首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was conducted to determine whether an opioid tonus inhibitory of LH secretion is present in underfed prepubertal sheep. Ten Suffolk ewe lambs were subjected to food restriction during 60 days. During this period they were allowed to pasture only 2 hours per day while control ewe lambs were allowed for 10 hours. Body weight and plasma blood levels of glucose, urea and total proteins were measured weekly. At the end of this period, an intravenous injection of Naloxone (NAL, 1.5 mg/kg BW) was given to control and underfed animals followed 60 min later by an intravenous injection of LHRH to test the pituitary responsiveness. Underfed animals did not show an increase in plasma LH while control animals presented a rise from 0.28 +/- 0.08 to 2.02 +/- 0.6 ng/ml after the NAL stimulus (P less than 0.05). The response to LHRH was similar in both group of animals. Basal plasma levels of insulin were lower in underfed ewe lambs than in control animals (P less than 0.05). Underfed animals were placed on plain feeding with a schedule similar to control lambs for 30 days and the same experiment was repeated. During this occasion, NAL increased plasma LH concentration in both group of lambs. Levels of plasma insulin were not different in both groups. The lack of effect of NAL on LH secretion in food restricted ewe lambs suggests that the opioid modulation of LH secretion is absent by underfeeding in female prepubertal sheep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Single (0 . 25 mg/100 g body wt) or multiple (5 x 20 microgram/100 g) injections of testosterone propionate were given to castrated male rats fed normally or restricted to a 50% intake. Serum FSH and LH levels were higher in the underfed rats and the effectiveness of testosterone propionate in suppressing serum levels of gonadotrophins was increased by underfeeding.  相似文献   

3.
Primiparous sows were fed to appetite during lactations that occurred during winter or summer, and 11.4 +/- 0.4 pigs per litter were weaned at 23.5 +/- 0.1 days of age. Sows were slaughtered at 0 or 72 h after weaning or blood samples were collected until 24 h after onset of oestrus. Sows that lactated during summer consumed less food and lost more (P less than 0.05) weight, heartgirth and backfat than those that lactated during winter. Weaning-to-oestrus interval was greater (P less than 0.05) in summer (224 +/- 25 h) than in winter (93 +/- 13 h). Content of GnRH in the hypothalamus and concentrations of LH in the anterior pituitary and serum were lower (P less than 0.05) after weaning in summer than winter. The numbers of visible ovarian follicles less than 5 mm in diameter at weaning were lower (P less than 0.05) in summer than in winter. In contrast to LH, FSH concentration in serum was higher (P less than 0.10) in summer than winter, but FSH values in the anterior pituitary were lower (P less than 0.05) in summer than in winter. Post-weaning patterns of secretion of oestradiol and follicular development differed between winter and summer. For example, in some sows weaned during the summer, transient surges of oestradiol occurred repeatedly during 0 to 280 h after weaning without provoking surges of LH. These results indicate that the period of post-weaning anoestrus in summer is prolonged because of altered activity of the hypothalamic-pituitary axis, possibly because of changes in sensitivity to the feedback of oestradiol. Lower feed intake during lactations that occur during summer may predispose the endocrine system to the aberrations.  相似文献   

4.
Daily reduction of the normal (ad libitum) food consumption by as little as 35% significantly reduced (P less than 0.05) the percentage of mice with implantation sites at Days 7 and 9 of gestation. Underfeeding decreased body weight and reduced the weight of the ovaries and uterus. Plasma progesterone was decreased (P less than 0.05) as dietary intake was restricted and was associated with regression of the corpora lutea. No significant alterations in the plasma values of LH and FSH were observed in mice underfed between Days 1 and 9 of pregnancy. The decrease in plasma progesterone in the absence of reduced LH values may indicate that progesterone secretion between Days 5 and 9 of gestation is not controlled solely by LH.  相似文献   

5.
Progesterone and LH concentrations were measured in the plasma of blood samples taken from forty-eight pregnant ewes on Days 100, 120 and 134 of gestation. The ewes, in two groups of twenty-four were maintained from Day 100 until parturition on two planes of nutrition which supplied daily energy and protein intakes of about 4-1 or 2-3 Mcal metabolizable energy and either 192 or 111 g digestible crude protein per ewe. Within the groups, the ewes carried one, two or three fetuses and the feed intake was adjusted according to litter size to produce a uniform nutritional state within the group. On Day 100, litter size affected the concentration of plasma progesterone (P less than 0-001), but had no effect on Days 120 or 134 when the ewes were fed according to litter size. The low feed intake however caused a significant increase in plasma progesterone concentrations. The LH concentrations showed no major changes during late pregnancy and no effect of nutrition or little size on the plasma hormone concentration was observed. It was concluded that the effect of litter size on plasma progesterone concentration recorded on Day 100 or gestation was partly mediated by level of nutrition.  相似文献   

6.
The effects of chronic starvation (1/4 of ad libitum food intake) for 21 or 30 days were studied on the hypothalamic and serum concentrations of LHRH, the pituitary and serum concentrations of LH, and the weights of the anterior pituitary, ovary and uterus in adult female Wistar rats (chronic starved group, CSG). Control female rats were fed ad lib. for the same periods (control group, CG). On day 22 or 31, half of the rats of each group were weighed and sacrificed by decapitation. Since there were no difference on above parameters between the experiments on 22nd and 31st day, the results were combined for each parameters. At the time of sacrifice, the body weight of CSG was on the average 44% lower than that of CG rats, and also marked reduction in anterior pituitary (44%), ovarian (61%) and uterine weights (69%) was observed. Serum LH concentrations (mean +/- SE; 5.67 +/- 0.67 versus 33.30 +/- 6.00 ng/ml, P less than 0.001) and pituitary LH content (286.7 +/- 19.4 vs 451.0 +/- 32.8 micrograms, P less than 0.001) were significantly decreased in CSG than in CG rats. However, pituitary LH concentration was not reduced because of the proportional reduction to the pituitary weight of CSG rats. Hypothalamic immunoreactive LHRH (IR-LHRH) content in CSG showed a significant increase as compared to CG rats (5.77 +/- 0.52 vs 4.41 +/- 0.27 ng/hypothalamic extract, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Harderian gland (HG) weight and lysosomal enzyme activity were evaluated after 21-day-old female rats were singly caged in a long (LP; 14:10 LD) or short (SP; 8:16 LD) photoperiod and fed on one of two dietary regimens (fed ad libitum or 50% underfed) for 50 days; an additional fed and an underfed group of animals in LP were injected every afternoon with 100 micrograms melatonin. Absolute HG weights were significantly lower in all underfed groups compared to their respective fed controls or to the LP fed control group. Absolute HG weights of underfed rats in SP were significantly lower than the underfed rats in LP. Relative HG weights (mg/100 g body wt) were significantly higher in the underfed saline or melatonin-treated groups compared to their respective fed controls; however, HG of the underfed SP group were not different from SP-fed controls. No significant differences in HG acid phosphatase, hexosaminidase, and beta-glucuronidase activities were observed in any of the treatment groups maintained in LP. Acid phosphatase, hexosaminidase, and beta-glucuronidase activities were significantly elevated in HG of underfed animals maintained in SP compared to their respective fed controls or to the LP-underfed group. Both the underfed control and the underfed-melatonin treated groups had lower pineal protein values than their respective fed groups; underfed animals in 8:16 LD had similar pineal protein values compared to those of the fed control group in SP. Significant effects of photoperiod and underfeeding with no interaction between these variables were observed on pineal acid phosphatase. The fed group maintained in 8:16 LD had significantly higher acid phosphatase activity than the fed group kept in 14:10 LD. In conclusion, underfeeding resulted in severely reduced body weights and absolute Harderian gland weights. Increased activity in certain lysosomal enzymes occurred in both the pineal and Harderian gland and in some instances this was dependent upon the light cycle and dietary regimen to which the animals were exposed.  相似文献   

8.
Plasma LH concentrations were monitored in 6 Hereford X Friesian suckled cows at about 80 days post partum, before and during a 14-day period of continuous s.c. infusion of GnRH (20 micrograms/h). Blood samples were collected at 10-min intervals on Days -2, -1, 1, 2, 3, 4, 7, 10, 13 and 14 (Day 1 = start of infusion). Plasma LH concentrations rose from mean pretreatment levels of 1.3 +/- 0.20 ng/ml to a maximum of 17.1 +/- 3.09 ng/ml within the first 8 h of GnRH infusion, but returned to pretreatment levels by Day 2 or 3. In 4/6 animals, the initial increase was of a magnitude characteristic of the preovulatory LH surge. In all animals, an i.v. injection of 10 micrograms GnRH, given before the start and again on the 14th day of continuous infusion, induced an increase in LH concentrations but the increase to the second injection was significantly (P less than 0.01) less (mean max. conc. 6.4 +/- 0.76 and 2.3 +/- 0.19 ng/ml). Mean LH concentrations (1.0 +/- 0.08, 1.1 +/- 0.08 and 0.9 +/- 0.06 ng/ml) and LH episode frequencies (3.3,4.3 and 3.2 episodes/6 h) did not differ significantly on Days -2,7 and 13. However, the mean amplitude of LH episodes was significantly lower (P less than 0.05) on Day 13 (1.3 +/- 0.10 ng/ml) than on Day -2 (1.8 +/- 0.16 ng/ml). Therefore, although the elevation in plasma LH concentrations that occurs in response to continuous administration of GnRH is short-lived and LH levels return to pre-infusion values within 48 h of the start of infusion, these results show that the pituitary is still capable of responding to exogenous GnRH, although the LH response to an i.v. bolus injection of GnRH is reduced. In addition, this change in pituitary sensitivity is not fully reflected in endogenous patterns of episodic LH secretion.  相似文献   

9.
Pituitary content of luteinizing hormone (LH) and mRNAs for LH beta-subunit (LH beta), alpha-subunit, prolactin, and growth hormone were measured in ewes on Days 50 and 140 of gestation and on Days 2, 13, 22, and 35 postpartum. Content of LH in dissociated anterior pituitary cells declined (P less than 0.05) between Days 50 and 140 of gestation and remained low at 2 days postpartum. By 22 days postpartum, pituitary concentrations of LH were comparable to concentrations in normally cycling ewes. During gestation concentrations of mRNA for LH beta and alpha-subunit paralleled changes in cellular content of LH, reaching minimal levels on Day 140. By Day 2 postpartum, pituitary concentrations of mRNAs for LH beta and alpha-subunit began to increase; they reached maximum levels by Day 13 postpartum. There appeared to be a gradual linear increase in mRNA for prolactin through gestation and the postpartum period. No changes in mRNA for growth hormone were noted during the prepartum or postpartum periods. These data suggest that the decline in pituitary concentrations of LH during gestation is due to a decrease in cellular mRNA for LH beta and alpha-subunit. The increase in mRNA for LH beta and alpha-subunit appears to precede an increase in cellular content of LH in the postpartum ewe by several days.  相似文献   

10.
Ovariectomized ewes were given 2 ml s.c. injections of ovine follicular fluid (oFF) (N = 3) or serum (N = 3) and blood samples were collected each day for 3 days. Follicular fluid caused a significant (P less than 0.005) reduction in FSH within 1 day, but did not affect mean LH values. Two groups of 3 ewes were treated as above but sampled intensively (each 10 min for 6 h) on Days 1 (before treatment) and 4; mean plasma FSH concentration and plasma LH pulse frequency and amplitude were ascertained. Significant (P less than 0.005) reduction of FSH concentration was seen in the oFF-treated ewes. A non-specific reduction in LH pulse amplitude, but not pulse frequency, was noted in the control ewes. This experiment was repeated with 2 groups of 4 ewes that were conditioned to the experimental environment and effects on LH secretion were not observed in the controls given serum. Treatment with oFF caused a 70% reduction (P less than 0.005) in plasma FSH and a small (30%) but significant (P less than 0.005) reduction in mean LH concentrations. The latter was probably associated with a reduction in LH pulse amplitude in 3/4 animals (N.S.) with no change in LH pulse frequency. Treatment with oFF, as in Exp. 1, caused a 95% reduction in FSH values and significant (P less than 0.01) reduction (32%) of LH pulse amplitude in ovariectomized ewes that had been subjected to hypothalamo-pituitary disconnection and in which gonadotrophin secretion was reinstated with pulses of 250 ng GnRH every 2 h. These results suggest that proteins from the sheep follicular fluid, including inhibin, act at the pituitary level to inhibit FSH secretion and may have some effects on LH pulse amplitude.  相似文献   

11.
The influence of nutrition during the last trimester of pregnancy and the early postpartum period on postpartum LH secretion was evaluated in two-year-old Hereford and Simmental heifers maintained on a high or low plane of nutrition (experiment 1) or in Hereford heifers fed a high or low energy (150% vs 100% NRC) ration (experiment 2). Amount of LH released with 10 mg estradiol benzoate (IM) at 14 and 28 days postpartum in experiment 1 or at 14,32,50 and 74 days postpartum in experiment 2 was less (P<.01) for heifers fed the low vs high plane or energy ration and less (P<.05) at 14 days postpartum than at subsequent postpartum periods. The interval from estradiol benzoate injection to the LH peak concentration was longer (P<.05) in Simmental than Hereford heifers, longer (P<.05) in heifers fed the low rather than high energy ration, and longer (P<.01) at 14 days postpartum than at subsequent postpartum periods. The amount of LH released was inversely related to the time required for initiation of the release (r = -.62). Tonic LH secretion was higher (P<.05) in heifers fed the high energy ration and was correlated with average daily gain (r = .75), but was unaffected (P.05) by days postapartum or breed of cattle. Results indicate that increased dietary energy intake increases LH secretion and shortens the anovulatory period in suckled postpartum beef heifers.  相似文献   

12.
The effect of underfeeding over glucose metabolism in uteri isolated from ovariectomized and non-ovariectomized rats subjected to a restricted diet for 25 days (50% of the normal food intake), was studied. Underfeeding decreases (14)CO(2) formation from U(14) C-glucose in intact animal uteri. While in ovariectomized rats (25 days), the effect is the opposite. The addition of morphine 10(-6) M to the medium does not affect rats fed ad libitum. However, (14)CO(2) levels increase significantly in intact animals receiving a restricted diet. In ovariectomized rats morphine does not show any activity, regardless of the type of diet rats were subjected to. None of the rat groups seems to be sensitive to naloxone 10(-6) M. The s.c. injection of morphine (4 mg.kg (-1)) increases glucose metabolism only in intact rats provided with a restricted diet, while naloxone (2.5 mg.kg (-1) ) produces a decrease of ( 14)CO(2) in ovariectomized underfed animals. To conclude, morphine either 'in vivo' or 'in vitro' is active only in uteri from intact rats subjected to underfeeding. Naloxone produces a decrease in (14)CO(2) production, particularly when it is s.c. injected to ovariectomized rats undergoing a dietary restriction. Since the uterus does not react to naloxone, the effect of the opiod blocker may be the result of endogenous opioids originated in other tissues.  相似文献   

13.
The contents of mRNAs encoding LH beta-, FSH beta-, TSH beta- and common alpha-subunit precursor molecules were measured in food-deprived and subsequently re-fed male Japanese quail. Pituitary LH beta, FSH beta and common alpha mRNA levels were decreased by starvation, and increased to the control levels by re-feeding. The rates of decreases of LH beta and common alpha mRNA levels were greater the corresponding rate for FSH beta levels. Pituitary TSH beta mRNA levels were not decreased by starvation, but increased transitorily by re-feeding. Plasma LH and triiodothyronine levels were decreased by starvation, and then increased to control levels by re-feeding, while plasma FSH and thyroxine levels did not show significant changes. Plasma LH and FSH levels showed positive correlations with pituitary common alpha and FSH beta mRNA levels, respectively, while plasma thyroxine levels showed a negative correlation with TSH beta mRNA levels. Hepatic weight was decreased slightly but significantly by starvation, and then showed a remarkable rebound after re-feeding was started. These results suggest that LH synthesis and secretion are more sensitive to starvation than FSH synthesis and secretion in Japanese quail, and that LH production recovered to initial levels within several days when birds were fully fed. Also, there is a possibility that the synthesis of TSH is accelerated transitorily by re-feeding. Furthermore, these results showed that there are different relationships between the plasma levels of LH, FSH, and TSH and the various hormone subunit mRNA levels. The remarkable change in hepatic weight leads us to assume that hepatic thyroid hormone metabolism is affected by starvation and re-feeding.  相似文献   

14.
Eighteen sows (6 primiparous and 12 multiparous) were allotted randomly within parity to two lactational treatments: litter separation (LS; 6 h/day) plus boar exposure (BE; 1 h/day; N = 14) beginning 8 days before weaning (4 weeks) and no LS + no BE (controls; N = 4). Blood was collected from all sows via indwelling venous catheters at 20-min intervals for 5 h on Days -1, 0, 1, 2 and 3 from start of treatment. Control sows and those exposed to LS + BE not exhibiting oestrus during lactation were resampled on Days -1, 0, 1 and 2 from weaning. All 10 multiparous sows receiving LS + BE exhibited oestrus during lactation, whereas none of the 4 primiparous sows exposed to LS + BE or the 2 control multiparous and 2 control primiparous sows exhibited lactational oestrus. Overall concentrations of LH in serum were higher (P less than 0.05) in sows receiving LS + BE than in control sows during lactation, whereas overall FSH was higher (P less than 0.05) in primiparous than multiparous sows. Number and amplitude of pulses of LH were greater (P less than 0.05) for treated primiparous than multiparous sows during lactation. Oestradiol-17 beta increased (P less than 0.05) in sows during LS + BE and was higher (P less than 0.01) in multiparous sows of this group than control multiparous or treated primiparous sows. Preweaning concentrations of cortisol and progesterone in serum were higher (P less than 0.05) in treated than control sows for multiparous and primiparous animals. In sows resampled at weaning, the number of pulses of LH was greater (P less than 0.05) in treated primiparous than in control sows. Postweaning concentrations of FSH in serum were unaffected by preweaning treatments. It was concluded that (1) litter separation and boar exposure increased basal and pulsatile secretion of LH in multiparous and primiparous sows; (2) lack of ovarian follicular development and oestradiol secretion may preclude expression of oestrus in primiparous sows during lactation, despite elevated concentrations of FSH and LH in serum; and (3) if elevated concentrations of cortisol and progesterone inhibit the onset of oestrous cycles, in response to litter separation and boar exposure during lactation, the effect is limited to primiparous sows.  相似文献   

15.
Using long-term ovariectomized rhesus monkeys, we examined the ability of oestradiol to decrease circulating FSH concentrations in the absence of other ovarian factors. Daily blood samples were obtained from untreated monkeys for 8 days, followed by insertion of oestradiol capsules after the Day-8 sample was taken. Samples were then taken on Days 9-15, the capsules were removed after the Day-15 sample, and samples were obtained on Days 16-19. Serum was assayed for concentration of oestradiol, FSH and LH by RIA. The concentration of FSH (ng/ml) in serum did not change during the first 8 days before oestradiol treatment (overall mean = 356 +/- 55) but decreased from the Day-8 value of 320 +/- 8 to 190 +/- 42 on Day 9 and by Day 15, after 7 days of oestradiol treatment, had reached a nadir of 20 +/- 5. By Day 17, i.e. 2 days after removal of the oestradiol capsules, serum FSH had increased (P less than 0.05) to 92 +/- 23 with a further increase (P less than 0.05) on Day 19 (171 +/- 16). This study demonstrates that, unlike in rats, mice, and sheep, administration of oestradiol alone to ovariectomized rhesus monkeys reduces immunoreactive serum FSH to concentrations measured in intact animals.  相似文献   

16.
Short-term feed restriction in prepubertal gilts suppresses episodic LH secretion in the absence of changes in body weight or composition. To assess non-gonadotropin-mediated effects of realimentation at the ovarian level, 52 gilts were assigned to six treatments after 7 days (Days 1-7) of maintenance feeding (approximately 30% ad libitum). Groups R12 and R9 were maintenance-fed Days 8-12 or Days 8-9, respectively; A12 and A9 were fed to appetite Days 8-12 or Days 8-9, respectively. Groups R9P and A9P were fed as groups R9 and A9 were but received 750 IU eCG at 1500 h on Day 8. Groups R12 and A12 were ovariectomized at 1500 h on Day 12, and all other groups were ovariectomized at 1500 h on Day 9. All gilts received oral progestogen (15 mg allyl trenbolone) from Day 1 to ovariectomy, to antagonize the usual increases in endogenous gonadotropins that follow realimentation. Blood samples were obtained at 10-min intervals during selected windows during the experiment. Ovarian follicles were analyzed for development and steroidogenesis, and plasma samples were analyzed by RIA to determine concentrations of LH, FSH, insulin, and insulin-like growth factor-1 (IGF-1). Allyl trenbolone abolished pulsatile LH secretion, and realimentation did not stimulate LH or FSH secretion, with the exception of FSH secretion on Day 8 in A9 gilts. Postprandial insulin concentrations on Day 9 were greater after feeding to appetite (A9, A9P, and A12) than after feed restriction (R9, R9P, and R12). Pre- and postprandial IGF-1 concentrations were higher in re-fed gilts on Day 9 (A9 and A12) and Day 12 (A12) than in feed-restricted gilts. Follicular diameter, fluid volume, and basal granulosa cell estradiol synthesis per follicle were greater in A12 gilts than in R12 gilts, although there was no difference between A9 and R9 gilts. There was no effect of realimentation on follicular fluid concentrations of estradiol or testosterone, or on androgen-driven granulosa cell estradiol synthesis. Treatment with eCG increased follicular diameter, fluid volume, basal and androgen-driven estradiol synthesis, and fluid estradiol concentrations without interaction with feeding level. In conclusion, in the absence of LH elevations, realimentation over 5 days exerts effects at the ovary, increasing follicular growth and estradiol synthesis. These effects may be mediated by insulin, IGF-1, or unmeasured growth factors and would be expected to synergize with increases in endogenous gonadotropin that follow realimentation.  相似文献   

17.
Acute changes of bovine pituitary luteinizing hormone-releasing hormone (LHRH) receptors in response to steroid challenges have not been documented. To investigate these changes 96 ovariectomized (OVX) cows were randomly allotted to one of the following treatments: 1) 1 mg estriol (E3); 2) 1 mg 17 beta-estradiol (E2); or 3) 25 mg progesterone (P) twice daily for 7 days before 1 mg E2 and continuing to the end of the experiment. Serum was collected at hourly intervals from 4 animals in each group for 28 h following estrogen treatment. Four animals from each treatment were killed at 4-h intervals from 0 to 28 h after estrogen injection to recover pituitaries and hypothalami. Treatment with E3 or E2 decreased serum luteinizing hormone (LH) within 3 h and was followed by surges of LH that were temporally and quantitatively similar (P greater than 0.05). Progesterone did not block the decline in serum LH, but did prevent (P less than 0.05) the E2-induced surge of LH. Serum follicle-stimulating hormone (FSH) was unaffected (P less than 0.05) by treatment. Pituitary concentrations of LH and FSH were maximal (P less than 0.001) at 16 h for E3 and 20 h for E2, whereas P prevented (P greater than 0.05) the pituitary gonadotropin increase. Concentrations of LHRH in the hypothalamus were similar (P greater than 0.05) among treatments. Pituitary concentrations of receptors for LHRH were maximal (P less than 0.005) 12 h after estrogen injection (approximately 8 h before the LH surge), even in the presence of P. This study demonstrated that in the OVX cow: 1) E2 and E3 increased the concentration of receptors for LHRH and this increase occurred before the surge of LH; and 2) P did not block the E2-induced increase in pituitary receptors for LHRH but did prevent the surge of LH.  相似文献   

18.
During 12 sampling days before ovariectomy the mean plasma FSH but not LH concentrations in FF ewes were higher (P less than 0.01) than those in ++ ewes (16 ewes/genotype). After ovariectomy increases in the concentrations of FSH and LH were noted for ewes of both genotypes within 3-4 h and the rates of increase of FSH and LH were 0.18 ng ml-1 h-1 and 0.09 ng ml-1 h-1 respectively for the first 15 h. From Days 1 to 12 after ovariectomy, the overall mean +/- s.e.m. concentrations for FSH in the FF and ++ ewes were 8.1 +/- 0.6 and 7.1 +/- 0.4 ng/ml respectively and for LH they were 2.7 +/- 0.3 and 2.1 +/- 0.2 ng/ml: these differences were not statistically significant (P = 0.09 for both FSH and LH; Student's t test). However, when the frequencies of high FSH or LH values after ovariectomy were compared with respect to genotype over time, significant F gene-specific differences were noted (P less than 0.01 for both FSH and LH; median test). In Exp. 2 another 21 ewes/genotype were blood sampled every 2nd day from Days 2 to 60 after ovariectomy and the plasma concentrations of FSH and LH were more frequently higher in FF than in ++ ewes (P less than 0.01 for FSH and LH). The F gene-specific differences in LH concentration, observed at 21-36 days after ovariectomy were due to higher mean LH amplitudes (P less than 0.025) but not LH peak frequency in FF than in ++ ewes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Prepubertal gilts, having undergone a 7-day period of feed restriction to a maintenance ration, were allocated to one of 4 treatments; restricted feeding at 09:00 and 17:00 h for an 8th day both with (Group RN) and without (Group R) administration of the opioid antagonist naloxone hydrochloride (1 mg.kg-1 at 09:30 h followed by 0.5 mg.kg-1 at hourly intervals for 7 h), or feed to appetite with (Group ALN) and without (Group AL) naloxone administration. Gilts were bled at 10-min intervals on Day 8 from morning to evening feed and plasma LH, FSH and prolactin concentrations were measured by radioimmunoassay. Compared with Group R gilts, Group AL gilts exhibited significantly (P less than or equal to 0.05) higher mean and maximum LH concentrations and pulsatility, lower prolactin concentrations (P less than 0.05) but no significant difference in FSH secretion. Naloxone significantly depressed the increase in LH after re-feeding (Group ALN) (P less than 0.05). Once again there were no significant effects on FSH secretion. Naloxone also significantly depressed prolactin secretion in feed-restricted gilts (P less than 0.05). These results confirm that re-feeding of feed-restricted prepubertal gilts stimulates an immediate increase in LH secretion and that this elevation is not mediated via a suppression of inhibitory endogenous opioidergic tone. Rather, naloxone treatment appeared to expose a latent inhibition of LH secretion. The control of LH secretion is distinct from that of FSH in this model.  相似文献   

20.
Thirty primiparous suckling beef cows were slaughtered on Day 7, 14, 28, 42 or 56 after parturition. Some had resumed oestrous cyclicity by the time they were slaughtered on Days 42 and 56. Amongst acyclic cows between Days 7 and 42, pituitary LH concentrations and basal and GnRH-induced release of LH from pituitary explants doubled. Pituitary FSH concentration and basal release in FSH increased only by 15-20%, while GnRH-induced release of FSH in vitro was unchanged. During postpartum anoestrus, overall mean concentrations of serum FSH did not change, whereas overall mean concentrations and pulse amplitudes of serum LH increased. Numbers and affinity constants of GnRH-binding sites in pituitary glands remained constant during the post-partum period studied. We conclude that, under these experimental conditions, numbers and affinity constants of GnRH-binding sites in the pituitary gland of post-partum beef cows do not limit the ability of the anterior pituitary gland to release gonadotrophins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号