首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a 38,000-dalton protein (FFP-38) purified from Tetrahymena acetone powder, we have succeeded in the polymerization of this protein into 14-nm filaments. The polymerization was initiated by incubating the purified FFP-38 fraction in a buffer containing 5 mM Mes (2-(N-Morpholino)ethanesulfonic acid), 50 mM KCl, 1.2 mM CaCl2, 0.6 mM ATP, pH 6.6, and by shifting the incubation temperature from 0 degrees C to 37 degrees C. The 14-nm filament is considered to consist of 7-nm globular subunits regularly arranged into 2 start, helical strands with 4 subunits per turn. The subunit may correspond to 9S tetramer of FFP-38, a native form of FFP-38. Since the subunit arrangement and subunit protein component of this 14-nm filament obviously differ from those of actin filament, 10-nm intermediate filament and microtubule, the 14-nm filament appears to be a newly found intracellular filament. Concerning the FFP-38 polymerization, some polymorphism appeared: we found ring structures having the diameters of 0.3--3.7 micrometers and latticed sheet structure, besides typical straight filaments.  相似文献   

2.
Tetrahymena 14-nm filament-forming protein has dual functions as a citrate synthase in mitochondria and as a cytoskeletal protein involved in oral morphogenesis and in pronuclear behavior during conjugation. By immunoblotting using monoclonal and polyclonal antibodies following two-dimensional gel electrophoresis, we demonstrated that the 14-nm filament protein fraction contained two 49-kDa proteins whose isoelectric points were 8.0 and 9.0; a monoclonal antibody (MAb) 26B4 and a polyclonal antibody 49KI reacted only to a pI 8.0 protein, while two other MAbs, 11B6 and 11B8, reacted only to a pI 9.0 protein. From the N-terminal amino acid sequences, the pI 8.0 protein was identified as the previously reported 14-nm filament-forming protein/citrate synthase, but the pI 9.0 protein N-terminal sequence had no similarity with that of the pI 8.0 protein. The pI 9.0 protein is considered to be a 14-nm filament-associated protein since the pI 9.0 protein copurifies with the pI 8.0 protein during two cycles of an assembly and disassembly purification protocol. Cloning and sequencing the pI 9.0 protein gene from a Tetrahymena pyriformis cDNA library, we identified the pI 9.0 protein as elongation factor 1 alpha (EF-1 alpha) based on it sharing 73-76% sequence identity with EF-1 alpha from several species.  相似文献   

3.
The major 68,000-dalton protein present in cycled microtubule preparations from bovine brain can be isolated in a rapidly sedimenting fraction consisting of filaments 10 nm in diameter. This 68,000-dalton protein remains in the filament fraction after gel filtration, phosphocellulose chromatography, or salt extraction of microtubule protein. Microtubule protein devoid of 10-nm filaments contains ring structures under depolymerizing conditions, and it polymerizes into microtubules with a characteristically low critical concentration, although all of the 68,000-dalton protein has been removed from it. When cycled microtubule protein is subjected to chromatography on phosphocellulose, the tubulin fraction (PC-tubulin) assembles into microtubules only at concentrations greater than 2 mg/mL. The other fraction, eluted from phosphocellulose at high ionic strength, contains the major 68,000-dalton protein and can be further resolved into two components by centrifugation. The supernatant, which consists mainly of high molecular weight microtubule-associated proteins, stimulates low concentrations of PC-tubulin to assemble. The pellet contains all of the 68,000-dalton protein, consists of 10-nm filaments, and does not stimulate assembly of PC-tublin. Boiling of purified filaments, however, releases several proteins, including the 68,000-dalton protein, and these released proteins stimulate the assembly of PC-tubulin. The morphology and protein composition of the filaments isolated from microtubule preparations by these techniques are very similar to those of mammalian neurofilaments. These results suggest that the major 68,000-dalton protein in cycled microtubule preparations, which may correspond to tubulin assembly protein [Lockwood, A.H. (1978) Cell 13, 613--627], is a constituent of neurofilaments.  相似文献   

4.
Spherical 22-nm hepatitis B surface antigen (HBsAg) particles with a subtype adr were purified from plasma of asymptomatic carriers of hepatitis B virus. When purified HBsAg preparation was treated with sodium dodecylsulfate in the absence of reducing agents, it yielded spherical particles with a diameter smaller than 22 nm, and in addition, a polypeptide with a molecular size of 49,000 daltons, which seemed to constitute the outer coat of HBsAg particles. The recovery of the polypeptide on the basis of optical density at 280 nm was 2%, starting from 22-nm HBsAg particles. The 49,000-dalton polypeptide apparently represented a structural unit of the surface of HBsAg particles, since it bore all common (a, Re) and subtypic (d, r) determinants with essentially the same antigenic titers as intact HBsAg particles. Furthermore, this polypeptide was equally immunogenic as 22-nm HBsAg particles in raising corresponding antibodies in mice. When the 49,000-dalton polypeptide was reduced in the presence of 2-mercaptoethanol, it cleaved into 22,000- and 27,000-dalton polypeptides with a drastic decrease in both antigenicity and immunogenicity. These results indicate the different molecular arrangements between outer coat and inner portion of HBsAg particles, and a potential application of the 49,000-dalton polypeptide as a component vaccine, owing to its strong antigenicity both in vitro and in vivo.  相似文献   

5.
Tetrahymena 14-nm filament-forming protein has citrate synthase activity   总被引:6,自引:0,他引:6  
The Tetrahymena 14-nm filament-forming protein (49K protein) is a structural protein involved in oral morphogenesis and in pronuclear behavior during conjugation. Cloning the 49K protein gene from a Tetrahymena thermophila cDNA library, we found that its primary structure exhibits a high sequence identity (51.5%) with porcine heart citrate synthase and retains functional domains. The 49K protein actually possesses citrate synthase activity, and is detected in mitochondria. These results suggest that the 49K protein has dual functions as both a respiratory enzyme and a structural protein in the cytoskeleton.  相似文献   

6.
Juxtanuclear birefringent caps (FC) containing 10-nm filaments form during the early stages of baby hamster kidney (BHK-21) cell spreading. FC are isolated from spreading cells after replating by treatment with 0.6 M KCl, 1% Triton X-100 (Rohm & Haas Co., Philadelphia, Pa.) and DNase I in phosphate-buffered saline. Purified FC are birefringent and retain the pattern of distribution of 10-nm filaments that is seen in situ. Up to 90% of the FC protein is resolved as two polypeptides of approximately 54,000 and 55,000 molecular weight on sodium dodecyl sulfate (SDS) polyacrylamide gels. The protein is immunologically and biochemically distinct from tubulin as determined by indirect immunofluorescence, double immunodiffusion, one-dimensional peptide mapping by limited proteolysis in SDS gels, and amino acid analysis. The BHK-21 FC amino acid composition, however, is very similar to that obtained for 10-nm filament protein derived from other sources including brain and smooth muscle. Partial disassembly of 10-nm filaments has been achieved by treatment of FC with 6 mM sodium- potassium phosphate buffer, pH 7.4. The solubilized components assemble into distinct 10-nm filaments upon the addition of 0.171 M sodium chloride.  相似文献   

7.
The factors and mechanisms regulating assembly of intermediate filament (IF) proteins to produce filaments with their characteristic 10 nm diameter are not fully understood. All IF proteins contain a central rod domain flanked by variable head and tail domains. To elucidate the role that different domains of IF proteins play in filament assembly, we used negative staining and electron microscopy (EM) to study the in vitro assembly properties of purified bacterially expressed IF proteins, in which specific domains of the proteins were either mutated or swapped between a cytoplasmic (mouse neurofilament-light (NF-L) subunit) and nuclear intermediate filament protein (human lamin A). Our results indicate that filament formation is profoundly influenced by the composition of the assembly buffer. Wild type (wt) mouse NF-L formed 10 nm filaments in assembly buffer containing 175 mM NaCl, whereas a mutant deleted of 18 NH2-terminal amino acids failed to assemble under similar conditions. Instead, the mutant assembled efficiently in buffers containing CaCl2 > or = 6 mM forming filaments that were 10 times longer than those formed by wt NF-L, although their diameter was significantly smaller (6-7 nm). These results suggest that the 18 NH2-terminal sequence of NF-L might serve two functions, to inhibit filament elongation and to promote lateral association of NF-L subunits. We also demonstrate that lengthening of the NF-L rod domain, by inserting a 42 aa sequence unique to nuclear IF proteins, does not compromise filament assembly in any noticeable way. Our results suggests that the known inability of nuclear lamin proteins to assemble into 10 nm filaments in vitro cannot derive solely from their longer rod domain. Finally, we demonstrate that the head domain of lamin A can substitute for that of NF-L in filament assembly, whereas substitution of both the head and tail domains of lamins for those of NF-L compromises assembly. Therefore, the effect of lamin A "tail" domain alone, or the synergistic effect of lamin "head" and the "tail" domains together, interferes with assembly into 10-nm filaments.  相似文献   

8.
R M Evans 《FEBS letters》1988,234(1):73-78
The intermediate filament protein vimentin was phosphorylated with cAMP-dependent protein kinase under conditions that induce filament disassembly. Digestion of phosphorylated vimentin with lysine-specific endoprotease and subsequent tryptic peptide mapping indicated that a 12 kDa N-terminal fragment contained all the phosphorylation sites found in the intact molecule. Analysis of cyanogen bromide digests indicated that two phosphorylated peptides were produced, with the major 32P-labeled species representing amino acid position 14-72, and a minor 32P-labeled peptide representing amino acid positions 1-13. These results demonstrate that phosphorylation of sites within the N-terminal head domain of vimentin are associated with phosphorylation induced filament disassembly.  相似文献   

9.
We have determined the mass-per-length (MPL) composition of distinct early assembly products of recombinant intermediate filament (IF) proteins from the four cytoplasmic sequence homology classes, and compared these values with those of the corresponding mature filaments. After two seconds under standard assembly conditions (i.e. 25 mM Tris-HCl (pH 7.5), 50 mM NaCl, 37 degrees C), vimentin, desmin and the neurofilament triplet protein NF-L aggregated into similar types of "unit-length filaments" (ULFs), whereas cytokeratins (CKs) 8/18 already yielded long IFs at this time point, so the ionic strength had to be reduced. The number of molecules per filament cross-section, as deduced from the MPL values, was lowest for CK8/18, i.e. 16 and 25 at two seconds compared to 16 and 21 at one hour. NF-L exhibited corresponding values of 26 and 30. Vimentin ULFs yielded a pronounced heterogeneity, with major peak values of 32 and 45 at two seconds and 30, 37 and 44 after one hour. Desmin formed filaments of distinctly higher mass with 47 molecules per cross-section, at two seconds and after one hour of assembly. This indicates that individual types of IF proteins generate filaments with distinctly different numbers of molecules per cross-section. Also, the observed significant reduction of apparent filament diameter of ULFs compared to the corresponding mature IFs is the result of a "conservative" radial compaction-type reorganization within the filament, as concluded from the fact that both the immature and mature filaments contain very similar numbers of subunits per cross-section. Moreover, the MPL composition of filaments is strikingly dependent on the assembly conditions employed. For example, vimentin fibers formed in 0.7 mM phosphate (pH 7.5), 2.5 mM MgCl2, yield a significantly increased number of molecules per cross-section (56 and 84) compared to assembly under standard conditions. Temperature also strongly influences assembly: above a certain threshold temperature "pathological" ULFs form that are arrested in this state, indicating that the system is forced into strong but unproductive interactions between subunits. Similar "dead-end" structures were obtained with vimentins mutated to introduce principal alterations in subdomains presumed to be of general structural importance, indicating that these sequence changes led to new modes of intermolecular interactions.  相似文献   

10.
Thyone sperm were demembranated with Triton X-100 and, after washing, extracted with 30 mM Tris at pH 8.0 and 1 mM MgCl2. After the insoluble contaminants were removed by centrifugation, the sperm extract was warmed to 22 degrees C. Actin filaments rapidly assembled and aggregated into bundles when KCl was added to the extract. When we added preformed actin filaments, i.e., the acrosomal filament bundles of Limulus sperm, to the extract, the actin monomers rapidly assembled on these filaments. What was unexpected was that assembly took place on only one end of the bundle--the end corresponding to the preferred end for monomer addition. We showed that the absence of growth on the nonpreferred end was not due to the presence of a capper because exogenously added actin readily assembled on both ends. We also analyzed the sperm extract by SDS gel electrophoresis. Two major proteins were present in a 1:1 molar ratio: actin and a 12,500-dalton protein whose apparent isoelectric point was 8.4. The 12,500-dalton protein was purified by DEAE chromatography. We concluded that it is profilin because of its size, isoelectric point, molar ratio to actin, inability to bind to DEAE, and its effect on actin assembly. When profilin was added to actin in the presence of Limulus bundles, addition of monomers on the nonpreferred end of the bundle was inhibited, even though actin by itself assembled on both ends. Using the Limulus bundles as nuclei, we determined the critical concentration for assembly off each end of the filament and estimated the Kd for the profilin-actin complex (approximately 10 microM). We present a model to explain how profilin may regulate the extension of the Thyone acrosomal process in vivo: The profilin-actin complex can add to only the preferred end of the filament bundle. Once the actin monomer is bound to the filament, the profilin is released, and is available to bind to additional actin monomers. This mechanism accounts for the rapid rate of filament elongation in the acrosomal process in vivo.  相似文献   

11.
We have studied the effect of the Dictyostelium discoideum 30,000-D actin-bundling protein on the assembly and disassembly of pyrenyl-labeled actin in vitro. The results indicate that the protein is a potent inhibitor of the rate of actin depolymerization. The inhibition is rapid, dose dependent, and is observed at both ends of the filament. There is little effect of 30-kD protein on the initial rate of elongation from F-actin seeds or on the spontaneous nucleation of actin polymerization. We could detect little or no effect on the critical concentration. The novel feature of these results is that the filament ends are free for assembly but are significantly impaired in disassembly with little change in the critical concentration at steady state. The effects appear to be largely independent of the cross-linking of actin filaments by the 30-kD protein. Actin cross-linking proteins may not only cross-link actin filaments, but may also differentially protect filaments in cells from disassembly and promote the formation of localized filament arrays with enhanced stability.  相似文献   

12.
Z W Yang  J A Babitch 《Biochemistry》1988,27(18):7038-7045
Glial fibrillary acidic protein (GFAP) is soluble in low ionic strength solutions but shows a strong tendency toward assembly with increasing ionic strength as revealed by electron microscopy and turbidity measurements. Increasing K+, Na+, and Li+ concentrations cause an increase followed by a decrease in GFAP turbidity with a maximum at 200 mM, but their effects are much weaker than effects of divalent cations at the same ionic strength. Ca2+, Mg2+, Mn2+, and Ba2+ promote assembly at millimolar concentrations, and 10 microM Cu2+ causes rapid aggregation. The critical concentration for GFAP assembly was 0.08 +/- 0.04 mg/mL in 2 mM Tris-HCl, 60 mM KCl, and 1 mM CaCl2, pH 6.8. The Mr 38,000 rod domain of GFAP obtained by limited chymotryptic digestion is more soluble in 100 mM imidazole hydrochloride buffer, pH 6.8, than the intact molecule, and removal of the end pieces greatly reduces the ability of GFAP to form filaments. BNPS-skatole (2-[(2-nitrophenyl)sulfenyl]-3-methyl-3-bromoindolenine) treatment releases a Mr 30,000 N-terminus and a Mr 20,000 C-terminus. The Mr 30,000 polypeptide shows a higher affinity than the Mr 20,000 fragment for intact GFAP. Arginine and lysine at low concentrations slightly accelerate GFAP assembly, but above 100 mM both amino acids inhibit assembly. ATP, GTP, CTP, and UTP do not show significant effects on GFAP assembly. Dephosphorylation by alkaline phosphatase slightly reduces the assembly ability of GFAP, but phosphatase-treated GFAP still is assembly competent.  相似文献   

13.
Tetrahymena 14-nm filament-forming protein (49K protein) is a structural protein which is involved in activity of the pronuclei during conjugation (O. Numata, T. Sugai, and Y. Watanabe (1985) Nature (London) 314, 192-194). Using monoclonal and polyclonal antibodies, we here demonstrate the presence of a cross-reactive protein (CRP-49) within the macronuclear replication bands of Euplotes harpa and E. eurystomus which is recognized by anti-49K protein antibodies. Immunoblotting reveals that both monoclonal and polyclonal antibodies cross-react to a protein with an apparent molecular mass of 50 kDa in an E. harpa cell extract and to a protein of 49 kDa in a macronuclear extract of E. eurystomus. The antibodies used in this study have no effect upon in vitro DNA synthesis in the replication band of E. eurystomus.  相似文献   

14.
Tetrahymena 49kDa protein functions as a citrate synthase (CS) and also assembles to 14-nm filament during cell mating. Bifunctional property of 49kDa protein is suggested to be maintained by the difference of post-translational modification(s). We have found that phosphorylation is present on all three isoforms of 49kDa protein. Dephosphorylation of citrate synthase type isoforms of 49kDa protein, composing pl 7.7 and 8.0 isoforms, reduced its enzymatic activity, shifting these isoforms to basic side. In a course of dephosphorylation, isoform of pl 8.4 appeared with pl 7.7 and 8.0 isoforms, which correspond to the isoforms of 14-nm filament assembling type. With this dephosphorylation, the citrate synthase type isoforms obtained the ability to assemble 14-nm filaments. We propose that enzyme form and cytoskeletal form of 49kDa protein were maintained simply by phosphorylation.  相似文献   

15.
RecA protein primarily associates with and dissociates from opposite ends of nucleoprotein filaments formed on linear duplex DNA. RecA nucleoprotein filaments that are hydrolyzing ATP therefore engage in a dynamic process under some conditions that has some of the properties of treadmilling. We have also investigated whether the net polymerization of recA protein at one end of the filament and/or a net depolymerization at the other end drives unidirectional strand exchange. There is no demonstrable correlation between recA protein association/dissociation and the strand exchange reaction. RecA protein-mediated DNA strand exchange is affected minimally by changes in reaction conditions (dilution, pH shift, or addition of small amounts of adenosine-5'-O-(3-thiotriphosphate) that have large and demonstrable effects on recA protein association, dissociation, or both. Rather than driving strand exchange, these assembly and disassembly processes may simply represent the mechanism by which recA nucleoprotein filaments are recycled in the cell.  相似文献   

16.
We have studied in detail the immunofluorescence localizations of Tetrahymena 14-nm filament-forming protein (49-kDa protein) in relation to tubulin in conjugating wild-type Tetrahymena thermophila (B strain) pairs and in pairs between B strain and star strains with defective micronuclei. The results suggest that germ nuclear behavior during conjugation may involve the following cytoskeletal structures: (1) during meiosis, microtubule structures are involved in micronuclear elongation and meiotic division; (2) at the postmeiotic stage, 49-kDa protein network structures that are formed independently of the existence of pronuclei are involved in the selection and the survival of one of four meiotic products; (3) during the third prezygotic division, gametic pronuclear transfer, and zygote formation, a cytoskeletal structure in which the 49-kDa protein colocalizes with microtubules and which is dependent on the existence of a normal gametic pronucleus is involved in gametic pronuclear behavior, and (4) during the postzygotic divisions, the microtubules are involved in nuclear behavior.  相似文献   

17.
R Donato 《Cell calcium》1985,6(4):343-361
In the presence of the usual 0.1 M Mes buffer, pH 6.7, mM free Ca2+ levels are required for half-maximal decrease in the rate and extent of brain microtubule protein (MTP) assembly in the absence of ox brain S-100, while microM free Ca2+ levels are sufficient in the presence of S-100. At the same pH 6.7, but in the presence of 0.12 M KCl, as low as 1.5 microM free Ca2+ is sufficient for S-100 to produce half-maximal reduction in the rate of assembly, while as high as 0.5 mM free Ca2+ is required in the absence of S-100. Similar results are obtained with rat brain S-100 (S-100b), indicating that single S-100 iso forms are equipotent in affecting the MTP assembly. At pH 7.5, MTPs are remarkably resistant to Ca2+ in the absence of S-100. In the presence of S-100, not only is the free Ca2+ concentration required for complete inhibition of assembly at least one order of magnitude smaller than that required in the absence of S-100, but significant S-100-dependent inhibition of assembly occurs in the absence of Ca2+. Under the two conditions where S-100 is particularly effective in inhibiting the assembly, i.e. at pH 6.7 in the presence of KCl and at pH 7.5, S-100 increases the disassembly rate even in the presence of microM Ca2+ levels. Our results suggest that the free Ca2+ concentration regulates the way S-100 disassembles microtubules (MTs): at microM Ca2+ levels, S-100 sequesters tubulin with concomitant increase in the disassembly rate; at mM Ca2+ levels, the S-100-Ca2+ complex probably interacts with MTs producing endwise disassembly.  相似文献   

18.
The possible role of the regulatory light chains (LC2) in in vitro assembly of rabbit skeletal and dog cardiac myosins was examined by formation of minifilaments and synthetic thick filaments. After LC2 was removed, the resulting myosin preparations exhibited little aggregation in 0.5 M KCl and 0.05 M potassium phosphate (pH 6.5). Minifilaments migrated as a single, hypersharp peak during sedimentation velocity, but electron microscopic analysis revealed a more destabilized structure for LC2-deficient minifilaments. Thick filaments were formed in buffers containing 0.15 M KCl and the following: 20 mM imidazole; 20 mM imidazole, 5 mM ATP; or 20 mM imidazole, 5 mM ATP, and 5 mM MgCl2, all at pH 7.0. Skeletal and cardiac myosin filaments formed in imidazole buffer alone were bipolar, tapered at both ends, and about 1.6 micron long. Removal of LC2 resulted in the formation of shorter thick filaments (1.2 micron long). This effect could be reversed by reassociation with LC2. Inclusion of ATP in the buffer disrupted the filament structure, resulting in irregular, short filaments (less than 0.6 micron); addition of both ATP and MgCl2 largely reversed the effects of ATP alone. In cardiac myosin filaments, the bare zone diameter increased from 16 nm as measured in control and LC2-recombined samples to 20 nm in LC2-deficient myosin assemblies. These results implicate LC2 in an active role in controlling synthetic thick filament length in both skeletal and cardiac muscles.  相似文献   

19.
Microtubule-associated fibers from the basal apparatus of the green flagellate alga Spermatozopsis similis exhibit a complex cross-striation pattern with 28-nm periodicity and consist of 2-nm filaments arranged in several layers. Fibers enriched by mechanical disintegration and high salt extraction (2 M NaCl) of isolated basal apparatuses are soluble in 2 M urea. Dialysis of solubilized fibers against 150 mM KCl yields paracrystals which closely resemble the native fibers in filament arrangement and striation pattern. Paracrystals purified through several cycles of disassembly and reassembly are greatly enriched (greater than 90%) in a single protein of 34 kD (assemblin) as shown by SDS-PAGE. A rabbit polyclonal antibody raised against assemblin labels the striated fibers as shown by indirect immunofluorescence of isolated cytoskeletons or methanol permeabilized cells and immunogold EM. Two-dimensional electrophoresis (isoelectric focusing and SDS-PAGE) resolves assemblin into at least four isoforms (a-d) with pI's of 5.45, 5.55, 5.75, and 5.85. The two more acidic isoforms are phosphoproteins as shown by in vivo 32PO4-labeling and autoradiography. Amino acid analysis of assemblin shows a high content of helix-forming residues (leucine) and a relatively low content of glycine. We conclude that assemblin may be representative of a class of proteins that form fine filaments alongside microtubules.  相似文献   

20.
Glial fibrillary acidic protein, which is specific to astroglia in the central nervous system, polymerizes in vitro into filaments similar to native ~ 100 Å filaments. Following purification from aqueous extracts of bovine brain by immunoaffinity chromatography, GFA 2 protein is highly soluble in very low ionic strength solutions. Sedimentation equilibrium analysis of protein solutions in prefilament solvent conditions (2 mm-Tris · HCl, pH 7.8, 20 °C, containing 0.5 mm-dithiothreitol) indicates a paucidisperse mixture of species in solution with a typical range of apparent weight-average molecular weights from about 186,000 to 227,000. Between pH 6.0 and 8.0 the solubility is a function of pH and ionic strength as well as temperature, and precipitation is favored by lowering the pH or temperature and by raising the ionic strength. GFA protein associates in the form of filaments over a narrow range of pH and ionic strength; optimal conditions for polymerization of a 0.1 mg/ml protein solution are 100 mm-imidazole-HCl buffer (pH 6.8), at a temperature of 37 °C, and there is no requirement for co-factors. Filaments appear primarily as tangles of smooth curvilinear structures approximately 100 Å in diameter and of indefinite length, although some lateral association of filaments into thick bundles is also observed. While the formation of filaments is not affected by the presence or absence of reducing agent, under oxidizing conditions disulfide linkages form between protein subunits. Disassembly is achieved by dialysis against 2 mm-Tris · HCl buffer (pH 8.5), but this process is significantly enhanced by the addition of 0.5 mM-dithiothreitol during assembly and disassembly.These experiments clarify the role of GFA protein as the subunit of astroglialspecific intermediate filaments. In addition, they suggest that the 100 Å filament, as other components of the cytoskeleton, may assemble and disassemble in the glial cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号