首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of polyvinyl alcohol (PVA) was investigated by using a combination of chemical treatment with Fenton’s reagent and biological degradation with the white rot fungus Pycnoporus cinnabarinus. Inclusion of the chemical pretreatment resulted in greater degradation of PVA than the degradation observed when biological degradation alone was used.  相似文献   

2.
We investigated the ability of Trametes versicolor and Pycnoporous cinnabarinus to metabolize triclosan. T. versicolor produced three metabolites, 2-O-(2,4,4'-trichlorodiphenyl ether)-beta-D-xylopyranoside, 2-O-(2,4,4'-trichlorodiphenyl ether)-beta-D-glucopyranoside, and 2,4-dichlorophenol. P. cinnabarinus converted triclosan to 2,4, 4'-trichloro-2'-methoxydiphenyl ether and the glucoside conjugate known from T. versicolor. The conjugates showed a distinctly lower cytotoxic and microbicidal activity than triclosan did.  相似文献   

3.
Biochemistry of microbial polyvinyl alcohol degradation   总被引:1,自引:0,他引:1  
Effect of minor chemical structures such as 1,2-diol content, ethylene content, tacticity, a degree of polymerization, and a degree of saponification of the main chain on biodegradability of polyvinyl alcohol (PVA) is summarized. Most PVA-degraders are Gram-negative bacteria belonging to the Pseudomonads and Sphingomonads, but Gram-positive bacteria also have PVA-degrading abilities. Several examples show symbiotic degradation of PVA by different mechanisms. Penicillium sp. is the only reported eukaryotic degrader. A vinyl alcohol oligomer-utilizing fungus, Geotrichum fermentans WF9101, has also been reported. Lignolytic fungi have displayed non-specific degradation of PVA. Extensive published studies have established a two-step process for the biodegradation of PVA. Some bacteria excrete extracellular PVA oxidase to yield oxidized PVA, which is partly under spontaneous depolymerization and is further metabolized by the second step enzyme (hydrolase). On the other hand, PVA (whole and depolymerized to some extent) must be taken up into the periplasmic space of some Gram-negative bacteria, where PVA is oxidized by PVA dehydrogenase, coupled to a respiratory chain. The complete pva operon was identified in Sphingopyxis sp. 113P3. Anaerobic biodegradability of PVA has also been suggested.  相似文献   

4.
An efficient transformation and expression system was developed for the industrially relevant basidiomycete Pycnoporus cinnabarinus. This was used to transform a laccase-deficient monokaryotic strain with the homologous lac1 laccase gene placed under the regulation of its own promoter or that of the SC3 hydrophobin gene or the glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of Schizophyllum commune. SC3-driven expression resulted in a maximal laccase activity of 107 nkat ml(-1) in liquid shaken cultures. This value was about 1.4 and 1.6 times higher in the cases of the GPD and lac1 promoters, respectively. lac1-driven expression strongly increased when 25 g of ethanol liter(-1) was added to the medium. Accordingly, laccase activity increased to 1,223 nkat ml(-1). These findings agree with the fact that ethanol induces laccase gene expression in some fungi. Remarkably, lac1 mRNA accumulation and laccase activity also strongly increased in the presence of 25 g of ethanol liter(-1) when lac1 was expressed behind the SC3 or GPD promoter. In the latter case, a maximal laccase activity of 1,393 nkat ml(-1) (i.e., 360 mg liter(-1)) was obtained. Laccase production was further increased in transformants expressing lac1 behind its own promoter or that of GPD by growth in the presence of 40 g of ethanol liter(-1). In this case, maximal activities were 3,900 and 4,660 nkat ml(-1), respectively, corresponding to 1 and 1.2 g of laccase per liter and thus representing the highest laccase activities reported for recombinant fungal strains. These results suggest that P. cinnabarinus may be a host of choice for the production of other proteins as well.  相似文献   

5.
High-molecular-weight lignin was methylated with diazomethane. The lignin (i.e., phenolic lignin) and methylated lignin (i.e., non-phenolic lignin) were mixed with fully bleached softwood pulp. Degradation of the lignin preparations by the white rot fungus Pycnoporus cinnabarinus was studied. After a 3-month incubation with the fungus, over 40% of the non-phenolic lignin and about 70% the phenolic lignin were degraded. The presence of phenolic hydroxyl groups in lignin greatly enhanced the degradation rate of lignin. This study reveals that P. cinnabarinus, an exclusively laccase-producing fungus, is capable of oxidatively degrading both phenolic and non-phenolic lignins. The ability of the fungus to degrade non-phenolic lignin suggests that a laccase/mediator system is involved in the complete degradation of lignin. After the fungal degradation of lignins, the content of carboxylic acids substantially increased for both phenolic and non-phenolic lignins.  相似文献   

6.
The degradation of the disazo dye Chicago Sky Blue 6B by a purified laccase from Pycnoporus cinnabarinus was investigated. Laccase was purified to homogeneity and characterized. The enzyme had a molecular size of 63 kDa as determined by SDS-PAGE and an isoelectric point at pH 3. Amino acid composition and N-terminal amino acid sequence was shown to be similar to other fungal laccases. The purified laccase was stable for 1 h at 60 degrees C and was irreversibly inactivated by sodium azide at 0.1 mM. Laccase was shown to initiate destruction of the chromophore of the disazo dye Chicago Sky Blue, resulting in the formation of two intermediate products with absorption intensities about one order of magnitude lower than the parent molecule. The rate at which the dye was transformed by purified laccase was shown to increase with increasing concentrations of the enzyme.  相似文献   

7.
An efficient transformation and expression system was developed for the industrially relevant basidiomycete Pycnoporus cinnabarinus. This was used to transform a laccase-deficient monokaryotic strain with the homologous lac1 laccase gene placed under the regulation of its own promoter or that of the SC3 hydrophobin gene or the glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of Schizophyllum commune. SC3-driven expression resulted in a maximal laccase activity of 107 nkat ml−1 in liquid shaken cultures. This value was about 1.4 and 1.6 times higher in the cases of the GPD and lac1 promoters, respectively. lac1-driven expression strongly increased when 25 g of ethanol liter−1 was added to the medium. Accordingly, laccase activity increased to 1,223 nkat ml−1. These findings agree with the fact that ethanol induces laccase gene expression in some fungi. Remarkably, lac1 mRNA accumulation and laccase activity also strongly increased in the presence of 25 g of ethanol liter−1 when lac1 was expressed behind the SC3 or GPD promoter. In the latter case, a maximal laccase activity of 1,393 nkat ml−1 (i.e., 360 mg liter−1) was obtained. Laccase production was further increased in transformants expressing lac1 behind its own promoter or that of GPD by growth in the presence of 40 g of ethanol liter−1. In this case, maximal activities were 3,900 and 4,660 nkat ml−1, respectively, corresponding to 1 and 1.2 g of laccase per liter and thus representing the highest laccase activities reported for recombinant fungal strains. These results suggest that P. cinnabarinus may be a host of choice for the production of other proteins as well.  相似文献   

8.
An aminophenol, 3-hydroxyanthranilic acid (3-HAA), has been proposed to play important roles in lignin degradation. Production of 3-HAA in Pycnoporus cinnabarinus was completely inhibited by a combination of tryptophan and S-(2-aminophenyl)-L-cysteine S,S-dioxide (APCD) while the fungus grew well and produced high amounts of laccase. The biosynthesis of 3-HAA is mainly through the metabolism of tryptophan in the kynurenine pathway. A minor pathway for 3-HAA synthesis is through the hydroxylation of anthranilic acid during the biosynthesis of tryptophan in the shikimic acid pathway. Through UV irradiation of wild-type P. cinnabarinus (WT-Pc) spores, a 3-HAA-less mutant was produced. Both WT-Pc, under the inhibitory culture condition, and the 3-HAA-less mutant were found to degrade lignin in unbleached kraft pulp as efficiently as the WT-Pc, which unambiguously demonstrated that 3-HAA does not play an important role in the fungal degradation of lignin.  相似文献   

9.
Selection of Pycnoporus cinnabarinus strains for laccase production   总被引:4,自引:0,他引:4  
A comparison of Pycnoporus cinnabarinus strains for laccase production was carried out. A dikaryotic strain, I-937 strain, producing a high level of laccase (9500 U l(-1)) was selected. The study of the life cycle in vitro of this dikaryotic strain led to isolation of monokaryons. Forty-eight monokaryotic strains were isolated and screened for laccase production. One of these strains, ss3, produced a higher level of laccase than the parental strain I-937. The maximum production reached 29000 U l(-1) in medium supplemented with ferulic acid.  相似文献   

10.
Summary Pyncnoporus cinnabarinus (Polyporaceae) is able to produce methylanthranilate in liquid cultures. Study of the culture conditions of P. cinnabarinus IP I-937 has permitted increase in the aroma productivity by a factor of 16. A low nitrogen concentration, with maltose as carbon source, was required; the culture pH was uncontrolled. The inoculum nature and concentration greatly influence on production: best results were obtained with conidia from a late harvest, used at a rate of 2 × 105 spores/ml. Under these conditions, 18.7 mg methylanthranilate/l was produced after 5 days of culture. Aroma production is probably connected with the biosynthesis of phenoxazinones, which are characteristic pigments of the genus Pycnoporus. Offprint requests to: B. Gross  相似文献   

11.
We have cloned and sequenced a gene encoding cellobiose dehydrogenase (CDH) from Pycnoporus cinnabarinus (Pci). PCR primers that may recognize a homologous cdh were designed using regions of complete conservation of amino acid sequence within the known sequences of Trametes versicolor (Tv) and Phanerochaete chrysosporium (Pc) CDH. Upstream primers hybridized to regions encoding the heme domain, whereas downstream primers recognized highly conserved regions within the flavin domain. Eight different primer pairs yielded three PCR products close in size to the control amplification, which used cloned Tv cdh as template. The PCR products that were close to the control size were cloned, and one of these, a 1.8-kb product, was completely sequenced. The PCR product was highly homologous to both Tv and Pch cdh, and contained eight putative introns. The cloned product was used to isolate a full-length clone encoding CDH from a Pci genomic library. Pci cdh encoded a protein with 83% identity with Tv CDH and 74% identity with Pch CDH. Northern blot analysis revealed that Pci cdh was transcribed as a single mRNA species and was expressed in the presence of cellulose as the carbon source.  相似文献   

12.
A monokaryotic strain of the white-rot fungus Pycnoporus cinnabarinus was shown to produce, in a 2-L bioreactor culture, 100 mg.L-1 benzaldehyde (bitter almond aroma) from L-phenylalanine with a productivity of 33 mg.L-1.day-1. The addition of HP20 resin, a styrene divinylbenzene copolymer highly selective for benzaldehyde, enabled an eightfold increase in the production of benzaldehyde and a twofold increase in productivity. In the presence of HP20 resin, the production of 790 mg.L-1 benzaldehyde was concomitant with the synthesis of cinnamic acid derivatives of high organoleptic notes such as cinnamaldehyde, cinnamyl alcohol, and methyl cinnamate.  相似文献   

13.
While the Pycnoporus cinnabarinus laccase (PcL) is one of the most promising high-redox-potential enzymes for environmental biocatalysis, its practical use has to date remained limited due to the lack of directed evolution platforms with which to improve its features. Here, we describe the construction of a PcL fusion gene and the optimization of conditions to induce its functional expression in Saccharomyces cerevisiae, facilitating its directed evolution and semirational engineering. The native PcL signal peptide was replaced by the α-factor preproleader, and this construct was subjected to six rounds of evolution coupled to a multiscreening assay based on the oxidation of natural and synthetic redox mediators at more neutral pHs. The laccase total activity was enhanced 8,000-fold: the evolved α-factor preproleader improved secretion levels 40-fold, and several mutations in mature laccase provided a 13.7-fold increase in k(cat). While the pH activity profile was shifted to more neutral values, the thermostability and the broad substrate specificity of PcL were retained. Evolved variants were highly secreted by Aspergillus niger (~23 mg/liter), which addresses the potential use of this combined-expression system for protein engineering. The mapping of mutations onto the PcL crystal structure shed new light on the oxidation of phenolic and nonphenolic substrates. Furthermore, some mutations arising in the evolved preproleader highlighted its potential for heterologous expression of fungal laccases in yeast (S. cerevisiae).  相似文献   

14.
Industrial effluents of textile, paper, and leather industries contain various toxic dyes as one of the waste material. It imparts major impact on human health as well as environment. The white rot fungus Pycnoporus cinnabarinus Laccase is generally used to degrade these toxic dyes. In order to decipher the mechanism of process by which Laccase degrade dyes, it is essential to know its 3D structure. Homology modeling was performed in presented work, by satisfying Spatial restrains using Modeller Program, which is considered as standard in this field, to generate 3D structure of Laccase in unison, SWISSMODEL web server was also utilized to generate and verify the alternative models. We observed that models created using Modeller stands better on structure evaluation tests. This study can further be used in molecular docking techniques, to understand the interaction of enzyme with its mediators like 2, 2-azinobis (3-ethylbenzthiazoline-6-sulfonate) (ABTS) and Vanillin that are known to enhance the Laccase activity.  相似文献   

15.
Pathways for production of Fenton's reagent by wood-rotting fungi   总被引:2,自引:0,他引:2  
Abstract: Many forms of Fe(II) react with H202 to generate hydroxyl radicals (Fenton reaction). There is evidence that hydroxyl radicals are important in brown-rot, while they can be formed by secondary reactions during lignin breakdown by white-rot fungi. Their involvement in cellulose breakdown creates a range of oxidized sugars. The two reactants of Fenton's reagent can be generated by Fe(II) autoxidation, or by superoxide in reaction with Fe(III). A rapid autoxidation is not possible for complexes with a high Fe(III)/Fe(II) redox potential. Turning to specific pathways for formation of Fenton's reagent, decomposition of Fe(III)-oxalate is probably solely a photochemical process. Lignin peroxidases can act indirectly as a source of superoxide, either by reactions that lead to a peroxyradical, or by 1-electron oxidation of an aliphatic compound creating a strong reductant. Cellobiose dehydrogenase can provide a direct enzymic source for Fenton's reagent (S.M. Kremer and P.M. Wood (1992) Eur. J. Biochem. 208, 807–814). In the experiments as published, hydroxyl radical production was limited by the slow interaction of cellobiose dehydrogenase with O2. This limitation can be removed by the presence of an iron complex with an autoxidizable Fe(lI) state. The successful use of Fenton's reagent by a living organism requires a spatial separation between initiating enzyme(s) and the site of production of hydroxyl radicals. The mobility of the extra electron on Fe(II) by intermolecular transfer may be important for achieving this separation.  相似文献   

16.
AIMS: Laccase production by the monokaryotic strain Pycnoporus cinnabarinus ss3 was studied using ethanol as inducer in the culture medium. METHODS AND RESULTS: The effect of ethanol was tested at 10, 20, 30, 35 and 45 g l-1 and compared with that of ferulic acid, known until now as the most efficient inducer for laccase expression by P. cinnabarinus ss3. In the presence of 35 g l-1 ethanol, laccase activity (266 600 U l-1) and productivity (19 000 U l-1 day-1) were nine and fivefold higher compared with ferulic acid-induced cultures, and 155- and 65-fold higher compared with non-induced cultures, respectively. In vivo, ethanol added to the culture medium of P. cinnabarinus ss3 favoured a continuous and high expression of laccase gene. Under these conditions, P. cinnabarinus ss3 produced preferentially the isoenzyme LAC I. Ethanol added in vitro to the purified P. cinnabarinus ss3 laccase typically inhibited the enzymatic activity. CONCLUSIONS: In spite of an initial inhibitory effect on mycelial growth, ethanol was shown to be a very strong inducer for laccase expression by P. cinnabarinus ss3 allowing an average yield of 1-1.5 g l-1 laccase. SIGNIFICANCE AND IMPACT OF THE STUDY: This study identified P. cinnabarinus ss3 as an outstanding producer of laccase in the presence of ethanol as inducer. Ethanol is an inexpensive agricultural by-product and the process is simple to scale-up for industrial production.  相似文献   

17.
Summary The decolourisation of wastewater from a pigment plant by the white-rot fungus Pycnoporus cinnabarinus was studied in a packed-bed bioreactor. Decolourisation was first observed 48 to 72 h after inoculation and was followed using UV/VIS spectrophotometry. An assessment of the inhibitory properties of the effluent on the growth of Pycnoporus cinnabarinus showed that this fungus can tolerate high levels of potentially toxic waste.  相似文献   

18.
在25 L发酵罐中黑曲霉Aspergillus niger CGMCC0774转化阿魏酸可生成香草酸2.24 g/L,摩尔转化率64.6%;朱红密孔菌Pycnoporus cinnabarinus CGMCC1115转化提取的香草酸可生成香草醛1.45 g/L,摩尔转化率为79.9%。将两步微生物转化有机串联,即用黑曲霉转化液加预先培养的朱红密孔菌Pycnoporus cinnabarinus CGMCC1115菌丝体继续转化,可产香草醛1.06 g/L,对原料阿魏酸的摩尔转化率34.0%。用米糠提取的天然阿魏酸做原料,两步串联微生物转化制备的生物香兰素经13C同位素的分析,符合生物香草素的等同要求。  相似文献   

19.
Monokaryotic Pycnoporus cinnabarinus strains were obtained from the dikaryotic strain I-938. One of these, designated MK18, consistently produced high laccase activity. In cultures of MK18 and I-938 where ferulic acid was added as laccase inducer, laccase activity was enhanced about 2.5-fold reaching 3400 U/l for the MK18 strain. Laccase was purified to homogeneity and under the selected growth conditions, only one isoform of the enzyme was produced. The N-terminal sequence was similar to the amino terminal sequence of laccase II from Trametes versicolor. The enzyme was stable at 60 C for more than 1 h.  相似文献   

20.
High-density cultures of Pycnoporus cinnabarinus were tested with a view to optimisation of ferulic acid bioconversion into vanillin. The dry weight was increased fourfold by using glucose, fructose or a mixture of glucose and phospholipids as carbon source instead of maltose, the carbon source previously used. 5 mmol l−1 vanillin, i.e. 760 mg l−1, was produced over 15 days with glucose-phospholipid medium. In contrast, formation of vanillin was lower using glucose or fructose compared to the maltose control. A bioreactor (2 l) with a glucose-phospholipid medium gave a molar yield of vanillin of 61% (4 mmol l−1). An alternative strategy was to grow the fungus on a glucose or fructose medium for 3 days, then switch to maltose during the bioconversion phase: this method allowed 3.3 mmol l−1 vanillin to be obtained in 10 days. Many by-products such as methoxyhydroquinone and vanillyl alcohol were also produced. Received: 19 February 1999 / Received revision: 4 June 1999 / Accepted: 4 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号