首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of a d(CGATCG)-daunomycin complex has been determined by single crystal X-ray diffraction techniques. Refinement, with the location of 40 solvent molecules, using data up to 1.5 A, converged with a final crystallographic residual, R = 0.25 (RW = 0.22). The tetragonal crystals are in space group P4(1)2(1)2, with cell dimensions of a = 27.98 A and c = 52.87 A. The self-complementary d(CGATCG) forms a distorted right-handed helix with a daunomycin molecule intercalated at each d(CpG) step. The daunomycin aglycon chromophore is oriented at right-angles to the long axis of the DNA base-pairs. This head-on intercalation is stabilized by direct hydrogen bonds and indirectly via solvent-mediated, hydrogen-bonding interactions between the chromophore and its intercalation site base-pairs. The cyclohexene ring and amino sugar substituent lie in the minor groove. The amino sugar N-3' forms a hydrogen bond with O-2 of the next neighbouring thymine. This electrostatic interaction helps position the sugar in a way that results in extensive van der Waals contacts between the drug and the DNA. There is no interaction between daunosamine and the DNA sugar-phosphate backbone. We present full experimental details and all relevant conformational parameters, and use the comparison with a d(CGTACG)-daunomycin complex to rationalize some neighbouring sequence effects involved in daunomycin binding.  相似文献   

2.
Doxorubicin is among the most widely used anthracycline in cancer chemotherapy. In an attempt to avoid the cardiotoxicity and drug resistance of doxorubicin therapy, several analogues were synthesized. The cyanomorpholinyl derivative is the most cytotoxic. They differ greatly from their parent compound in their biological and pharmacological properties, inducing cross-links in drug DNA complexes. The present study concerns N-cyanomethyl-N-(2-methoxyethyl)-daunomycin (CMDa), a synthetic analogue of cyanomorpholino-daunomycin. Compared to doxorubicin, CMDa displays a cytotoxic activity on L1210 leukemia cells at higher concentration but is effective on doxorubicin resistant cells. The results of fluorescence quenching experiments as well as the melting temperature (DeltaTm = 7.5 degrees C) studies are consistent with a drug molecule which intercalates between the DNA base pairs and stabilizes the DNA double helix. The crystal structure of CMDa complexed to the hexanucleotide d(CGATCG) has been determined at 1.5 A resolution. The complex crystallizes in the space group P41212 and is similar to other anthracycline-hexanucleotide complexes. In the crystal state, the observed densities indicate the formation of N-hydroxymethyl-N-(2-methoxyethyl)-daunomycin (HMDa) with the release of the cyano moiety without DNA alkylation. The formation of this degradation compound is discussed in relation with other drug modifications when binding to DNA. Comparison with two other drug-DNA crystal structures suggests a correlation between a slight change in DNA conformation and the nature of the amino sugar substituents at the N3' position located in the minor groove.  相似文献   

3.
Crystallographic methods have been applied to determine the high-resolution structure of the complex formed between the self-complementary oligonucleotide d(TGTACA) and the anthracycline antibiotic 4'-epiadriamycin. The complex crystallises in the tetragonal system, space group P4(1)2(1)2 with a = 2.802 nm and c = 5.293 nm, and an asymmetric unit consisting of a single DNA strand, one drug molecule and 34 solvent molecules. The refinement converged with an R factor of 0.17 for the 2381 reflections with F greater than or equal to 3 sigma F in the resolution range 0.70-0.14 nm. Two asymmetric units associate such that a distorted B-DNA-type hexanucleotide duplex is formed incorporating two drug molecules that are intercalated at the TpG steps. The amino sugar of 4'-epiadriamycin binds in the minor groove of the duplex and displays different interactions from those observed in previously determined structures. Interactions between the hydrophilic groups of the amino sugar and the oligonucleotide are all mediated by solvent molecules. Ultraviolet melting measurements and comparison with other anthracycline-DNA complexes suggest that these indirect interactions have a powerful stabilising effect on the complex.  相似文献   

4.
The structure of the complex between d(TGATCA) and the anthracycline 4'-epiadriamycin has been determined by crystallographic methods. The crystals are tetragonal, space group P4(1)2(1)2 with unit cell dimensions of a = 28.01, c = 52.95A. The asymmetric unit consists of one strand of hexanucleotide, one molecule of 4'-epiadriamycin and 34 waters. The R-factor is 20.2% for 1694 reflections with F greater than or equal to 2 sigma F to 1.7A. Two asymmetric units associate to generate a duplex complexed with two drug molecules at the d(TpG) steps of the duplex. The chromophore intercalates between these base pairs with the anthracycline amino-sugar positioned in the minor groove. The double helix is a distorted B-DNA type structure. Our structure determination of d(TGATCA) complexed to 4'-epiadriamycin allows for comparison with the previously reported structures of 4'-epiadriamycin bound to d(TGTACA) and to d(CGATCG). The three complexes are similar in gross features and the intercalation geometry is the same irrespective of whether a d(CpG) or d(TpG) sequence is involved. However, the orientation of the amino-sugar displays a dependence on the sequence adjacent to the intercalation site. The flexibility of this amino-sugar may help explain why this class of antibiotics displays a relative insensitivity to base sequence when they bind to DNA.  相似文献   

5.
The anticancer drug daunomycin has been co-crystallized with the hexanucleotide duplex sequences d(TGTACA) and d(TGATCA) and single crystal X-ray diffraction studies of these two complexes have been carried out. Structure solution of the d(TGTACA) and d(TGATCA) complexes to 1.6 and 1.7 Angstrom resolution, respectively, shows two daunomycin molecules bound to the DNA hexamer. Binding occurs via intercalation of the drug chromophore at the d(TpG) step, and hydrogen bonding interactions involving the drug, DNA and solvent molecules. The daunomycin sugar is located in the minor groove of the DNA hexamer and is stabilized by hydrogen bonds between the amino group of the sugar and functional groups on the floor of the groove. The amino sugar of the d(TGATCA) duplex interacts directly with the DNA sequence, while in the d(TGTACA) duplex, the interaction is via solvent molecules. Two other complexes d(CGTACG)-daunomycin and d(CGATCG)-daunomycin have previously been structurally characterized. Comparison of the four structures with daunomycin bound to the triplet sequences 5'TGT, 5'TGA, 5'CGT and 5'CGA reveals changes in the conformation of both the DNA hexamer and the daunomycin upon complexation, as well as the hydrogen bonding and van der Waals' interactions.  相似文献   

6.
S M Chen  W Leupin  M Rance  W J Chazin 《Biochemistry》1992,31(18):4406-4413
The dodecadeoxynucleotide duplex d(GGTTAATGCGGT).d(ACCGCATTAACC) and its 1:1 complex with the minor groove binding drug SN-6999 have been prepared and studied by two-dimensional 1H nuclear magnetic resonance spectroscopy. Complete sequence-specific assignments have been obtained for the free duplex by standard methods. The line widths of the resonances in the complex are greater than those observed for the free duplex, which complicates the assignment process. Extensive use of two-quantum spectroscopy was required to determine the scalar correlations for identifying all of the base proton and most of the 1'H-2'H-2'H spin subsystems for the complex. This permitted unambiguous sequence-specific resonance assignments for the complex, which provides the necessary background for a detailed comparison of the structure of the duplex, with and without bound drug. A series of intermolecular NOEs between drug and DNA were identified, providing sufficient structural constraints to position the drug in the minor groove of the duplex. However, the combination of NOEs observed can only be rationalized by a model wherein the drug binds in the minor groove of the DNA in both orientations relative to the long helix axis and exchanges rapidly between the two orientations. The drug binds primarily in the segment of five consecutive dA-dT base pairs d(T3T4A5A6T7).d(A18T19T20A21A22), but surprisingly strong interactions are found to extend one residue in the 3' direction along each strand to G8 and C23. The observation of intermolecular contacts to residues neighboring the AT-rich region demonstrates that the stabilization of the bis(quaternary ammonium) heterocycle family of AT-specific, minor groove binding drugs is not based exclusively on interactions with dA-dT base pairs.  相似文献   

7.
Crystal structure of RNase A complexed with d(pA)4   总被引:3,自引:0,他引:3  
Co-crystals of pancreatic RNase A complexed with oligomers of d(pA)4 were grown from polyethylene glycol 4000 at low ionic strength and the X-ray diffraction data were collected to 2.5 A resolution. From a series of heavy-atom derivatives a multiple isomorphous replacement-phased electron density map of the RNase-d(pA)4 complex was calculated to 3.5 A. By inspection, the disposition of the known structure of RNase in the unit cell was determined and this was confirmed by calculation of a standard crystallographic residual, R. Refinement of the protein alone in the unit cell as a strictly rigid body yielded an R factor of 0.32 at 2.8 A resolution. From difference Fourier syntheses DNA fragments were elucidated and incorporated into a model of the complex. The entire asymmetric unit was refined using a restrained-constrained least-squares procedure (CORELS) interspersed with difference Fourier syntheses. At the present time the crystal structure has been refined to an overall R value of 0.215 at 2.5 A resolution. The asymmetric unit of the complex crystals contains four oligomers of d(pA)4 associated with each molecule of RNase. In addition, there may also be partially ordered fragments of DNA at low occupancy present in the unit cell, but these have not, at this time, been incorporated into the model. One tetramer of d(pA)4 is entirely bound by a single protein molecule and occupies a portion of the active site cleft, filling the purine binding site and the phosphate site at the catalytic center with its 5' nucleotide. Two other tetramers are partly intermolecular. One passes from near the pyrimidine binding site over the surface of the protein toward arginine 39 and into a solvent region. A third tetramer is anchored at its 5' terminus by a salt link to lysine 98, passes near arginine and then through a solvent region to terminate with its 3' end near the surface of another protein molecule in the lattice. The fourth tetramer of d(pA)4 is bound at its 5' end on the opposite side of the protein from the active site in an electropositive anion trap that includes lysines 31 and 91 as well as arginine 33. There may be a DNA-DNA interaction involving the 5' phosphate of one tetramer and the 3' bases of two other tetramers and this may help to stabilize the crystalline complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Aureolic acid group compounds, such as chromomycin A3(CHM) and mithramycin (MIT), are known as antitumor drugs. Recently we isolated a novel aureolic acid group antitumor drug, UCH9, from Streptomyces sp. The chemical structure of UCH9 is unique in that mono- (A ring) and tetrasaccharide (B-E rings) segments and a longer hydrophobic sidechain are attached to the chromophore, while di- and trisaccharide segments and a methyl group are attached to it in the cases of CHM and MIT. It has been shown by two-dimensional agarose gel electrophoresis that the three drugs cause DNA unwinding, UCH9 causing less than the others. A photo-CIDNP experiment has revealed that UCH9 binds to the minor groove of DNA. The structure of the UCH9-d(TTGGCCAA)2 complex has been determined by 1H NMR and simulated annealing calculations. The obtained structure indicates that UCH9 binds as a dimer to the minor groove of d(TTGGCCAA)2, like CHM and MIT, but that the structural change in DNA induced on binding of UCH9 is moderate in comparison with those on binding of the other two drugs. It turns out that the dimer structure of UCH9, stabilized presumably through a hydrophobic interaction involving the A, D and E rings and the hydrophobic sidechain is different from that of CHM and thus DNA can interact with UCH9 in the minor groove with a moderate structural change.  相似文献   

9.
Vlieghe D  Sponer J  Van Meervelt L 《Biochemistry》1999,38(50):16443-16451
The single-crystal X-ray structure of the complex between the minor groove binder 4',6-diamidino-2-phenylindole (DAPI) and d(GGCCAATTGG) reveals a novel way of off-centered binding, with an unique hydrogen bond between the minor groove binder and a CG base pair. Application of crystal engineering and cryocooling techniques helped to extend the resolution to 1.9 A, resulting in an unambiguous determination of drug conformation and orientation. The structure was refined to completion using SHELXL-93, resulting in a residual factor R of 18. 0% for 3562 reflections with F(o) > 4sigma(F(o)) including 81 water molecules. As the bulky NH(2)-group on guanine is believed to prevent drug binding in the minor groove, the nature and stability of the CG-DAPI contact was further addressed in full detail using ab initio quantum chemical methods. The amino groups involved in the guanine-drug interaction are substantially nonplanar, resulting in an energy gain of about 5 kcal/mol. The combined structural and theoretical data suggest that the guanine NH(2)-group does not destabilize the drug binding to an extent that it prevents complexation.  相似文献   

10.
Abstract

Among the new generations of anthracycline drugs, morpholino-doxorubicin (MDox) and its derivative have unusually potent activity when compared with the parent doxorubicin. 3″- Cyano-morpholino-doxorubicin (CN-MDox) has been suggested to form a covalent crosslink to DNA, although the exact mode of interactions remains unclear. To establish the structural basis of this crosslink, we carried out X-ray diffraction analyses of the complexes between four different morpholino-doxorubicins (i.e., MDox, CN-MDox, (R)- and (S)-2″-methoxy- morpholino-Dox (MMDox)) and two DNA hexamers CGTACG and CGATCG. Their crystal data are similar to other Dau/Dox complexes with space group P41212,a=b ~28 Å, c~ 53 Å. The refined structures at ~1.8 Å resolution revealed that two drug molecules bind to the duplex with the aglycons intercalated between the CpG steps with their N3′ -morpholino- daunosamines in the minor groove. The morpholino moiety is flexible and may adopt different conformations dependent on the sequence context The O1 atoms of the two morpholino groups in the drug-DNA complexes are in van der Waals contact The structural results suggest possible crosslinking mechanism of CN-MDox. It is worth pointing out that by linking two piperazinyl- or piperidinyl-doxorubicins at the 1″ positions a new type of bis-doxorubicin derivatives may be synthesized which may bind to a hexanucleotide sequence with some specificity.  相似文献   

11.
3-(9-Acridinylamino)-5-(hydroxymethyl)aniline (AHMA) is an anti-cancer agent with significant efficacy against murine leukemia and solid tumors. As a DNA topoisomerase inhibitor, AHMA is proposed to form a ternary complex with DNA and topoisomerase and bind to DNA in an intercalative manner. In order to understand the interactions between AHMA and DNA and study the structure-function relationship of amsacrine analogue, the AHMA-d(CGTACG)(2) complex was crystallized using the sitting-drop vapor-diffusion method. The native crystals diffract to 2.9-A resolution and belong to space group P3(1)21 or P3(2)21 with unit-cell parameters a=b=57.52, c=122.17 A when analyzed using Cu Kalpha radiation. Patterson map indicates that in the crystal, the directions of the DNA base stacking are nearly perpendicular to the c-axis of the crystal unit cell.  相似文献   

12.
The X-ray crystal structure of the complex between the anthracycline idarubicin and d(CGATCG) has been solved by molecular replacement and refined to a resolution of 2.0 A. The final R-factor is 0.19 for 3768 reflections with Fo > or = 2 sigma (Fo). The complex crystallizes in the trigonal space group P31 with unit cell parameters a = b = 52.996(4), c = 33.065(2) A, alpha = beta = 90 degree, gamma = 120 degree. The asymmetric unit consists of two duplexes, each one being complexed with two idarubicin drugs intercalated at the CpG steps, one spermine and 160 water molecules. The molecular packing underlines major groove-major groove interactions between neighbouring helices, and an unusually low value of the occupied fraction of the unit cell due to a large solvent channel of approximately 30 A diameter. This is the first trigonal crystal form of a DNA-anthracycline complex. The structure is compared with the previously reported structure of the same complex crystallizing in a tetragonal form. The geometry of both the double helices and the intercalation site are conserved as are the intramolecular interactions despite the different crystal forms.  相似文献   

13.
The three dimensional molecular structure of the adduct formed between the anticancer drug cisplatin and a DNA dinucleotide d(pGpG) has been determined by x-ray diffraction analysis at 1.37 A resolution and refined to a final R-factor of 0.11. This structure, solved by using data from a previously reported crystal form in the space group C222(1), resembles that found in the space group P2(1)2(1)2 (Sherman, et al., Science, 230, 412-417, 1985; ibid, J. Amer. Chem. Soc. 110, 7368-7381, 1988). In both structures, four crystallographically independent cis-[Pt(NH3)2(d(pGpG]] molecules aggregate into a tetrameric cluster that is stabilized by a large number of intermolecular hydrogen bonds and base-base stacking interactions. In each molecule, the platinum atom is coordinated to the N7 atoms of two guanine bases arranged in a head-to-head orientation, resulting in a large dihedral angle between the guanines. Intermolecular guanine-guanine base pairings between different intrastrand crosslinked molecules are used extensively in the crystal lattice.  相似文献   

14.
Molecular structure of an A-DNA decamer d(ACCGGCCGGT)   总被引:3,自引:0,他引:3  
The molecular structure of the DNA decamer d(ACCGGCCGGT) has been solved and refined by single-crystal X-ray-diffraction analysis at 0.20 nm to a final R-factor of 18.0%. The decamer crystallizes as an A-DNA double helical fragment with unit-cell dimensions of a = b = 3.923 nm and c = 7.80 nm in the space group P6(1)22. The overall conformation of this A-DNA decamer is very similar to that of the fiber model for A-DNA which has a large average base-pair tilt and hence a wide and shallow minor groove. This structure is in contrast to that of several A-DNA octamers in which the molecules all have low base-pair-tilt angles (8-12 degrees) resulting in an appearance intermediate between B-DNA and A-DNA. The average helical parameters of this decamer are typical of A-DNA with 10.9 base pairs/turn of helix, an average helical twist angle of 33.1 degrees, and a base-pair-tilt angle of 18.2 degrees. However, the CpG step in this molecule has a low local-twist angle of 24.5 degrees, similar to that seen in other A-DNA oligomers, and therefore appears to be an intrinsic stacking pattern for this step. The molecules pack in the crystal using a recurring binding motif, namely, the terminal base pair of one helix abuts the surface of the shallow minor groove of another helix. In addition, the GC base pairs have large propeller-twist angles, unlike those found most other A-DNA structures.  相似文献   

15.
The solution structure of the complex formed between d(CGATCG)(2) and 2-(pyrido[1,2-e]purin-4-yl)amino-ethanol, a new antitumor drug under design, has been resolved using NMR spectroscopy and restrained molecular dynamic simulations. The drug molecule intercalates between each of the CpG dinucleotide steps with its side chain lying in the minor groove. Analysis of NMR data establishes a weak stacking interaction between the intercalated ligand and the DNA bases; however, the drug/DNA affinity is enhanced by a hydrogen bond between the hydroxyl group of the end of the intercalant side chain and the amide group of guanine G6. Unrestrained molecular dynamic simulations performed in a water box confirm the stability of the intercalation model. The structure of the intercalated complex enables insight into the structure-activity relationship, allowing rationalization of the design of new antineoplasic agents.  相似文献   

16.
The three-dimensional structure was determined by x-ray crystallography for d(T[p](CE)T), a uv photoproduct of the cyanoethyl (CE) derivative of d(TpT), having the cis-syn cyclobutane (CB) geometry and the S-configuration at the chiral phosphorus atom. The crystals of C23H30N5O12P · 2H2O belong to the orthorhombic space group P212121 (Z = 4), with cell dimensions a = 11.596 Å, b = 14.834 Å, and c = 15.946 Å, containing two water molecules per asymmetric unit. The CB ring is puckered with a dihedral angle of 151°. The two pyrimidine bases are rotated by –29° from the position of direct overlap of their corresponding atoms. This represents a major distortion of DNA, since in DNA adjacent thymines are rotated by +36°. The pyrimidine rings are puckered with Cremer–Pople parameters for T[p] and in parentheses [p]T: Q: 0.24 Å (0.31 Å); θ: 123° (120°); ?: 141° (86°). These represent half-chairs designated as 6H1 (T[p]) and 6H5 ([p]T). The CB and pyrimidine ring conformations are interrelated, and we postulate that they execute a coupled interconversion in solution. The T[p] segment has the syn glycosyl conformation, a 2T3 sugar pucker, and gauche? conformation at C4′-C5′; the [p]T segment is anti, 3T4, trans. The C5′-O5′ torsion of the [p]T unit is –124.5°, and the C3′-O3′ torsion of the T[p] unit is –152.9°. Bond angles and bond lengths involving the phosphorus atom are similar to those of other phosphotriesters. The P-O3′ and P-05′ torsion angles are –138.1° and 58.6°, respectively. Several intermolecular (but no intramolecular) hydrogen bonds are found in the crystal.  相似文献   

17.
Disaccharide anthracyclines analogues have been shown to exhibit different antitumour activity as compared with parents compounds doxorubicin and daunomycin. Here we report the crystal structure of the disaccharide analog MAR70 complexed with the DNA hexamer d(CGATCG). The structure has been solved at 1.54A resolution and is similar to previous crystallized anthracycline-DNA complexes with both sugar rings of the disaccharide chain lying in the DNA minor groove. Comparison with the structure of MEN10755 another disaccharide anthracycline co-crystallized with the same DNA hexamer suggests a correlation between the position of the amino sugar on the disaccharide chain and the conformation of this moiety when binding to DNA. This is discussed with respect to the influence on drug activity and on the possible interaction with other cellular targets.  相似文献   

18.
The bleomycins (BLMs) are natural products that in the presence of iron and oxygen bind to and cause single-strand and double-strand cleavage of DNA. The mode(s) of binding of the FeBLMs that leads to sequence-specific cleavage at pyrimidines 3′ to guanines and chemical-specific cleavage at the C-4′ H of the deoxyribose of the pyrimidine has remained controversial. 2D NMR studies using the hydroperoxide of CoBLM (HOO-CoBLM) have demonstrated that its bithiazole tail binds by partial intercalation to duplex DNA. Studies with ZnBLM demonstrate that the bithiazole tail binds in the minor groove. Phleomycins (PLMs) are BLM analogs in which the penultimate thiazolium ring of the bithiazole tail is reduced. The disruption of planarity of this ring and the similarities between FePLM- and FeBLM-mediated DNA cleavage have led Hecht and co-workers to conclude that a partial intercalative mode of binding is not feasible. The interaction of HOO-CoPLM with d(CCAGGCCTGG)2 has therefore been investigated. Binding studies indicate a single site with a Kd of 16 µM, 100-fold greater than HOO-CoBLM for the same site. 2D NMR methods and molecular modeling using NMR-derived restraints have led to a structural model of HOO-CoPLM complexed to d(CCAGGCCTGG)2. The model reveals a partial intercalative mode of binding and the basis for sequence specificity of binding and chemical specificity of cleavage. The importance of the bithiazoles and the partial intercalative mode of binding in the double-strand cleavage of DNA is discussed.  相似文献   

19.
The crystal structure of d(G-G-G-G-C-C-C-C). A model for poly(dG).poly(dC)   总被引:25,自引:0,他引:25  
The structure of the DNA oligomer d(G-G-G-G-C-C-C-C) has been determined at a resolution of 2.5 A by single-crystal X-ray methods. There are two strands in the asymmetric unit, and these coil about each other to form a right-handed double-helix of the A-type with Watson-Crick hydrogen bonds between base-pairs. The helix has a shallow minor groove and a deep, water-filled major groove; almost all exposed functional groups on the DNA are hydrated, and 106 ordered solvent molecules have been found. The two d(G-G-G-G).d(C-C-C-C) segments in the octamer exhibit similar and uniform structures, but there is a slight discontinuity at the GpC step between them. A recurring feature of the structure is the overlap of adjacent guanine bases in each GpG step, with the five-membered ring of one guanine stacking on the six-membered ring of its neighbour. There is little or no overlap between adjacent cytosine rings. Conformational parameters for these GpG steps are compared with those from other single-crystal X-ray analyses. In general, GpG steps exhibit high slide, low roll and variable twist. Models for poly(dG).poly(dC) were generated by applying a simple rotation and translation to each of the unmodified d(G-G-G-G).d(C-C-C-C) units. Detailed features of these models are shown to be compatible with various assays of poly(dG).poly(dC) in solution, and are useful in understanding the polymorphic behaviour of this sequence under a variety of experimental conditions.  相似文献   

20.
The crystal structure of the complex formed between the anthracycline antibiotic 3'-deamino-3'- hydroxy-4'-(O-L-daunosaminyl)-4-demethoxydoxo rubicin (MEN 10755), an active disaccharide analogue of doxorubicin, and the DNA hexamer d(CGATCG) has been solved to a resolution of 2.1 A. MEN 10755 exhibits a broad spectrum of antitumor activities, comparable with that of the parent compound, but there are differences in the mechanism of action as it is active in doxorubicin-resistant tumors and is more effective in stimulating topoisomerase DNA cleavage. The structure is similar to previously crystallised anthracycline- DNA complexes. However, two different binding sites arise from drug intercalation so that the two halves of the self-complementary duplex are no longer equivalent. In one site both sugar rings lie in the minor groove. In the other site the second sugar protrudes out from the DNA helix and is linked, through hydrogen bonds, to guanine of a symmetry-related DNA molecule. This is the first structure of an anthracycline-DNA complex where an interaction of the drug with a second DNA helix is observed. We discuss the present findings with respect to the relevance of the amino group for DNA binding and to the potential role played by the second sugar in the interactions with topoisomerases or other cellular targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号