulated growth, antiestrogens may have a direct growth-inhibitory effect on estrogen receptor (ER) positive cells and thus be more efficient than aromatase inhibitors, which will only abrogate estrogen-dependent tumor growth. To address this issue, we have used the human breast cancer cell line MCF-7/S9 as a model system which is maintained in a chemically defined medium without serum and estrogen. The addition of estradiol results in an increase in cell growth rate. Thus, the MCF-7/S9 cell line is estrogen-responsive but not estrogen-dependent. Three different types of antiestrogens, namely tamoxifen, ICI 182,780 and EM-652 were found to exert a significant and dose-dependent inhibition of basal growth of MCF-7/S9 cells. The growth-inhibitory effect of the three antiestrogens was prevented by simultaneous estradiol treatment. Antiestrogen treatment also reduced the basal pS2 mRNA expression level, thus indicating spontaneous estrogenic activity in the cells. However, treatment with the aromatase inhibitor had no effect on basal cell growth, excluding that endogenous estrogen synthesis is involved in basal growth. These data demonstrate that in addition to their estrogen antagonistic effect, antiestrogens have a direct growth-inhibitory effect which is ER-mediated. Consequently, in the subset of ER positive breast cancer patients with estrogen-independent tumor growth, antiestrogen therapy may be superior to treatment with aromatase inhibitors which only inhibit estrogen formation but do not affect cancer cell growth in the absence of estrogens.  相似文献   

7.
8.
9.
In this study we analyzed the covalent binding to proteins of 17 beta-estradiol (E2), retinoic acid (RA), and progesterone in MCF-7 and MCF-7/AdrR cells. MCF-7 cells have receptors for E2 and progesterone. MCF-7/AdrR cells do not have these receptors. After a 1-day incubation period with either [3H]E2, [3H]progesterone, or [3H]RA the levels of covalently bound radioactivity was between 1.4- to 2-fold greater in MCF-7 cells than in MCF-7/AdrR cells. We analyzed the labeled proteins with two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and fluorography. About 40 proteins were labeled by E2 in MCF-7 cells and about 10 of these proteins were the only proteins labeled by E2 in MCF-7/AdrR cells. We saw that the same 8 proteins were labeled by RA in both cell lines. Progesterone labeled 2 proteins with M(r) values of 37,000 and 20,000 in MCF-7 cells. These 2 proteins had mobilities that were the same as proteins that were labeled by either E2 or RA in both MCF-7 and MCF-7/AdrR cells. Besides these 2 proteins, we saw proteins of M(r) 51,000 (p51) and 55,000 that were covalently labeled by E2 in MCF-7 cells and by RA in both MCF-7 and MCF-7/AdrR cells. The p51 had the same mobility on 2D-PAGE as an 8-azido-[32P]cAMP-labeled protein. This protein is probably RII alpha, the type II cAMP-binding regulatory subunit of type II cAMP-dependent protein kinase. These results suggest that the estrogen receptor, while not obligatory, might still modulate the covalent linkage of E2 to protein. In addition, our results raise the possibility that some effects of some ligands of the thyroid/steroid hormone receptor family may involve the covalent linking of these hormones to proteins, including RII alpha.  相似文献   

10.
We have examined the effects of reversibly and irreversibly binding estrogenic and antiestrogenic ligands for the estrogen receptor on pS2 RNA accumulation in MCF-7 human breast cancer cells and on pS2-chloramphenicol acetyl transferase (CAT) fusion gene expression in transfected MCF-7 cells. In MCF-7 cells grown in the absence of estrogens, the reversibly binding estrogen, estradiol, and the affinity labeling estrogen, ketononestrol aziridine, KNA, evoked a 13-fold increase in pS2 RNA level. The reversibly binding antiestrogen trans-hydroxytamoxifen and the affinity labeling antiestrogens tamoxifen aziridine or desmethylnafoxidine aziridine behaved as partial agonists/antagonists. In thymidine kinase-chloramphenicol acetyltransferase (tk-CAT) fusion genes containing a 1000 base pair fragment of the pS2 5'-flanking region encompassing the estrogen responsive element of the gene [pS2 (-1100/-90) tk-CAT], estradiol and ketononestrol aziridine evoked a marked stimulation of CAT activity and, in transfected cells grown in both the presence or absence of the weak estrogen phenol red, the antiestrogens behaved as partial agonists/antagonists. This pS2 5'-flanking region displayed both estrogen-dependent and estrogen-independent enhancer activity as monitored by stimulation of CAT activity. Hormonal regulation of the transfected pS2 fusion gene was similar to that observed in the native pS2 gene of MCF-7 cells; however, antiestrogens, while still partial agonists-antagonists, were relatively more agonistic on the transfected fusion gene than on the native gene. One antiestrogen (ICI 164,384) that behaved as a pure estrogen antagonist on the native gene was a partial agonist-antagonist of pS2 gene expression in the plasmid. This study illustrates that the hormonal regulation of the pS2 gene, as characterized by the agonist-antagonist balance of estrogens and antiestrogens, is influenced by the DNA context of the pS2 estrogen responsive element. Also, the fact that estrogens and antiestrogens that form covalent bonds with the estrogen receptor modulate activity of the native pS2 gene and the pS2-tk-CAT fusion gene in a manner similar to that of their reversibly binding counterparts suggests that it may be possible to use these irreversibly binding ligands to follow the interaction of hormone-receptor complexes with regions regulating estrogenic stimulation of the pS2 gene.  相似文献   

11.
To compare the effects of the food toxin 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and estradiol in hormone-responsive MCF-7 cells, the cells were exposed to different concentrations of either PhIP or estradiol. The effect of various culture conditions (e.g. phenol red, FBS, vehicle (DMSO/EtOH) and seeding density) on responses was studied. Cells were continuously grown with steroid-containing or -deprived medium, or switched from steroid-containing to -deprived medium for the experiments to minimize the effect of background estrogenicity. Effects of PhIP and estradiol on cell viability and proliferation were determined by ATP analysis and Ki-67 immunocytochemistry. Expression of estrogen receptor alpha, cell stress markers (p53 and ERK) and estrogen responsive proteins (c-myc and ERK) were immunoblotted. All concentrations of estradiol induced cell proliferation, viability and changes in protein expression, typical for estrogenic responses. PhIP, however, increased viability only at low concentrations and depending on culture conditions. No changes in protein expressions by PhIP were noted, not even when switching cells from steroid-containing to -deprived medium which down-regulated the expression of proteins at basal level. Vehicle affected significantly viability, especially after exposure to PhIP, but not protein expression while medium changes affected both. In conclusion, the effects of PhIP and estradiol in MCF-7 cells are dependent on culture conditions. The detected PhIP-induced changes are weaker compared to those induced by estradiol.  相似文献   

12.
Cripto-1 (CR-1) is an epidermal growth factor (EGF)-CFC protein that has been shown to signal through nodal/Alk-4, PI3K/Akt, and/or ras/raf/MEK/MAPK pathways in mammalian cells, and that is frequently expressed in human primary breast carcinomas. In the present study, the human estrogen receptor positive, MCF-7 breast cancer cell line, that expresses low levels of endogenous CR-1, was transfected with a CR-1 expression vector. MCF-7 CR-1 cells expressed high levels of a 25 kDa recombinant CR-1 protein that was not detected in MCF-7 cells transfected with a control vector (MCF-7 neo). Overexpression of CR-1 did not induce an estrogen independent phenotype in MCF-7 cells. In fact, MCF-7 CR-1 cells showed a response to exogenous estrogens that was similar to MCF-7 neo cells, and failed to grow in immunosuppressed mice in absence of estrogen stimulation. However, MCF-7 CR-1 cells showed a rate of proliferation in serum free conditions, and an ability to form colonies in soft-agar that were higher as compared with MCF-7 neo cells. More importantly, overexpression of CR-1 enhanced the resistance to anoikis and the invasion ability of MCF-7 cells. MCF-7 CR-1 cells showed levels of activation of both Akt and Smad-2 that were significantly higher as compared with MCF-7 neo. These findings suggest that CR-1 overexpression might be associated with the progression towards a more aggressive phenotype in breast carcinoma, through the activation of both Akt and Smad-2 signalling pathways.  相似文献   

13.
The synthesis of a 66 kDa protein immunoreactive with antibodies to human alpha 1-antichymotrypsin (alpha 1-ACT) is induced by estradiol (E2) in the human breast cancer cell line MCF-7. We have purified this alpha 1-ACT-like 66 kDa protein from medium conditioned by MCF-7 cells, performed a comparative physico-chemical characterization with serum alpha 1-ACT, and analysed its presumed positive regulatory effect on growth of MCF-7 cells. The 66 kDa protein is a functional antiproteinase which is antigenically identical to serum alpha 1-ACT. The 66 kDa protein does however deviate from serum alpha 1-ACT with respect to mol. wt. and pattern of microheterogeneity, the molecular mechanism for this is probably an incomplete glycoprotein processing in the MCF-7 cells. The results of our growth experiments suggest that the 66 kDa protein is a minor positive growth regulatory factor, which may contribute to breast carcinoma cell proliferation in a cooperative manner.  相似文献   

14.
Using a combination of hormone-binding assays, immunologic techniques, and mRNA hybridizations we have measured the estrogen receptor (ER) content and studied the hormonal regulation of ER mRNA in one estrogen responsive and one estrogen unresponsive breast cancer cell line, MCF-7 and T47Dco, respectively. Estradiol binding could be detected in cytosol from MCF-7 cells but not in T47Dco cells. However, when measured by an enzyme-linked immunosorbent assay, T47Dco cells were found to contain approximately 15 fmol ER/mg cytosolic protein or 10% of the ER content in MCF-7 cells. Immunologically reactive ER in T47Dco cells was indistinguishable in size (approximately equal to 68 KD) from the ER in MCF-7 cells, as shown by Western blotting using a monoclonal antihuman ER antibody. Quantification of ER mRNA in MCF-7 and T47Dco cells indicated that T47Dco cells contained approximately 50% of the ER mRNA levels found in MCF-7 cells. This basal level of ER mRNA in T47Dco cells was not decreased by estradiol treatment, as opposed to in MCF-7 cells where estradiol caused 40-60% decrease in the ER mRNA expression. Also, estradiol did not increase the progesterone receptor (PR) mRNA levels in T47Dco cells whereas in MCF-7 cells an approximately 5-fold increase of the PR mRNA levels occurred after estradiol treatment. However, incubation of the cells with the synthetic progestin R5020 decreased the ER mRNA levels to approximately the same degree in both cell lines. In conclusion, we have shown that estrogen down-regulates ER mRNA and up-regulates PR mRNA in MCF-7 cells. Neither of these estrogenic effects were seen in T47Dco cells. It appears that the steroid-resistance in T47Dco cells does not occur as a consequence of a complete absence of ER mRNA or protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Whole MCF-7 human breast-cancer cells were irradiated at - 78 degrees C in a calibrated Gammacel 60Co irradiator. Freezing or storing conditions induce neither an alteration of the viability of cells nor a change in estradiol binding activity. Hexosaminidase was used as internal marker, and we measured the radiation inactivation size (RIS) of the estrogen receptor in whole cells. After various cell treatments, the estradiol binding unit always presents a molecular mass of 25 kDa. This value, which corresponds to the size of the defined hormone binding domain of the estrogen receptor, suggests that the energy delivered to the protein by the radiation is efficient to inactivate estradiol binding only when the hit occurs directly in the smaller hormone binding domain.  相似文献   

16.
Expression of an estrogen receptor alpha (ER) transgene in hormone independent breast cancer and normal breast epithelial cells arrests cell cycling when estradiol is added. Although endogenously expressed ER does not typically affect estradiol-induced cell cycling of hormone dependent breast cancer cells, we observed that elevated expression of a green fluorescent protein fused to ER (GFP-ER) hindered entry of estrogen treated MCF-7 cells into S phase of the cell cycle. In analyses of key cell-cycle regulating proteins, we observed that GFP-ER expression had no affect on the protein levels of cyclin D1, cyclin E, or p27, a cyclin dependent kinase (Cdk) inhibitor. However, at 24 h, p21 (Waf1, Cip1; a Cdk2 inhibitor) protein remained elevated in the high GFP-ER expressing cells but not in non-GFP-ER expressing cells. Elevated expression of p21 inhibited Cdk2 activity, preventing cells from entering S phase. The results show that elevated levels of ER prevented the down-regulation of p21 protein expression, which is required for hormone responsive cells to enter S phase.  相似文献   

17.
18.
Alterations in the amino acid sequence of the estrogen receptor (ER) have been shown to have dramatic effects on its function. Recently, mutant ERs have been isolated from both clinical samples and established breast cancer cell lines, primarily through the use of the polymerase chain reaction (PCR). All previously reported mutations have given rise to either alterations or truncations of the ER protein. We determined the structure of a novel 80 kDa ER which is expressed in an estrogen independent subclone of the MCF-7 human breast cancer cell line (MCF-7:2A). This 80 kDa ER was initially detected by Western blot analysis using a variety of ER specific antibodies. PCR mapping and partial PCR mediated subcloning of the ER cDNA were used to demonstrate that this protein was an ER containing an in-frame duplication of exons 6 and 7. This type of duplication has not been previously described for any members of the steroid receptor superfamily. Karyotype analysis coupled with fluorescence in situ hybridization (FISH) demonstrated that MCF-7:2A cells contained 4-5 copies of the ER gene in contrast to 2 copies in MCF-7:WS8 cells. The ER gene was localized by FISH analyses in both the MCF-7:WS8 and MCF-7:2A cells on chromosome 6, which is the source of the ER in normal human cells. The relative expression level of 2:1 is consistent with DNA gene dosage analysis. Genomic PCR was then used to demonstrate that the 80 kDa ER mRNA was not derived from the trans-splicing of two ER mRNAs but was the result of a genomic rearrangement in which exons 6 and 7 were duplicated in an in-frame fashion. This variant ER may prove to be useful in elucidating the mechanism of estrogen action in breast cancer cells.  相似文献   

19.
20.
Linoleic acid, an omega-6 unsaturated fatty acid, stimulated growth of the MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Responses of the estrogen-independent MDA-MB-231 cells both in serum-free medium and with 1% fetal bovine serum added were positively correlated with linoleic acid concentration over the entire range examined (5-750 ng/ml). Growth stimulation of the estrogen-responsive MCF-7 cell line was maximal at a LA concentration of 500 ng/ml when cultured in 1% fetal bovine serum-containing medium with added estradiol. Linoleic acid had no mitogenic effect on three human cancer cell lines derived from sites other than breast, or on untransformed 3T3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号