首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA synthesis after ultraviolet irradiation is low in wild type toluene-treated cells. The level of repair incorporation is greater in strains deficient in DNA polymerase I. The low level of repair synthesis is attributable to the concerted action of DNA polymerase I and polynucleotide ligase. Repair synthesis is stimulated by blocking ligase activity with the addition of nicotinamide mononucleotide (NMN) or the use of a ligase temperature-sensitive mutant. NMN stimulation is specific for DNA polymerase I-mediated repair synthesis, as it is absent in isogenic strains deficient in the polymerase function or the 5' leads to 3' exonuclease function associated with DNA polymerase I. DNA synthesis that is stimulated by NMN is proportional to the ultraviolet exposure at low doses, nonconservative in nature, and is dependent on the uvrA gene product but is independent of the recA gene product. These criteria place this synthesis in the excision repair pathway. The NMN-stimulated repair synthesis requires ATP and is N-ethylmaleimide-resistant. The use of NMN provides a direct means for evaluating the involvement of DNA polymerase I in excision repair.  相似文献   

2.
DNA ligase is an enzyme important for DNA repair and replication. Eukaryotic genomes encode ligases requiring ATP as the cofactor; bacterial genomes encode NAD(+)-dependent ligase. This difference in substrate specificities and the essentiality of NAD(+)-dependent ligase for bacterial survival make NAD(+)-dependent ligase a good target for designing highly specific anti-infectives. Any such structure-guided effort would require the knowledge of the precise mechanism of NAD+ recognition by the enzyme. We report the principles of NAD+ recognition by presenting the synthesis of NAD+ from nicotinamide mononucleotide (NMN) and AMP, catalyzed by Enterococcus faecalis ligase within the crystal lattice. Unprecedented conformational change, required to reorient the two subdomains of the protein for the condensation to occur and to recognize NAD+, is captured in two structures obtained using the same protein crystal. Structural data and sequence analysis presented here confirms and extends prior functional studies of the ligase adenylation reaction.  相似文献   

3.
DNA ligase is an enzyme essential for DNA replication, repair, and recombination in all organisms. Bacterial DNA ligases catalyze a NAD(+)-dependent DNA ligation reaction, i.e., the formation of a phosphodiester bond between adjacent 3'-OH and 5'-phosphate termini of dsDNA. Due to their essential nature, unique cofactor requirement, and widespread existence in nature, bacterial DNA ligases appear to be valuable targets for identifying novel antibacterial agents. To explore bacterial DNA ligases as antibacterial targets and further characterize them, we developed a simple, robust, homogeneous time-resolved fluorescence resonance energy transfer assay (TR-FRET) for measuring Streptococcus pneumoniae DNA ligase activity. This assay involves the use of one dsDNA molecule labeled with biotin and another dsDNA molecule labeled with Cy5, an acceptor fluorophore. During ligation reactions, the donor fluorophore europium (Eu(3+)) labeled with streptavidin was added to the assay mixtures, which bound to the biotin label on the ligated products. This in turn resulted in the FRET from Eu(3+) to Cy5 due to their close proximity. The formation of ligation products was measured by monitoring the emission at 665nm. This assay was validated by the experiments showing that the DNA ligase activity required NAD(+) and MgCl(2), and was inhibited by NMN and AMP, products of the ligase reaction. Using this assay, we determined the K(m) values of the enzyme for dsDNA substrates and NAD(+), and the IC(50) values of NMN and AMP, examined the effects of MgCl(2) and PEG(8000) on the enzyme activity, optimized the concentrations of Eu(3+) in the assay, and validated its utilities for high-throughput screening and biochemical characterizations of this class of enzymes.  相似文献   

4.
In mammalian cells, the base excision repair (BER) pathway is the main route to counteract the mutagenic effects of DNA lesions. DNA nicks induce, among others, DNA polymerase activities and the synthesis of poly(ADP-ribose). It is shown here that poly(ADP-ribose) serves as an energy source for the final and rate-limiting step of BER, DNA ligation. This conclusion was drawn from experiments in which the fate of [(32)P]poly(ADP-ribose) or [(32)P]NAD added to HeLa nuclear extracts was systematically followed. ATP was synthesized from poly(ADP-ribose) in a pathway that strictly depended on nick-induced DNA synthesis. NAD was used for the synthesis of poly(ADP-ribose), which, in turn, was converted to ATP by pyrophosphorylytic cleavage utilizing the pyrophosphate generated from dNTPs during DNA synthesis. The adenylyl moiety was then preferentially used to adenylate DNA ligase III, from which it was transferred to the 5'-phosphoryl end of the nicked DNA. Finally, ligation to the 3'-OH end resulted in the release of AMP. When using NAD, but not poly(ADP-ribose), in the presence of 3-aminobenzamide, the entire process was blocked, confirming poly(ADP-ribosyl)ation to be the essential initial step. Thus, poly(ADP-ribose) polymerase-1, DNA polymerase beta, and ligase III interact with x-ray repair cross-complementing protein-1 within the BER complex, which ensures that ATP is generated and specifically used for DNA ligation.  相似文献   

5.
A cell-free extract from blue-green alga Anacystis nidulans contains enzymes which repair in vitro the transforming activity of gamma-irradiated Bacillus subtilis DNA. The level of restoration of the transforming activity depends on the protein concentration in the reaction mixture, the duration of incubation and on the dose of irradiation. The repair of gamma-induced lesions is most efficient in the presence of magnesium ions, NAD and ATP. The present data indicate that the repair of transforming DNA is performed with the participation of DNA polymerase and polynucleotide ligase which function in the cell-free extract of algae.  相似文献   

6.
An enzyme which enhances the priming activity of gamma-irradiated DNA for type I DNA polymerase (EC 2.7.7.7) was identified and partially purified from extracts of Bacillus subtilis cells. The enzyme preferentially degraded gamma-irradiated DNA into acid-soluble materials. DNA preparations treated with heat, ultraviolet light, pancreatic DNAase (EC 3.1.4.5) or micrococcal DNAase (EC 3.1.4.7) were not susceptible to the enzyme. However, sonication rendered DNA susceptible to the enzyme to some extent. From these results, it is supposed that this enzyme may function by 'cleaning' damaged terminals produced by gamma-irradiation to serve as effective priming sites for repair synthesis by the type I DNA polymerase.  相似文献   

7.
DNA ligases utilize either ATP or NAD+ as cofactors to catalyze the formation of phosphodiester bonds in nicked DNA. Those utilizing NAD+ are attractive drug targets because of the unique cofactor requirement for ligase activity. We report here the crystal structure of the adenylation domain of the Mycobacterium tuberculosis NAD+-dependent ligase with bound AMP. The adenosine nucleoside moiety of AMP adopts a syn-conformation. The structure also captures a new spatial disposition between the two subdomains of the adenylation domain. Based on the crystal structure and an in-house compound library, we have identified a novel class of inhibitors for the enzyme using in silico docking calculations. The glycosyl ureide-based inhibitors were able to distinguish between NAD+- and ATP-dependent ligases as evidenced by in vitro assays using T4 ligase and human DNA ligase I. Moreover, assays involving an Escherichia coli strain harboring a temperature-sensitive ligase mutant and a ligase-deficient Salmonella typhimurium strain suggested that the bactericidal activity of the inhibitors is due to inhibition of the essential ligase enzyme. The results can be used as the basis for rational design of novel antibacterial agents.  相似文献   

8.
Bacillus subtilis gene yshC encodes a 64-kDa family X DNA polymerase (PolXBs), which contains all the critical residues involved in DNA and nucleotide binding as well as those responsible for catalysis of DNA polymerization, conserved in most family X members. Biochemical analyses of the purified enzyme indicate that PolXBs is a monomeric and strictly template-directed DNA polymerase, preferentially acting on DNA structures containing gaps from one to a few nucleotides and bearing a phosphate group at the 5' end of the downstream DNA. The fact that PolXBs is able to conduct filling of a single-nucleotide gap, allowing further sealing of the resulting nick by a DNA ligase, points to a putative role in base excision repair during the B. subtilis life cycle.  相似文献   

9.
Poly(ADP-ribose) polymerase activity in nuclei isolated from differentiating cardiac muscle of the rat has been characterized and its activity measured during development. Optimum enzyme activity is observed at pH 8.5. Poly(ADP-ribose) polymerase is inhibited by ATP, thymidine, nicotinamide, theophylline, 3-isobutyl-1-methylxanthine and caffeine and stimulated by actinomycin D. The activity measured under optimal assay conditions increases during differentiation of cardiac muscle and is inversely related to the rate of DNA synthesis and to the activities of DNA polymerase alpha and thymidine kinase. When DNA synthesis and the activity of DNA polymerase alpha are inhibited in cardiac muscle of the 1-day-old neonatal rat by dibutyryl cyclic AMP or isoproterenol, the specific activity of poly(ADP-ribose) polymerase measured in isolated nuclei is increased. The concentration of NAD+ in cardiac muscle increases during postnatal development. In the adult compared with the 1-day-old neonatal rat the concentration of NAD+ relative to fresh tissue weight, DNA or protein increased 1.7-fold, 5.2-fold or 1.4-fold respectively. The concentration of NAD+ in cardiac muscle of the 1-day-old neonatal rat can be increased by approx. 20% by dibutyryl cyclic AMP. These data suggest that NAD+ and poly(ADP-ribose) polymerase may be involved with the repression of DNA synthesis and cell proliferation in differentiating cardiac muscle.  相似文献   

10.
Translesion synthesis (TLS) across damaged DNA bases is most often carried out by the ubiquitous error-prone DNA polymerases of the Y-family. Bacillus subtilis encodes two Y-polymerases, Pol Y1 and Pol Y2, that mediate TLS resulting in spontaneous and ultraviolet light (UV)-induced mutagenesis respectively. Here we show that TLS is a bipartite dual polymerase process in B. subtilis, involving not only the Y-polymerases but also the A-family polymerase, DNA polymerase I (Pol I). Both the spontaneous and the UV-induced mutagenesis are abolished in Pol I mutants affected solely in the polymerase catalytic site. Physical interactions between Pol I and either of the Pol Y polymerases, as well as formation of a ternary complex between Pol Y1, Pol I and the beta-clamp, were detected by yeast two- and three-hybrid assays, supporting the model of a functional coupling between the A- and Y-family polymerases in TLS. We suggest that the Pol Y carries the synthesis across the lesion, and Pol I takes over to extend the synthesis until the functional replisome resumes replication. This key role of Pol I in TLS uncovers a new function of the A-family DNA polymerases.  相似文献   

11.
12.
An in vitro Escherichia coli oriC-specific DNA replication system was used to investigate the DNA replication pathways of oriC plasmids. When this system was perturbed by the DNA ligase inhibitor nicotinamide mononucleotide (NMN), alterations occurred in the initiation of DNA synthesis and processing of intermediates and DNA products. Addition of high concentrations of NMN soon after initiation resulted in the accumulation of open circular dimers (OC-OC). These dimers were decatenated to open circular monomers (form II or OC), which were then processed to closed circular supercoiled monomers (form I or CC) products. After a delay, limited ligation of the interlinked dimers (OC-OC to CC-OC and CC-CC) also occurred. Similar results were obtained with replication protein extracts from polA mutants. The presence of NMN before any initiation events took place prolonged the existence of nicked template DNA and promoted, without a lag period, limited incorporation into form II molecules. This DNA synthesis was nonspecific with respect to oriC, as judged by DnaA protein dependence, and presumably occurred at nicks in the template DNA. These results are consistent with oriC-specific initiation requiring closed supercoiled molecules dependent on DNA ligase activity. The results also show that decatenation of dimers occurs readily on nicked dimer and represents an efficient pathway for processing replication intermediates in vitro.  相似文献   

13.
Abstract In the absence of added template and primer, DNA synthesis activity which required dATP, dTTP, magnesium ion, and ATP was detected in the cell extracts prepared from a thermophile Bacillus stearothermophilus carrying a plasmid pTB913, but not from the strain without plasmid. Polymer synthesis was detectable only after a lag period and then proceeded at an exponential rate. The DNA synthesized in vitro was the alternating copolymer of dAMP and dTMP, poly(dAT). This reaction was very similar to the de novo DNA synthesis by DNA polymerase I of Escherichia coli, Bacillus subtilis , and Micrococcus luteus , except for the requirement of ATP and thermostability.  相似文献   

14.
Several tests were devised to further characterize deoxyribonucleic acid (DNA) synthesis in toluenized Bacillus subtilis cells. Vigorous agitation of toluenized cells (localization test) demonstrated that the DNA replication is exclusively a cell-associated process. A DNA "repair" condition was also applied to toluenized cells and shown to be distinct from DNA replication in its DNA polymerase I dependency and its ability to synthesize DNA on template which is either cell associated or free, outside the cell. This repair condition was used in conjunction with the localization test to demonstrate the penetration of deoxyribonuclease I and possibly DNA polymerase I into toluenized cells. Therefore, we suggest that the localization test can be used to test the penetration of proteins into toluenized cells for both the DNA repair and replication processes.  相似文献   

15.
A specific nicotinamide mononucleotide amidohydrolase which catalyzes the stoichiometric conversion of NMN to nicotinate mononucleotide and ammonia has been partially purified from an extract of Propionibacteriumshermanii. The reaction has optimum activity at pH 5.6, a Km of 70 μM, and an experimental activation energy of 14.5 Kcal/mole. The enzyme appears to be highly specific for NMN. Neither free nicotinamide nor NAD, NADH, NADP, NADPH compete with NMN. Numerous substances such as isonicotinic acid hydrazide and quinolinic acid are also without effect. It can be stored at ?15° in 12% glycerol, but is somewhat unstable in the absence of this solvent. The enzyme is composed of a heatstable and a heat-sensitive subunit. This enzyme considerably simplifies the pyridine nucleotide cycle, and may, besides this salvage function for NAD, play a role in B12 biosynthesis and in the bacterial DNA ligase reaction.  相似文献   

16.
17.
Exposure of MiaPaCa cells to 1-beta-D-arabinosylcytosine (ara-C) resulted in an increase in DNA ligase levels up to threefold compared to that in the untreated control cells, despite significant growth inhibition. Increased levels of DNA ligase I protein appear to correlate with the appearance of increased mRNA levels. The [(3)H]thymidine incorporation experiment and the biochemical assay of total polymerase activity revealed that an increase in DNA ligase I levels after treatment with ara-C was not accompanied by an increase of DNA synthesis or an increased presence of DNA polymerase activity inside cells. When cells resumed DNA synthesis after drug treatment, DNA ligase I levels began to drop, indicating that increased DNA ligase I is not required for DNA synthesis. An increase in DNA ligase I was also observed in cells treated with aphidicolin, another inhibitor of DNA synthesis that inhibits DNA polymerases without incorporating itself into DNA, indicating that an increase in DNA ligase I levels could be caused by the arrest of DNA replication by these agents. Interestingly, caffeine, which is a well-known inhibitor of DNA damage checkpoint kinases, abrogated the increase in DNA ligase I in MiaPaCa cells treated with ara-C and aphidicolin, suggesting that caffeine-sensitive kinases might be important mediators in the pathway leading to the increase in DNA ligase I levels in response to anticancer drugs, including ara-C and aphidicolin. We propose that ara-C and aphidicolin induce damage to the DNA strand by arresting DNA replication forks and subsequently increase DNA ligase I levels to facilitate repair of DNA damage.  相似文献   

18.
An investigation was made of the effect of NAD+ analogues on subunit interactions in yeast and rabbit muscle glyceraldehyde 3-phosphate dehydrogenases by using the subunit exchange (hybridization) method described previously [e.g. see Osborne & Hollaway (1975) Biochem. J. 151, 37-45]. The ligands ATP, ITP, ADP, AMP, cyclic AMP and ADP-ribose like NADH, all caused an apparent weakening of intramolecular subunit interactions, whereas NAD+ caused an apparent increase in the stability of the tetrameric enzyme molecules. A mixture of NMN and AMP, although it did not simulate completely the NAD+-induced 'tightening' of the enzyme structure, did result in a more than 20-fold decrease in the rate of subunit exchange compared with that in the presence of AMP alone. These results show that occupancy of the NMN subsite of the enzyme NAD+-binding site is insufficient in itself to give the marked tightening of the enzyme structure induced by NAD+. The 'tightening' effect is specific in that it seems to require a phosphodiester link between NMN and ADP-ribose. These effects are discussed in terms of the detailed X-ray structure of the lobster holoenzyme [Buehner et al. (1974) J. Mol. Biol. 90, 25-49].  相似文献   

19.
NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule.  相似文献   

20.
Hiraga, Sota (Osaka University, Osaka, Japan). Regulation of synthesis of alkaline phosphatase by deoxyribonucleic acid synthesis in a constitutive mutant of Bacillus subtilis. J. Bacteriol. 91:2192-2199. 1966.-It was found that synthesis of alkaline phosphatase (APase) correlated with deoxyribonucleic acid (DNA) synthesis in a partially constitutive mutant of Bacillus subtilis. When cultures of the mutant were made to undergo synchronous growth by germination of spores in an excess-phosphate medium, synthesis of APase was repressed at the beginning of DNA synthesis. If the initiation of DNA synthesis was inhibited by thymine starvation, the repression of APase was not observed. When DNA synthesis, previously initiated, was inhibited by thymine or uracil starvation, or by addition of mitomycin C, the repression was partially released at a later stage. In contrast, this correlation between repression and DNA synthesis was not observed in a repressible strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号