首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roy H  Ling J  Irnov M  Ibba M 《The EMBO journal》2004,23(23):4639-4648
Translation of the genetic code requires attachment of tRNAs to their cognate amino acids. Errors during amino-acid activation and tRNA esterification are corrected by aminoacyl-tRNA synthetase-catalyzed editing reactions, as extensively described for aliphatic amino acids. The contribution of editing to aromatic amino-acid discrimination is less well understood. We show that phenylalanyl-tRNA synthetase misactivates tyrosine and that it subsequently corrects such errors through hydrolysis of tyrosyl-adenylate and Tyr-tRNA(Phe). Structural modeling combined with an in vivo genetic screen identified the editing site in the B3/B4 domain of the beta subunit, 40 angstroms from the active site in the alpha subunit. Replacements of residues within the editing site had no effect on Phe-tRNA(Phe) synthesis, but abolished hydrolysis of Tyr-tRNA(Phe) in vitro. Expression of the corresponding mutants in Escherichia coli significantly slowed growth, and changed the activity of a recoded beta-galactosidase variant by misincorporating tyrosine in place of phenylalanine. This loss in aromatic amino-acid discrimination in vivo revealed that editing by phenylalanyl-tRNA synthetase is essential for faithful translation of the genetic code.  相似文献   

2.
Translational quality control is monitored at several steps, including substrate selection by aminoacyl-tRNA synthetases (aaRSs), and discrimination of aminoacyl-tRNAs by elongation factor Tu (EF-Tu) and the ribosome. Phenylalanyl-tRNA synthetase (PheRS) misactivates Tyr but is able to correct the mistake using a proofreading activity named editing. Previously we found that overproduction of editing-defective PheRS resulted in Tyr incorporation at Phe-encoded positions in vivo, although the misreading efficiency could not be estimated. This raised the question as to whether or not EF-Tu and the ribosome provide further proofreading mechanisms to prevent mistranslation of Phe codons by Tyr. Here we show that, after evading editing by PheRS, Tyr-tRNA(Phe) is recognized by EF-Tu as efficiently as the cognate Phe-tRNA(Phe). Kinetic decoding studies using full-length Tyr-tRNA(Phe) and Phe-tRNA(Phe), as well as a poly(U)-directed polyTyr/polyPhe synthesis assay, indicate that the ribosome lacks discrimination between Tyr-tRNA(Phe) and Phe-tRNA(Phe). Taken together, these data suggest that PheRS editing is the major proofreading step that prevents infiltration of Tyr into Phe codons during translation.  相似文献   

3.
The crystal structure of the ternary complex of (alphabeta)(2) heterotetrameric phenylalanyl-tRNA synthetase (PheRS) from Thermus thermophilus with cognate tRNA(Phe) and a nonhydrolyzable phenylalanyl-adenylate analogue (PheOH-AMP) has been determined at 3.1 A resolution. It reveals conformational changes in tRNA(Phe) induced by the PheOH-AMP binding. The single-stranded 3' end exhibits a hairpin conformation in contrast to the partial unwinding observed previously in the binary PheRS.tRNA(Phe) complex. The CCA end orientation is stabilized by extensive base-specific interactions of A76 and C75 with the protein and by intra-RNA interactions of A73 with adjacent nucleotides. The 4-amino group of the "bulged out" C75 is trapped by two negatively charged residues of the beta subunit (Glubeta31 and Aspbeta33), highly conserved in eubacterial PheRSs. The position of the A76 base is stabilized by interactions with Hisalpha212 of motif 2 (universally conserved in PheRSs) and class II-invariant Argalpha321 of motif 3. Important conformational changes induced by the binding of tRNA(Phe) and PheOH-AMP are observed in the catalytic domain: the motif 2 loop and a "helical" loop (residues 139-152 of the alpha subunit) undergo coordinated displacement; Metalpha148 of the helical loop adopts a conformation preventing the 2'-OH group of A76 from approaching the alpha-carbonyl carbon of PheOH-AMP. The unfavorable position of the terminal ribose stems from the absence of the alpha-carbonyl oxygen in the analogue. Our data suggest that the idiosyncratic feature of PheRS, which aminoacylates the 2'-OH group of the terminal ribose, is dictated by the system-specific topology of the CCA end-binding site.  相似文献   

4.
Accurate selection of amino acids is essential for faithful translation of the genetic code. Errors during amino acid selection are usually corrected by the editing activity of aminoacyl-tRNA synthetases such as phenylalanyl-tRNA synthetases (PheRS), which edit misactivated tyrosine. Comparison of cytosolic and mitochondrial PheRS from the yeast Saccharomyces cerevisiae suggested that the organellar protein might lack the editing activity. Yeast cytosolic PheRS was found to contain an editing site, which upon disruption abolished both cis and trans editing of Tyr-tRNA(Phe). Wild-type mitochondrial PheRS lacked cis and trans editing and could synthesize Tyr-tRNA(Phe), an activity enhanced in active site variants with improved tyrosine recognition. Possible trans editing was investigated in isolated mitochondrial extracts, but no such activity was detected. These data indicate that the mitochondrial protein synthesis machinery lacks the tyrosine proofreading activity characteristic of cytosolic translation. This difference between the mitochondria and the cytosol suggests that either organellar protein synthesis quality control is focused on another step or that translation in this compartment is inherently less accurate than in the cytosol.  相似文献   

5.
Neither the tertiary structure nor the location of active sites are known for phenylalanyl-tRNA synthetase (PheRS; alpha 2 beta 2 structure), a member of class II aminoacyl-tRNA synthetases. In an attempt to detect the phenylalanine (Phe) binding site, two Escherichia coli PheRS mutant strains (pheS), which were resistant to p-fluorophenylalanine (p-F-Phe) were analysed genetically. The pheS mutations were found to cause Ala294 to Ser294 exchanges in the alpha subunits from both independent strains. This alteration (S294) resided in the well-conserved C-terminal part of the alpha subunit, precisely within motif 3, a typical class II tRNA synthetase sequence. We thus propose that motif 3 participates in the formation of the Phe binding site of PheRS. Mutation S294 was also the key for proposing a mechanism by which the substrate analogue p-F-Phe is excluded from the enzymatic reaction; this may be achieved by steric interactions between the para-position of the aromatic ring and the amino acid residue at position 294. The Phe binding site model was then tested by replacing the alanine at position 294 as well as the two flanking phenylalanines (positions 293 and 295) by a number of selected other amino acids. In vivo and in vitro results demonstrated that Phe293 and Phe295 are not directly involved in substrate binding, but replacements of those residues affected PheRS stability. However, exchanges at position 294 altered the binding of Phe, and certain mutants showed pronounced changes in specificity towards Phe analogues. Of particular interest was the Gly294 PheRS in which presumably an enlarged cavity for the para position of the aromatic ring allowed an increased aminoacylation of tRNA with p-F-Phe. Moreover, the larger para-chloro and para-bromo derivatives of Phe could interact with this enzyme in vitro and became highly toxic in vivo. The possible exploitation of the Gly294 mutant PheRS for the incorporation of non-proteinogenic amino acids into proteins is discussed.  相似文献   

6.
The functional roles of phenylalanine and ATP in productive binding of the tRNA(Phe) acceptor end have been studied by photoaffinity labeling (cross-linking) of T. thermophilus phenylalanyl-tRNA synthetase (PheRS) with tRNA(Phe) analogs containing the s(4)U residue in different positions of the 3'-terminal single-stranded sequence. Human and E. coli tRNA(Phe)s used as basic structures differ by efficiency of the binding and aminoacylation with the enzyme under study. Destabilization of the complex with human tRNA(Phe) caused by replacement of three recognition elements decreases selectivity of labeling of the alpha- and beta-subunits responsible for the binding of adjacent nucleotides of the CCA-end. Phenylalanine affects the positioning of the base and ribose moieties of the 76th nucleotide, and the recorded effects do not depend on structural differences between bacterial and eukaryotic tRNA(Phe)s. Both in the absence and presence of phenylalanine, ATP more effectively inhibits the PheRS labeling with the s(4)U76-substituted analog of human tRNA(Phe) (tRNA(Phe)-s(4)U76) than with E. coli tRNA(Phe)-s(4)U76: in the first case the labeling of the alpha-subunits is inhibited more effectively; the labeling of the beta-subunits is inhibited in the first case and increased in the second case. The findings analyzed with respect to available structural data on the enzyme complexes with individual substrates suggest that the binding of phenylalanine induces a local rearrangement in the active site and directly controls positioning of the tRNA(Phe) 3'-terminal nucleotide. The effect of ATP on the acceptor end positioning is caused by global structural changes in the complex, which modulate the conformation of the acceptor arm. The rearrangement of the acceptor end induced by small substrates results in reorientation of the 3'-OH-group of the terminal ribose from the catalytic subunit onto the noncatalytic one, and this may explain the unusual stereospecificity of aminoacylation in this system.  相似文献   

7.
The extent of tRNA recognition at the level of binding by Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS), one of the most complex class II synthetases, has been studied by independent measurements of the enzyme association with wild-type and mutant tRNA(Phe)s as well as with non-cognate tRNAs. The data obtained, combined with kinetic data on aminoacylation, clearly show that PheRS exhibits more tRNA selectivity at the level of binding than at the level of catalysis. The anticodon nucleotides involved in base-specific interactions with the enzyme prevail both in the initial binding recognition and in favouring aminoacylation catalysis. Tertiary nucleotides of base pair G19-C56 and base triple U45-G10-C25 contribute primarily to stabilization of the correctly folded tRNA(Phe) structure, which is important for binding. Other nucleotides of the central core (U20, U16 and of the A26-G44 tertiary base pair) are involved in conformational adjustment of the tRNA upon its interaction with the enzyme. The specificity of nucleotide A73, mutation of which slightly reduces the catalytic rate of aminoacylation, is not displayed at the binding step. A few backbone-mediated contacts of PheRS with the acceptor and anticodon stems revealed in the crystal structure do not contribute to tRNA(Phe) discrimination, their role being limited to stabilization of the complex. The highest affinity of T. thermophilus PheRS for cognate tRNA, observed for synthetase-tRNA complexes, results in 100-3000-fold binding discrimination against non-cognate tRNAs.  相似文献   

8.
P Kast  C Wehrli  H Hennecke 《FEBS letters》1991,293(1-2):160-163
Phenylalanyl-tRNA synthetase (PheRS; alpha 2 beta 2 subunit structure) is a member of class II of tRNA synthetases. We report here the genetic analysis of an Escherichia coli mutant strain which is auxotrophic for phenylalanine because it has a PheRS with a decreased affinity for phenylalanine. The mutant pheS gene encoding the PheRS alpha subunit was cloned and sequenced, and the deviation from the wild-type gene was found to result in a Gly191-to-Asp191 exchange. This alteration is located within motif 2, one of 3 conserved sequence motifs characteristic for class II aminoacyl-tRNA synthetases. Motif 2 may thus participate in the formation of the phenylalanine binding site in PheRS.  相似文献   

9.
The cDNA encoding rice methionyl-tRNA synthetase was isolated. The protein exhibited a C-terminal polypeptide appended to a classical MetRS domain. This supplementary domain is related to endothelial monocyte activating polypeptide II (EMAPII), a cytokine produced in mammals after cleavage of p43, a component of the multisynthetase complex. It is also related to Arc1p and Trbp111, two tRNA binding proteins. We expressed rice MetRS and a derivative with a deletion of its EMAPII-like domain. Band-shift analysis showed that this extra-domain provides MetRS with non-specific tRNA binding properties. The EMAPII-like domain contributed a 10-fold decrease in K:(M) for tRNA in the aminoacylation reaction catalyzed by the native enzyme, as compared with the C-terminally truncated MetRS. Consequently, the EMAPII domain provides MetRS with a better catalytic efficiency at the free tRNA concentration prevailing in vivo. This domain binds the acceptor minihelix of tRNA(Met) and facilitates its aminoacylation. These results suggest that the EMAPII module could be a relic of an ancient tRNA binding domain that was incorporated into primordial synthetases for aminoacylation of RNA minihelices taken as the ancestor of modern tRNA.  相似文献   

10.
Human phenylalanyl-tRNA synthetase (PheRS) was cloned and expressed in Escherichia coli. The cDNAs of the alpha and beta subunits were cloned into pET-21b(+) and pET-28b(+) vectors. The 6x histidine-tagged (HT) plasmids pET-21_HTbeta, pET-28_HTalpha, and pET-28_HTbeta were constructed. Three different types of (alphabeta)(2) heterodimers of human PheRS carrying HT at the N-terminus of either of two alpha or beta subunits or simultaneously on both of them were overproduced and purified. The heterodimeric protein with HT appended to the N-terminus of the beta subunit revealed no activity in the aminoacylation reaction as opposed to those with HT on the alpha subunit. It is known from the structure of the Thermus thermophilus Phe system that the N-terminal coiled-coil domain of the alpha subunit is involved in the binding of cognate tRNA(Phe). Our data demonstrate that a histidine-tagged N-terminal extension appended to the alpha subunit does not affect the kinetic parameters of tRNA(Phe) aminoacylation. Elimination of the HT from the alpha subunit by thrombin cleavage leads to nonspecific splitting of the enzyme that occurs in parallel to the main reaction. In addition to the tagged proteins the properly assembled heterodimer containing intact alpha and beta subunits free of HT was overproduced and purified. Aminoacylation activity of the overproduced human PheRS in the crude bacterial extract is two orders of magnitude higher than the corresponding activity in human placenta and the yield of the recombinant enzyme overproduced in E. coli is five times higher.  相似文献   

11.
FRS1 and FRS2, the structural genes encoding the large (alpha) and small (beta) subunits of yeast phenylalanyl-tRNA synthetase (PheRS) were placed under the control of the lacZ promoter by creating an artificial operon. The FRS2 gene was fused next to the promoter, followed by a 14 base pair intergenic sequence containing a translation reinitiation site in front of the FRS1 coding sequences. The engineered PheRS has 16 N-terminal amino acids from beta-galactosidase fused to the beta subunit. However, the purified protein shows a Km value for tRNA(Phe) that is indistinguishable from that of the the native enzyme. The product of the FRS2-FRS1 operon is not able to complement thermosensitive E. coli PheRS, indicating the lack of heterologous aminoacylation in vivo. We made a deletion in the FRS2 gene that removed about 150 amino terminal residues of the beta subunit. The truncated protein showed intact ATP-PPi exchange, whereas tRNA aminoacylation was lost. This result is similar to that of limited proteolysis performed on the native enzyme that yielded a tetrameric alpha 2 beta'2 structure, able to form aminoacyladenylate but unable to bind tRNA(Phe). A deletion of 50 amino acids from the carboxyl terminus of the beta chain resulted in the loss of both enzyme activities; this suggests the participation of the C-terminal end of the beta subunit in the active site or in subunit assembly to yield a tetrameric functional enzyme.  相似文献   

12.
The EMAPII (endothelial monocyte-activating polypeptide II) domain is a tRNA-binding domain associated with several aminoacyl-tRNA synthetases, which becomes an independent domain with inflammatory cytokine activity upon apoptotic cleavage from the p43 component of the multisynthetase complex. It comprises a domain that is highly homologous to bacterial tRNA-binding proteins (Trbp), followed by an extra domain without homology to known proteins. Trbps, which may represent ancient tRNA chaperones, form dimers and bind one tRNA per dimer. In contrast, EMAPII domains are monomers. Here we report the crystal structure at 1.14 Angstroms of human EMAPII. The structure reveals that the Trbp-like domain, which forms an oligonucleotide-binding (OB) fold, is related by degenerate 2-fold symmetry to the extra-domain. The pseudo-axis coincides with the dyad axis of bacterial TtCsaA, a Trbp whose structure was solved recently. The interdomain interface in EMAPII mimics the intersubunit interface in TtCsaA, and may thus generate a novel OB-fold-based tRNA-binding site. The low sequence homology between the extra domain of EMAPII and either its own OB fold or that of Trbps suggests that dimer mimicry originated from convergent evolution rather than gene duplication.  相似文献   

13.
Periodate-oxidized tRNA(Phe) (tRNA(oxPhe)) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the alpha 2 beta 2 enzyme with tRNA(oxPhe) results in the loss of tRNAPhe aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-[14C]tRNA(oxPhe) covalent complex indicates that the large (alpha, Mr 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA(oxPhe). The [14C]tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys[Ado]-Phe, Ala-Asp-Lys[Ado]-Leu, and Lys-Ile-Lys[Ado]-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the alpha subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases [Hountondji, C., Dessen, P., & Blanquet, S. (1986) Biochimie 68, 1071-1078].  相似文献   

14.
The crystal structure of Phenylalanyl‐tRNA synthetase from E. coli (EcPheRS), a class II aminoacyl‐tRNA synthetase, complexed with phenylalanine and AMP was determined at 3.05 Å resolution. EcPheRS is a (αβ)2 heterotetramer: the αβ heterodimer of EcPheRS consists of 11 structural domains. Three of them: the N‐terminus, A1 and A2 belong to the α‐subunit and B1‐B8 domains to the β subunit. The structure of EcPheRS revealed that architecture of four helix‐bundle interface, characteristic of class IIc heterotetrameric aaRSs, is changed: each of the two long helices belonging to CLM transformed into the coil‐short helix structural fragments. The N‐terminal domain of the α‐subunit in EcPheRS forms compact triple helix domain. This observation is contradictory to the structure of the apo form of TtPheRS, where N‐terminal domain was not detected in the electron density map. Comparison of EcPheRS structure with TtPheRS has uncovered significant rearrangements of the structural domains involved in tRNAPhe binding/translocation. As it follows from modeling experiments, to achieve a tighter fit with anticodon loop of tRNA, a shift of ~5 Å is required for C‐terminal domain B8, and of ~6 to 7 Å for the whole N terminus. EcPheRSs have emerged as an important target for the incorporation of novel amino acids into genetic code. Further progress in design of novel compounds is anticipated based on the structural data of EcPheRS.  相似文献   

15.
The crystal structures of Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS) complexed with phenylalanine and phenylalaninyl-adenylate (PheOH-AMP), the synthetic analogue of phenylalanyl-adenylate, have been determined at 2.7A and 2.5A resolution, respectively. Both Phe and PheOH-AMP are engulfed in the active site cleft of the catalytic alpha-subunit of PheRS, and neither makes contact with the PheRS beta-subunit. The conformations and binding of Phe are almost identical in both complexes. The recognition of Phe by PheRS is achieved through a mixture of multiple van der Waals interactions and hydrogen bonds. The side-chain of the Phe substrate is sandwiched between the hydrophobic side-chains of Phealpha258 and Phealpha260 on one side, and the main-chain atoms of the two adjacent beta-strands on the other. The side-chains of Valalpha261 and Alaalpha314 form the back wall of the amino acid binding pocket. In addition, PheRS residues (Trpalpha149, Seralpha180, Hisalpha178, Argalpha204, Glnalpha218, and Glualpha220) form a total of seven hydrogen bonds with the main-chain atoms of Phe. The conformation of PheOH-AMP and the network of interactions of its AMP moiety with PheRS are reminiscent of the other class II synthetases. The structural similarity between PheRS and histidyl-tRNA synthetase extends to the amino acid binding site, which is normally unique for each enzyme. The complex structures suggest that the PheRS beta-subunit may affect the first step of the reaction (formation of phenylalanyl-adenylate) through the metal-mediated conserved alpha/beta-subunit interface. The modeling of tyrosine in the active site of PheRS revealed no apparent close contacts between tyrosine and the PheRS residues. This result implies that the proofreading mechanism against activated tyrosine, rather than direct recognition, may play the major role in the PheRS specificity.  相似文献   

16.
Native cytoplasmic phenylalanyl-tRNA synthetase from baker's yeast is a tetramer of the alpha 2 beta 2 type. On mild tryptic cleavage it gives rise to a modified alpha 2 beta 2 form that has lost the tRNA(Phe) binding capacity but is still able to activate phenylalanine. In this paper are presented data concerning peptides released by this limited proteolytic conversion as well as those arising from exhaustive tryptic digestion of the truncated beta subunit. Each purified peptide was unambiguously assigned to a unique stretch of the beta subunit amino acid sequence that was recently determined via gene cloning and DNA sequencing. Together with earlier results from affinity labelling studies the present data show that the Lys 172-Ile 173 bond is the unique target of trypsin under mild conditions and that the N-terminal domain of each beta subunit (residues 1-172) contains the major tRNA(Phe) binding sites.  相似文献   

17.
Photoreactive derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at their 3' termini were used to trace the movement of tRNA across the 50S subunit during its transit from the P site to the E site of the 70S ribosome. When bound to the P site of poly(U)-programmed ribosomes, deacylated tRNA(Phe), Phe-tRNA(Phe) and N-acetyl-Phe-tRNA(Phe) probes labeled protein L27 and two main sites within domain V of the 23S RNA. In contrast, deacylated tRNA(Phe) bound to the E site in the presence of poly(U) labeled protein L33 and a single site within domain V of the 23S rRNA. In the absence of poly(U), the deacylated tRNA(Phe) probe also labeled protein L1. Cross-linking experiments with vacant 70S ribosomes revealed that deacylated tRNA enters the P site through the E site, progressively labeling proteins L1, L33 and, finally, L27. In the course of this process, tRNA passes through the intermediate P/E binding state. These findings suggest that the transit of tRNA from the P site to the E site involves the same interactions, but in reverse order. Moreover, our results indicate that the final release of deacylated tRNA from the ribosome is mediated by the F site, for which protein L1 serves as a marker. The results also show that the precise placement of the acceptor end of tRNA on the 50S subunit at the P and E sites is influenced in subtle ways both by the presence of aminoacyl or peptidyl moieties and, more surprisingly, by the environment of the anticodon on the 30S subunit.  相似文献   

18.
Aminoacyl-tRNA synthetases (aaRSs) exert control over the faithful transfer of amino acids onto cognate tRNAs. Since chemical structures of various amino acids closely resemble each other, it is difficult to discriminate between them. Editing activity has been evolved by certain aaRSs to resolve the problem. In this study, we determined the crystal structures of complexes of T. thermophilus phenylalanyl-tRNA synthetase (PheRS) with L-tyrosine, p-chloro-phenylalanine, and a nonhydrolyzable tyrosyl-adenylate analog. The structures demonstrate plasticity of the synthetic site capable of binding substrates larger than phenylalanine and provide a structural basis for the proofreading mechanism. The editing site is localized at the B3/B4 interface, 35 A from the synthetic site. Glubeta334 plays a crucial role in the specific recognition of the Tyr moiety in the editing site. The tyrosyl-adenylate analog binds exclusively in the synthetic site. Both structural data and tyrosine-dependent ATP hydrolysis enhanced by tRNA(Phe) provide evidence for a preferential posttransfer editing pathway in the phenylalanine-specific system.  相似文献   

19.
The catalytic domains of class I aminoacyl-tRNA synthetases are built around a conserved Rossmann nucleotide binding fold, with additional polypeptide domains responsible for tRNA binding or hydrolytic editing of misacylated substrates. Structural comparisons identified a conserved motif bridging the catalytic and anticodon binding domains of class Ia and Ib enzymes. This stem contact fold (SCF) has been proposed to globally orient each enzyme's cognate tRNA by interacting with the inner corner of the L-shaped tRNA. Despite the structural similarity of the SCF among class Ia/Ib enzymes, the sequence conservation is low. We replaced amino acids of the MetRS SCF with portions of the structurally similar glutaminyl-tRNA synthetase (GlnRS) motif or with alanine residues. Chimeric variants retained significant tRNA methionylation activity, indicating that structural integrity of the helix-turn-strand-helix motif contributes more to tRNA aminoacylation than does amino acid identity. In contrast, chimeras were significantly reduced in methionyl adenylate synthesis, suggesting a role for the SCF in formation of a structured active site domain. A highly conserved aspartic acid within the MetRS SCF is proposed to make an electrostatic interaction with an active site lysine; these residues were replaced with alanines or conservative substitutions. Both methionyl adenylate formation and methionine transfer were impaired, and activity was not significantly recovered by making the compensatory double substitution.  相似文献   

20.
Vu MT  Martinis SA 《Biochemistry》2007,46(17):5170-5176
Leucyl-tRNA synthetase (LeuRS) is a class I enzyme, which houses its aminoacylation active site in a canonical core that is defined by a Rossmann nucleotide binding fold. In addition, many LeuRSs bear a unique polypeptide insert comprised of about 50 amino acids located just upstream of the conserved KMSKS sequence. The role of this leucine-specific domain (LS-domain) remains undefined. We hypothesized that this domain may be important for substrate recognition in aminoacylation and/or amino acid editing. We carried out a series of deletion mutations and chimeric swaps within the leucine-specific domain of Escherichia coli. Our results support that the leucine-specific domain is critical for aminoacylation but not required for editing activity. Kinetic analysis determined that deletion of the LS-domain primarily impacts kcat. Because of its proximity to the aminoacylation active site, we propose that this domain interacts with the tRNA during amino acid activation and/or tRNA aminoacylation. Although the leucine-specific domain does not appear to be important to the editing complex, it remains possible that it aids the dynamic translocation process that moves tRNA from the aminoacylation to the editing complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号